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Abstract- In this paper, we propose two novel generalized
belief propagation (BP) algorithms to improve the convergence
behavior of the conventional BP algorithm. By incorporating a
dynamic temperature into the free energy formulation, message
passing is performed on a dynamic surface of energy cost.
The proposed cooling process helps BP converge to a stable
fixed point with a lower energy value that leads to better
estimations. For decoding turbo-like error correcting codes, we
adopt a parametric Gaussian approximation to relax the binary
parity check constraints and generalize the conventional binary
networks as well. Both the computational complexity and the
convergence rate of the proposed annealed BP algorithms are
almost the same as those of the conventional BP algorithm.
Simulated performance of the proposed algorithms when they
are used to decode a low density parity check (LDPC) code and
the (23,12) Golay code is presented to validate our proposals.

I. INTRODUCTION

Belief propagation (BP) algorithms have been recognized
as efficient and powerful inference tools for applications in
computer vision, artificial intelligence, error-correcting codes,
and digital communications. The BP algorithms, e.g. BCJR for
turbo decoding and sum-product algorithm (SPA) for LDPC
codes, have received much attention for their near Shannon-
limit performance. Recent studies show that fixed points of
BP algorithms correspond to the stationary points of the
Bethe approximation of the free energy for a factor graph [1].
However, BP algorithms do not promise convergence when
the associated graph contains cycles. Even if they converge,
they are only guaranteed to converge to a local minimum of
the Bethe free energy [1]. Some new algorithms attempt to
avoid local minimums by directly minimizing the free energy
[2], [3] through using the conventional optimization schemes.
These algorithms, however, are often much more complex and
yield much slower convergence rate.

Inspired by the deterministic annealing methods used in op-
timization problems [4], we propose two annealed BP (ABP)
algorithms that alleviate ill-convergence. By incorporating a
temperature parameter into the formulation of the free energy,
one can start an inference task at a higher temperature to have a
smoother energy cost surface. According to the result from the
statistical physics, there is only one local minimum of the free
energy function when the temperature is above a critical value
[1]. Thus, a BP algorithm can always converge to the unique
minimum at that temperature. However, inference results at

high temperatures may be poor due to the unfaithful modelling
of the real free energy. On the other hand, there may be more
than one local minimum at low temperatures. When searching
on the energy cost surface at low temperatures, one can easily
get trapped in one of these local extreme points. But if the
global minimal free energy can be located, the corresponding
inference result is much more accurate as a result of more
accurate modelling of the free energy function. Hence, the idea
is to start an inference at a high temperature and smoothly
decrease the temperature using some cooling strategies to
track the minimum point. Hopefully, the algorithm will stop
at the global minimum and gives accurate estimations when
the temperature approaches to zero. Such a cooling strategy
prevents a BP algorithm from sticking to a local minimum,
and helps the algorithms to converge to the global minimum
with a larger probability.
The paper is organized as follows. In section II, we formu-

late the free energy of a belief network by taking into con-
sideration the temperature effect and give the corresponding
BP equations. Section III develops a Gaussian approximation
scheme to relax the parity check constraints and generalizes
the conventional binary networks that are commonly used
when decoding error correcting codes. Section IV discusses
cooling schedules of the proposed ABP algorithms. In section
V, we provide simulation results for ABP-based Golay and
LDPC decoders and give some concluding remarks.

II. MINIMUM FREE ENERGY UNDER BETHE
APPROXIMATION

It is now well known that the conventional SPA can be
derived from the minimization of Bethe free energy when
the temperature equals to one [1]. We begin with the Bethe
free energy formulation that retains the temperature parameter.
Consider a factor graph whose Bethe free energy is given by

FBethe= U - TH. (1)

U in (1) is the variational average energy

U= (E )xI + (Ek)xk , (2)

1-4244-1429-6/07/$25.00 ©2007 IEEE 321



ISIT2007, Nice, France, June 24 - June 29, 2007

where

(Et)x b-X - Eb(x,) In ft,(xt) (3)
,u x

(Ek )XZk - Z-, bk(Xk)ln gk (Xk) (4)
k Xk

are the average energy functions associated with factor node
,u and variable node k respectively. fi, (x,1) denotes the factor
function with xM de {Xk xXk e neighbors of ,u}. gk(Xk) is
the local function associated with variable node Xk.
The second term H in (1) denotes the variational entropy

under the Bethe approximation,

H = ,b,, (x,/) In b,, (x,,) Z- ckE bk(Xk)ln bk (Xk).
, xI k Xk

(5)
In (5), ck is defined as 1-(numbers of neighbors of Xk).

Parameter T in (1) mimics the temperature effect in the field
of statistic physics. Under the marginalization and normaliza-
tion constraints

E: b,l (x/l)
Xi,\Xk

5 b, (x/)
xk,

E: bk(Xk)
Xk

bk (Xk) (6)

1 (7)

1

III. ANNEALED BELIEF PROPAGATION IN BINARY
NETWORKS

As the first step to implement an ABP algorithm is to
parameterize the original local and factor functions with an
auxiliary parameter / = 1/T. In the following, a parametric
approach for binary networks is developed. Such a parametric
relaxation scheme not only works for the proposed annealed
BP algorithms but also provides a new degree of freedom
for network and code constructions. It can also be used
for applications in signal processing, speech processing and
pattern recognition, etc.

A. Local Function Modelling

For an LDPC coded BPSK waveform in a white Gaussian
noise channel, the local likelihood function gk (Xk) associated
with each code bit node Xk is modelled as

gk (Xk) P(Yk Xk) = -exp[ (Ykx)] (12)

where Xk represents a transmitted bit and Yk is the correspond-
ing receiver matched filter output sample. The likelihood ratio
(LR) of Xk is

tk gk(Xk =-1) ex(21J
k = gk(Xk 1) =exp - 2

and the generalized likelihood ratio (GLR) becomes
(8)

one can derive a BP algorithm by minimizing the the paramet-
ric Bethe free energy given in (1). Define mpk as the message
passed from factor node ,u to variable node k, and n as that
passed from variable node k to factor node ,u, one can prove

k - 3,
gk tXk

-1)
1)

exp( /32Yk)

(13)

(14)

which converges to three limiting points

1, when /3 > 0
j yk) when /3 ->1

0(Yk < O) oo, when /3 -> +oo, Yk :t O,
(15)

(9) where 0(.) denotes the indicator function,mk(Xk) (Xx fXk INt()II n, (xj)
X8, \Xk jEAr(l-) \k

q(A) { 1'
and message nk11 is updated by

nkj(Xk) = g3 (Xk)
( 1 c,AE (k)

where 3 de IIT. Equations (9) and (10)
of the conventional BP algorithm when /3
On the other hand, the belief of varial

estimated by

b(*) (Xk) gX (Xk) H|
I

peA(k)

(9) and (10) indicate that the BP alg
eralized by incorporating a temperature
replacing ft,(xj,) and gk(Xk) by their g
and g3 (Xk) .

if event A is true,
if event A is false. (16)

Tnmk (Xk), (10) (14) generalizes the statistical modelling of a variable func-
tion so that the conventional LR 1k becomes the special case
T -> 1. On the other hand, as T -> 0, i.e., when the code
bit node is in a very low temperature state, 1 approaches an

degenerate to those impulse function and renders a deterministic decision of Yk,
i=1. Otherwise, when T -> + , Ik becomes a constant whence

ble node Xk can be every code bit node is equally probable. Thus, by changing
the temperature parameter T, one actually models the local
LR 1 in different quantization precisions.

rfl,1. (11)
B. Factor Function Modelling
When decoding an error correcting code, a factor function

paritmecan be gen- f,l (x,l) can be described by an indicator function of parity
parameter T, and check equation associated with vector xM, i.e.,

ini powers, J-,X,)
fl (Xtt) = d ({ DjEA()Cj}), (17)
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where D denotes exclusive-or, cj {= ' if j

0(Y) { , otherwise

1
-1 and

Since 6(.) = 0(.) for /3 > 0, it is of no use to replace the
conventional factor function f1, (xX,) by f l3 (xX,).
An alternative way to parameterize the factor function is

to approximate the delta function by the limit of a Gaussian
density of a real random variable, i.e.,

5(y) = lin (-_y2) de lim 0(y) (18)

With the approximation d(y) 60 (y), one naturally incorpo-
rates the temperature effect Q into the modelling of the factor
function fl3(xt). When 0 < /3 < +oo, 6a(y) has non zero
value for any finite y. One thus relaxes a "deterministic" parity
check constraint f1t(x/,) =(y) to a "stochastic" parity check
constraint fl (x,1) =a(y).
From (9) and (18), one obtains (20) and (21) in the next

page, representing the message passed from fl (x,,) to Xk,
and the LR of m/,k (Xk). There are also a number of limit
points when Q changes from 0+ to +oo:

Im[k,3 { lIk when /3 0+ (19)

where 1In k given in (22) is exactly the LR when the factor
node is a delta function, i.e., f,1(x,1) = 6(x1).

Similar to the case of local function modelling, the proba-
bilities of Xk = 1 and Xk = 1 are equally likely when the
temperature is high. In the following, we give an example to
elaborate the proposed idea of "stochastic" parity check node.

1) Example: Consider a factor node f 3(x,,) associated
with the parity check equation

C1 D C2 D C3 = 0. (23)

Following (20), one has

M/tl ,O(xl = 1 ) cX n2,,(X2 = -1 )n3,,(X3 = -I )e- 2°
+ n2,,(X2 =-1)n3,,(X3 = 1)e- 2*

+ n2,, (X2 = 1)n3,,(X3 = )e 2

+ n2 (X2 = 1)n3,,(X3 = 1)e- 2 ° (24)

MOAx, -1) o+ n2/,(X2 1-)n3(X3 1-)eC 2

+ n2,,(X2 = -1)n3,,(X3 = )e-- 2°
+ n21 (X2
+ n21 (X2

(24) and (25) show that, when Q :& +oo, there is a non-zero
probability e 2 associated with the terms that disappear in
the calculation of min11 in the deterministic case. This nonzero
probability defines "stochastic" parity checks, i.e., one allows
the existence of non-zero parity check value with a specified
probability.

It is interesting to note that as one decreases the temperature
T from +oo to 0+, a stochastic parity check will reach two
limit states. First, when T = +oo (i.e., Q = 0+), both
e 2 and e -2 equal to 1 such that mpl(Xk = 1)
mM1 (Xk =-1). Hence, the messages provided by check node
,u at T = +oo are equally probable and one just cannot obtain
any information about bit node x1 from fl3.
On the other hand, as T = 0+ (i.e., Q = +Coo), e- 2

and e- 0" = O. Message mt,11,(Xk) will become

M 30=O(xi = 1) X n22(X2 = 1)n3,(X3 = 1)
+ n2,1(X2 =-1 )n3,1(X3 =-1)

Mp1'0o(xi =-1) X n2, (X2 =-1)n3, (X3 = 1)
+ n2,1(X2 = 1)n3,1(X3 -1),

which gives exactly the deterministic parity check function.
Hence, as T -> 0, the stochastic parity check will approach
the deterministic case, which has been expected by (18).

IV. ANNEALED BELIEF PROPAGATION ALGORITHM

The basic principle of annealing type algorithms is to
start an inference task at a high temperature and iteratively
decrease the temperature according to some chosen annealing
schedules. In the literatures, there are two main categories
when applying the annealing type algorithms. The first cat-
egory, simulated annealing (SA), based on the Markov Chain
Monte Carlo (MCMC) method, is quite useful in non-convex
optimization problems. It generates a sequence of random
walks to reach a new state with an acceptance probability
that depends on the current state. SA directly simulates the
system dynamics and can theoretically converge to the global
optimum value. But convergence is only guaranteed under a
proper annealing schedule that starts at a high enough initial
temperature. Exponential execution time is needed for SA to
converge to the global optimum, making it an impractical
option for many real-time applications.
The second category, deterministic annealing (DA), has

a deterministic processing time. Instead of simulating the
stochastic dynamics of the system, DA directly minimizes the
expected free energy while avoiding many poor local minima
of the cost function. According to [4], the DA method performs
annealing as it maintains the free energy at the thermal
equilibrium while gradually lowering the temperature. Since
the processing time of DA is deterministic and controllable,
DA is a candidate solution if there is a fixed processing delay
constraint. In fact it has already been successfully employed
to solve optimization problems in source coding, pattern
recognition, pattern classification, and many other fields.
We use DA to anneal the belief network when decoding

an error correcting code for a number of reasons. First, a
communication system usually has constraints on the decoding
delay in order to satisfy the total system latency requirement.
Second, DA combined with the proposed ABP algorithms
needs only minor modifications of the conventional BP. In fact,
ABP generalizes BP while keeping most of the implementation
details intact, including the message passing schedule, the way
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Tnttk,B(Xk) (X

{ cj I
jeAr(p)J 7k

1m,Zk,3 def Tnl,k(Xk = -1)
Tnttk,B(Xk = 1)

{ exp [ 2/((D1 A(p),j:kCj)

E {cj} {exp [- ((DjeA(i),j AkCj)
jeAr(p)Jj k

E {cj} {exp [-2 ((DjEA/(4),j kCj)
jeAr(p)J7 k

1) ]

2

HE,Ar(q)j7k nj (X)k}

2)] Hj EgA)(,u) Xij k njtJ,(Xk)}

>1)] Hjeg.A)(,J)ijk nj-(Xk)}

>0)] HrjeAr,/\(,),j7&k nj1- (Xk )}
(22)

, jej 1 { [(( (DjeAr(p) j71kCj)
1m,Z def CiEA (ii),jk7k

- I{ r6} [((ijCAr(),j kCj)
iCAfQ( ),i k

that message exchanges, or even the total iteration numbers.
We summarize below a generic ABP algorithm.

1) Initialize:
Set the initial temperature Tinit and the minimum
temperature Tmin.
Set the maximum iteration number tmax and let the
iteration index i 1 with temperature index Ti
Tinit and 3i =T

2) Update:
Calculate the local function g1i (Xk) of variable
node Xk for all k.
Calculate the factor function fi(x ) of the ,u-th
factor node for all xX,.
Calculate messages m,pk,aj(Xk) and nk/,i(Xk) for
all ,u, k.

3) Check Temperature If Ti < Tmj, set Ti = 0.

4) Cooling Step Calculate T±i+ and /3i+l by decreasing
Ti according to the specific annealing schedule.

5) Check Status : Set i = i + 1. Stop the algorithm when
i > imax or some convergent check is passed.

6) Go to 2).
Following the basic framework of ABP, we propose two

types of ABP algorithms: local function annealing (LFA) and
factor function annealing (FFA).

A. Local Function Annealing

Local function annealing is also referred to as code node
annealing when applying ABP to decode an error-correcting
code. For LDPC codes, local functions of code nodes are set
to the generalized Gaussian model described in (14) Section
III-A. The factor nodes, however, keep the deterministic defini-
tion, which means that we still use deterministic parity checks
for LDPC codes when applying local function annealing. In
this case, the exchanged message mTk,Oi is identical to mTk,O
and nk,j = n,O. Local function annealing follows the
generic framework of ABP which begins with a high tem-
perature, performs message exchange, checks the convergence
and then decreases the temperature. Since the way message

exchanges at factor nodes remains the same for LFA and BP,
the only difference between them is that the former changes
the local functions during iterations, while the latter keeps
them unchanged. Because LFA only modifies the exponent
of local function, only one additional multiplication per code
bit is needed according to (14) at every update period. Thus,
the computational complexity of LFA is almost the same as

conventional BP.
Based on (15), we propose two rules for LFA scheduling.

The first rule requires that the initial temperature be set high
enough to avoid being trapped in a local minimum at the
beginning. The second rule necessitates the lower limit of
temperature be bounded below by one to make the final
state equal to the observed likelihood. An empirical annealing
schedule which satisfies both rules is

T Tocal,o(j+c)i
Tlocal,i

j+lT' ~~~~(26)Tlocal init local jq'(
Tlocaljq,iTj <K i < (j + 1)T7. (27)

where j is the update index and 0 <'y < 1 is a constant used to
control the annealing rate. The initial temperature is defined as

To Tiocal,init, Tj denotes the update period of the annealing
process, and i is the iteration index of the ABP algorithm.
The parameter rj fixes the temperature Ti = T1ocal,jil for <i
i < (j + 1) r to ensure that the ABP algorithm converges to
a lower energy state at that temperature. When - equals 1,
Tlocal,i = Tlocal,init for any i. For small 'y, Tlocal,i converges
to 1, the low temperature limit, in just a few iterations.

B. Factor Function Annealing

Factor function annealing is also called check node an-

nealing when applying an ABP algorithm to decode an error

correcting code. The reason for the name "factor function
annealing" is that we only perform annealing on the factor
nodes. For decoding an LDPC code, we replace the determin-
istic parity check function by the stochastic one described in
Section Ill-B while the local function gk(Xk) is kept constant,

gk (Xk) = P(Yk Xk) = - exp( (Ykx- k)2) (28)
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According to (19), the generalized parity check function
reaches a limit as T -> +oo or T -> 0. Hence, one suggests
the following geometric schedule for FFA

Tf actor, (i+l) ?j
Tfactor,i

aj+±Tfactor,init CaTfactor,jq (29)

Tfactor,jrh jT i < (j + 1)I (30)
The definitions of j, ,, i are the same as the LFA case. The
initial temperature is To de Tfactor,init and 0 < a < 1 is a
scaling constant that controls the annealing rate. When av = 1,
temperature Tfactor,i equals Tfactor,init for all iteration. On
the other hand, Tf actor,i approaches 0 in few iterations when
a is small. Empirically, the geometric scaling factor a is set
between 0.8 and 0.99 [5]. Both LFA and FFA are stopped when
the maximum iteration limit is reached or all the deterministic
parity check functions are satisfied.

Since the combinations of incoming information at every
check node are the same for both FFA and the conventional BP,
only two extra additions and four additional multiplications are
needed for each check node compared with the conventional
BP. Hence, the complexity of FFA is only slightly higher than
the original BP, and can be reduced by limiting the lowest
temperature of the annealing process.

V. NUMERICAL RESULTS AND CONCLUSION

Simulated behaviors of the proposed algorithms when de-
coding an LDPC code and the (23,12) Golay code is reported
in this section. The latter code has cycles of length 4 that
prevent the BP algorithm from converging to the maximum
likelihood decoding (MLD) performance [6]. Fig. 1 shows
that, for the Golay code, the simplest LFA offers the best
frame error rate (FER) performance although the performance
of FFA is only slightly worse. Also, we find that for some
codes, FFA performs better than LFA.
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Fig. 1. Golay Code N = 23, K =

Number: 50, Frame Error Count: 50.
= 12, Code Rate: 0.522, Max Iteration

Fig. 2 show the BER performance of an LDPC code [7]
when the generalized BP algorithm of (9) and (10) is used
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Fig. 2. Mackay 816.33.164, N = 816, K = 408, Code Rate: 0.5, Max
Iteration Number: 200, Frame Error Count: 200.

without annealing (i.e., at a fixed temperature). The perfor-
mance curve in Fig. 2 indicates that the best BER performance
is achieved at a non-zero temperature. It is likely that, at
some specific temperatures, the proposed free energy function
retains the global minimum of the conventional free energy
while "smoothes out" many local minimums. Nevertheless,
locating the optimum temperature analytically remains an open
issue.
We have derived generalized message passing rules and

developed appropriate schemes to relax the deterministic con-
straints. Higher order energy approximations and the method
proposed in [1] can be extended by the proposed ABP scheme
as well. Furthermore, the same relaxation idea can also be
used to generalize the trellis structures for turbo decoding
algorithms. Alternative scheduling rules, theoretical analysis
concerning the temperature effect as well as the application
for new code design are to be reported in another article.
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