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bstract

Knowing the mechanisms by which protein stability change is one of the most important and valuable tasks in molecular biology. The conventional
ethods of predicting protein stability changes mainly focus on improving prediction accuracy. However, it is desirable to extract domain knowledge

rom large databases that is beneficial to accurate prediction of the protein stability change. This paper presents an interpretable prediction
ree method (named iPTREE) that produces explanatory rules to explore hidden knowledge accompanied with high prediction accuracy and
onsequently analyzes the factors influencing the protein stability changes. To evaluate iPTREE and the knowledge upon protein stability changes,
thermodynamic dataset consisting of 1615 mutants led by single point mutation from ProTherm is adopted. Being as a predictor for protein

tability changes, the rule-based approach can achieve a prediction accuracy of 87%, which is better than other methods based on artificial neural
etworks (ANN) and support vector machines (SVM). Besides, these methods lack the ability in biological knowledge discovery. The human-
nterpretable rules produced by iPTREE reveal that temperature is a factor of concern in predicting protein stability changes. For example, one

f interpretable rules with high support is as follows: if the introduced residue type is Alanine and temperature is between 4 ◦C and 40 ◦C, then
he stability change will be negative (destabilizing). The present study demonstrates that iPTREE can easily be used in the application of protein
tability changes where one requires more understandable knowledge.

2006 Elsevier Ltd. All rights reserved.
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. Introduction

Understanding the relationship between structure, function,
nd property of proteins is helpful to protein design that pro-
uces novel protein sequences. For this purpose, interpreting
tability is a precursor and also a goal to the ability to success-
ully design stable proteins (Daggett and Fersht, 2003). Up to
ow, various methods have been proposed to predict stability
hanges (��G) upon protein mutation, including energy-based
ethods and machine learning approaches. Energy-based meth-
ds base on force fields, which can be categorized into three
ajor classes depending on the energy functions (Guerois et

l., 2002): (a) those using physically effective energy functions

∗ Corresponding author. Tel.: +886 3 5131405; fax: +886 3 5729288.
E-mail address: syho@mail.nctu.edu.tw (S.-Y. Ho).
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Prevost et al., 1991); (b) those based on statistical potentials
or which energies are derived from the frequencies of residue
ontacts (Gilis and Rooman, 1997); and (c) those using empiri-
ally effective energy functions obtained from experimental data
Funahashi et al., 2001). Recently, machine learning approaches
ased on artificial neural network (ANN) (Capriotti et al., 2004)
nd support vector machines (Capriotti et al., 2005) have been
roposed.

All the above-mentioned methods are concentrated on rais-
ng prediction accuracy but not accompanied with knowledge
cquisition. However, only predicting protein stability is not
atisfactory for the goal of understanding the relationship
etween structure, function, and property of proteins. Besides,

ecause the sizes of datasets used to design predictors are often
nsufficiently large, the overfitting problem may be occurred
esulting in a wrong model and incorrect inference. Therefore,
he validation for the model and inference is necessary and

mailto:syho@mail.nctu.edu.tw
dx.doi.org/10.1016/j.compbiolchem.2006.06.004
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rucial. If the prediction model was established accompanied
ith human-interpretable knowledge generated, it would be
ore credible after confirmation. Thus, it is better to design

n interpretable predictor that takes both prediction accuracy
nd knowledge acquisition into account simultaneously. In
his study, the proposed interpretable prediction tree method
named iPTREE) aims to simultaneously achieve the following
hree objectives, described below.

.1. High prediction accuracy

The ANN predictor (Capriotti et al., 2004) reached the
ccuracy as high as 81% in predicting the stability (stabiliz-
ng/destabilizing) of protein mutants (sign of ��G values),
nd performs better than the existing energy-based methods in
erms of prediction accuracy. However, the ANN predictor lacks
he ability in biological knowledge discovery. The rule-based
pproach generated from iPTREE is able to successfully predict
he sign of the ��G value with accuracy 87% using a 10-fold
ross-validation test, which is significantly better than the ANN-
redictor using the same features and dataset. The high accuracy
f prediction model will provide more confidence to the knowl-
dge discovery derived from this model.

.2. Interpretable rules for knowledge acquisition

The mechanism of systematically and actively capturing
nowledge from experiment results is valuable to understanding
n unknown concept. iPTREE can reveal the important factors
nd decision rules about protein stability changes upon mutation
rom a large and confused database.

At the same time, the rule base also demonstrates inter-
retable decision rules. One of those rules with high support
s as follows:

If the introduced residue type is Alanine and temperature is
between 4 ◦C and 40 ◦C, then the stability change will be
negative.

Those interpretable rules may agree with previous researches
r belong to new discovery that still requires a confirmation.
owever, according to those interpretable conditions (tem-
erature, introduced/deleted residue type and the environment
nformation of the mutation position), rules can more easily
e validated to be usable knowledge. In this study, although
PTREE was applied to predict protein stability changes, it can
e extended to other applications and has been successfully used
n prediction and analysis of DNA-binding sites of proteins (Ho
t al., 2005).

.3. Analysis of influence factors

From various viewpoints, several studies have similarly
evealed that the positional parameters play an important role

n understanding the folding and stability of protein mutants
Gilis and Rooman, 1997; Gromiha et al., 1999; Gromiha
nd Selvaraj, 2002; Capriotti et al., 2004). However, the
omparison of relative importance between secondary structure
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nd solvent accessibility of mutant residues from the viewpoint
f predicting the stability of protein mutants has not yet been
ompletely explored. In the recent discussion about the relative
mportance, the secondary structure carries similar or more
nformation than solvent accessibility for understanding the
tability of protein mutants (Saraboji et al., 2005). Through
his topic, iPTREE performed the factor analysis and made a
iscussion.

Instead of the conventional investigation using linear corre-
ation between one individual factor and real experiment value,
PTREE further considers interaction between the concerned
actor and other pre-existing factors, namely the surrounding
ffect, in the factor analysis using prediction accuracy as a mea-
urement of importance. That is to say, relationship between one
eature set and real experiment value is considered. Based on
he one-factor-at-once strategy for analysis of the two influence
actors, secondary structure and solvent accessibility, iPTREE
sed the three feature sets: (1) including solvent accessibility,
2) including secondary structure, and (3) including both two,
ith the same surrounding effect. The statistic result F = 0.92
f one-way analysis of variance (ANOVA) for difference in
eans indicates the hypothesis: three conditions have equal
eans. It may result from that the environment information of

he mutation position is enough to cover those from the sec-
ndary structure and solvent accessibility.

. Materials and methods

.1. Protein and mutant datasets

For comparisons, the same dataset used by (Capriotti et al.,
004) is conducted, which is obtained from the thermodynamic
atabase for proteins and mutants (ProTherm, Gromiha et al.,
000). The dataset (S1615) consists of 1615 single point muta-
ions obtained from 42 protein sequences. Each record of S1615
ontains the following seven features:

1) Md: deleted-residue mutation type;
2) Mi: introduced-residue mutation type;
3) pH: the pH value of the experimental condition;
4) Temp: the temperature (◦C) used in the experiment at which

the stability of the mutated protein was measured explicitly;
5) ASA: accessible surface area of the mutated reside com-

puted by the DSSP program (Kabsch and Sander, 1983);
6) NX: the number of the encoded residue type X, which is

found inside a sphere with a center on the mutated residue.
Where the local spatial environment is computed using a
radius 9 Å and X is an abbreviation of 1 of 20 residues;

7) the secondary structure information centered on the mutated
residue.

The main character of this dataset includes: (1) the ��G

alue is experimentally detected, (2) the protein structure is
nown with atomic resolution, and (3) the data is based upon
ingle mutations. All demonstrations of iPTREE are based on
1615.
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Fig. 1. The framework of iPTREE for factor analysis and prote

.2. The proposed iPTREE

The hybrid method iPTREE is mainly based on a decision
ree algorithm C4.5 and an adaptive boosting algorithm named
daBoost. Since no backtracking strategy is used, iPTREE can

fficiently operate on large-scale datasets. It is worthy to mention
hat it can establish a rule-based model for prediction, which is
elpful to explore the hidden information in the datasets. Fig. 1
llustrates the framework of establishing a predictor by iPTREE,
nd of comparing factors between different feature sets for a
ertain database using prediction accuracy as an index.

.2.1. iPTREE kernel-decision tree algorithm C4.5 and
daBoost algorithm

The decision tree algorithm (Quinlan, 1986) predicts the
alue of a discrete dependent variable with a finite set from
he values of a set of independent variables. A decision tree is
onstructed by looking for regularities in data. It examines the
eatures to add at the next level of the tree by using an entropy
alculation, and then chooses the feature which minimizes the
ntropy impurity (or occasionally information impurity). Once
decision tree has been constructed, it is a simple matter to

onvert it into an equivalent set of rules that increase the read-
bility and understanding of data (Geurts et al., 2005). Several
ell-known decision tree algorithms are available. Here, the
ecision tree algorithm used is the well-known C4.5 algorithm
Quinlan, 1993), and gain ratio criterion is adopted as entropy
alculation which is the ratio of information gain over potential
nformation. C4.5 is based on a nonparametric type of regression
tting approach, which is suitable for unknown data distribu-

ion. Another advantage is that C4.5 deals effectively with large
atasets and the issues of higher dimensionality, such as protein
utant data.
Overfitting is a significant practical difficulty for many learn-

ng methods. One approach to avoiding overfitting in decision
ree learning is tree pruning. The parameter CL of confidence
evel used to prune the decision tree affects both tree size and

ccuracy rate, which can be adaptively tuned to avoid overfitting.
he appropriate value of CL is problem-dependent (see Section
.1). Generally, the smaller value of CL results in a smaller tree
ut lower training accuracy.

(

(

bility change prediction by establishing an accurate rule base.

The idea of the adaptive boosting algorithm (Freund and
chapire, 1997), or AdaBoost algorithm, is to improve the clas-
ification process by generating a number of classifiers from the
ata, each optimized to classify correctly the cases most obvi-
usly misclassified on the previous pass. Due to exploitation of
roups of hypotheses with independent errors, the main advan-
age of AdaBoost is to increases the overall accuracy of the
lassification and to reduce both the variance and the bias of the
lassification. The parameter TR of trail in AdaBoost algorithm
ontrols the total number of classifiers where the proper value
f TR is also problem-dependent (see Section 3.2). Naturally,
onstructing multiple classifiers requires more computation than
uilding a single classifier.

In this study, iPTREE uses both C4.5 and AdaBoost algorithm
hich are fully cooperated to be the kernel of iPTREE. And
arameters CL and TR of iPTREE can be adaptively tuned for
dvancing prediction performance.

.2.2. Input feature sets and output predictor
Based on the dataset S1615, iPTREE can adopt all seven

eatures as input feature set by default. However, in order to
emonstrate iPTREE in several different aspects, five various
ombinations of features were considered. For comparison with
revious ANN predictor (see Section 3.3), the same feature sets
re required. Thus, three feature sets named F1, F2 and F3 were
sed:

1) F1 consists of Md, Mi, pH and Temp;
2) F2 adds ASA to F1;
3) F3 adds additional NX to F2.

On the other hand, for factor comparison of solvent accessi-
ility and secondary structure (see Section 3.5), the following
hree feature sets named F3, F4 and F5 were used:

1) F3 contains the solvent accessibility but not the secondary

structure;

2) F4 replaces the solvent accessibility of F3 with the sec-
ondary structure;

3) F5 adds the secondary structure to F3.
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reveals that the effects of confidence level are moderate. We
noticed that all the specificity values are higher than the sensi-
tivity values. This may be due to unequal sample sizes between
positive and negative class (449 and 1166) which affects the

Table 1
Prediction performance of various CL values

CL AC (%) SE (%) SP (%) Number of rules Time (s)

10 78.5 67.0 81.0 17.9 0.6
15 78.5 66.8 81.2 27.6 0.6
20 78.1 67.1 80.4 36.0 0.6
25 79.9 69.8 82.4 46.2 0.6
30 80.6 68.2 84.2 79.9 0.6
40 79.1 64.4 83.8 124.9 0.7
50 78.6 62.5 84.1 138.7 0.6
60 79.6 64.5 84.7 166.3 0.7
70 80.4 65.1 86.0 197.0 0.7
L.-T. Huang et al. / Computational B

There are five common features considered in F3, F4 and F5.
amely, the surrounding effect is taken into account.
Both types of symbolic and numeric features can be handled

y iPTREE. iPTREE is able to directly deal with the symbol
eatures such as residue type (e.g. glycine, alanine, etc.), but
ome other predictors such as the neural network must trans-
orm the symbol to a numerical value such as 11001001. This
ndirect process may change the degree of freedom which leads
o another problem. This ability of processing different feature
ypes gives the system more flexibility to varied applications.

iPTREE produces a decision tree model for prediction of the
tability change direction (increasing or decreasing) as well as
n interpretable rule base from the tree model for the purpose
f data mining. If necessary, the predictor can be evaluated by
est data assigned. iPTREE relies on a greedy search which iter-
tively selects the candidate that maximizes a heuristic splitting
riterion from the feature set. The selection order will expose
he contribution of features to predict stability changes. Besides,
ecision rules can be constructed from a decision tree straight-
orward by traversing any given path from the root to any leaf.
hose interpretable type of knowledge can be validated by bio-
hemistry experts. By contrast, investigators, who want to get
ore information and analyze the meaning from neural network
ould meet a setback, since the analysis of interaction relation-

hip between neurons of ANN is rather difficult. Section 3.4
hows the knowledge acquisition of protein stability changes
n which important factors and decision rules are extracted and
iscussed.

The present method was validated by both self-consistency
nd 10-fold cross-validation tests. The latter was adopted when
omparing prediction performance; and the former was applied
o what focuses on the analysis of the existing dataset. Self-
onsistency includes all the stability data for training the decision
ree model and prediction has been made for all the mutants. The
0-fold cross-validation partitions samples into 10 sub-samples
hosen randomly with approximately equal size. For each sub-
ample, the method fits a tree to the remaining data and uses it
o predict the stability of the sub-sample.

.2.3. Factor comparison based on iPTREE
iPTREE can establish a predictor for the direction of pro-

ein stability change by generating a rule base. Moreover, by
aking all factors in a feature set into account, the accuracy by
he way of iPTREE can be regarded as a comprehensive index
or importance evaluation of factors using one-factor-at-once
trategy. Therefore, by observing prediction accuracy based on
ifferent feature sets, relative influence of factors can be compar-
son. On this basis, Section 3.5 centers on the discussion about
elative importance of secondary structure and solvent accessi-
ility to the stability of protein mutants. In order to compare
he two factors, three designed feature sets F3, F4 and F5 (see
ection 2.2.2) were adopted with the same surrounding effects.
hen the effects of two factors can be discussed by comparing
he accuracy based on three feature sets (also see Fig. 1).
The prediction of the stability change (stabilizing/des-

abilizing) can be regarded as one of binary classification prob-
ems in which several scoring functions are usually used. The

8
9
1

M
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rediction accuracy AC for the two-class classification, positive
nd negative of the ��G value, is as follows:

C =
(

TP + TN

TP + TN + FP + FN

)
× 100%, (1)

here TP and TN are the total numbers of correctly predicted
amples for positive and negative classes, respectively; FP and
N are the total numbers of incorrectly predicted samples for
ositive and negative classes, respectively. The sensitivity SE is

E = TP

TP + FN
× 100%; (2)

he specificity SP is

P = TN

TN + FP
× 100%. (3)

Those scoring functions mean whether the values between
rediction and experiment value can fit well. Namely, the higher
ccuracy indicates the dataset with certain of feature set can
ake a larger contribution to prediction model.

. Results and discussions

.1. Confidence level effects of C4.5 algorithm

In order to avoid overfitting in decision tree learning, we
anipulated confidence level that effects tree pruning of C4.5.
hereas the appropriate confidence level is problem-dependent,
preliminary analysis was applied using the following simula-

ions. iPTREE was applied to S1615 with feature set F3 and
ased on 10-fold cross-validation test. The computing platform
s Intel Celeron processor 2.4 GHz with 768 MB RAM running

icrosoft Windows XP.
Table 1 shows the prediction results using various values of

onfidence level. The insignificant improvement between the
ighest and lowest prediction accuracy (AC = 80.6% and 78.1%)
0 79.9 64.0 86.0 237.8 0.6
0 80.1 64.1 86.4 256.0 0.7
00 80.1 64.0 86.5 275.5 0.7

ean 79.5 65.6 83.9 133.7 0.6
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Table 2
Performance comparison of various TR values using CL = 30 and 70

CL TR AC (%) SE (%) SP (%) Number
of rules

Time (s)

30 10 84.0 78.4 85.4 65.3 7.5
20 84.0 78.4 85.4 30.5 15.0
30 86.3 82.0 87.5 76.1 22.6
40 85.4 82.8 86.0 94.3 28.4
50 85.6 82.5 86.4 90.0 36.0

100 86.0 82.5 86.9 90.3 70.3
200 85.9 82.1 87.0 71.6 134.0
300 85.6 82.0 86.6 78.9 190.3
400 87.1 83.6 88.1 98.8 295.1
500 86.3 83.9 86.9 67.4 308.0

1000 85.3 85.5 85.5 88.2 660.8

Mean 85.6 82.2 86.5 77.4 160.7
70 10 85.5 79.6 87.2 122.4 7.5

20 87.0 82.2 88.4 155.3 15.0
30 86.0 81.1 87.4 123.8 23.5
40 87.0 81.2 88.8 151.7 32.3
50 86.1 80.6 87.7 136.5 38.2

100 87.0 82.0 88.5 121.9 80.7
200 86.7 81.8 88.1 125.0 159.9
300 86.5 80.8 88.2 141.2 234.0
400 86.4 81.1 88.0 147.5 318.9
500 86.1 81.5 87.4 136.5 387.9
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other words, it is unrestricted to the previous observation (Zhou
and Zhou, 2004), showing the prediction ability of system may
be affect by high exposed residue mutation (high solvent acces-
sibility value).
1000 86.5 81.1 88.1 153.4 782.9

ean 86.4 81.2 88.0 137.7 189.2

ntropy calculation. The confidence level and number of rules
re in direct proportion, which confirms to the mechanism of
4.5 algorithm. Although the number of rules varied from 17.9

o 275.5, the execution time taking 0.7 second at most shows
PTREE can effectively be applied.

.2. Trail effects of AdaBoost algorithm

iPTREE combines C4.5 with AdaBoost algorithm in which
he trail concerns with the number of classifiers. To observe
he trail effects, various TR values are used at the same con-
dence level (CL = 30) with the highest accuracy as above. In
able 2, the mean sensitivity value which increases from 65.6%
p to 82.2% reveals the prediction ability for positive class has
dvanced greatly after introducing AdaBoost algorithm. Conse-
uently, the mean accuracy value is also improved from 79.5%
p to 85.6%. The execution time which ranges from 7.5 s to
60.8 s is proportional to TR since AdaBoost needs more time
o construct decision trees for voting.

Besides the confidence level with the highest accuracy, we
sed the confidence level (CL = 70) with the next highest accu-
acy in Table 1. The results shows that the prediction accuracy
alues are 85.6% and 86.4% and the standard deviation are
.93% and 0.48% for CL = 30 and 70, respectively (also see
able 2). It seems that the difference of accuracy between two
ifferent confidence levels is insignificant. To make sure this

bservation, a paired t-test was performed. According t-test
or paired difference in means at an α of 0.05, p-value = 0.011
ndicates that the hypothesis: the means of accuracy rate
re equal between two sets with confidence level value of

F
o

y and Chemistry 30 (2006) 408–415

0 and 30, respectively, cannot be rejected for single-tailed
est.

Apparently, by considering the effects of confidence level and
rail, the best accuracy (AC = 87.1%) occurs when CL = 30 and
R = 400. Meanwhile, results also show that the parameter TR

s more effective than CL in prediction accuracy of S1615 with
3.

.3. Comparison between iPTREE and ANN predictors

S1615 dataset was previously used by a neural-network-
ased method which introduces three different input feature sets
o generate corresponding prediction models. For understanding
he performance difference between two predictors, the same
eature sets F1, F2 and F3 (including 4, 5 and 6 features, respec-
ively) were used in iPTREE with the parameter found in Section
.2.

In Table 3, we observe that all the prediction performance
as improved by the addition of new feature. It indicates

hat the added feature contains valuable information about
tability prediction. Based on F3, the accuracy value 87.1%
f iPTREE is better than 81.0% of ANN. A major cause is
he improvement in prediction performance of positive class,
here the sensitivity value increase from 71.0% to 83.6%.
he comparison shows the high prediction performance of

PTREE.
For analysis of prediction ability in different ranges of sol-

ent accessibility, Fig. 2 shows prediction accuracy as a function
f solvent accessibility value of the mutated residue. The group
anges of solvent accessibility value begin with ASA = 0, then
< ASA ≤ 10 and so forth. Darker bars represent the accuracy
alues and lighter bars are the number of data in each cate-
ory. We observed that the accuracy values of each group are
lmost equal. It reveals that the prediction ability of iPTREE
an work for a comprehensive range of solvent accessibility. In
ig. 2. The prediction accuracy as a function of the relative accessibility value
f the mutated residue.
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Table 3
Performance comparison between the two predictors of iPTREE and ANN using various feature sets

Feature set Number of features iPTREE ANN

AC (%) SE (%) SP (%) AC (%) SE (%) SP (%)

F1 4 77.3 66.3 79.4 74.0 59.0 76.0
F2 5 81.2 67.8 85.7 75.0 57.0 80.0
F3 6 87.1 83.6 88.1 81.0 71.0 83.0

Mean 81.9 72.6 84.4 76.7 62.3 79.7

Table 4
The factors with high gain ratio and corresponding splitting values

Tree level Factors Splitting value Potential information Information gain Gain ratio

1 Temp 42.5 1.000 0.048 0.048
2 NY 2.5 0.792 0.019 0.024
2 NR 2.5 0.892 0.058 0.065
3 Mi – 3.710 0.075 0.020
3 3.6
3 0.9
3 0.6
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NL 3.5
NH 0.5

.4. Mining important factors and decision rules

We have applied iPTREE to observe the selected candidate
actors from S1615 dataset with F3 and the extracted decision
ules with high accuracy. Table 4 shows the selected factors
ith high gain ratio at the top 3 tree levels and corresponding

plit values. The first important factor obtained is the temper-
ture with splitting value 42.5 and gain ratio 0.048. Namely,
he temperature factor made a major contribution to the dis-
inct ability of predicting protein stability changes. In previ-
us related researches, the free energy (�G) can be regarded
s a function of temperature (Robertson and Murphy, 1997),
hich shows the temperature is one of important factors for the

ree energy. From molecular dynamics simulations, the mutant
rajectory was observed to be much less stable than for the
ild-type protein trajectory at normal and elevated temperature

el-Bastawissy et al., 2001). However, this contention still needs
ore evidences to support it. On the other, the Mi and Md are

lso considered as important factors appearing at level 3. Being

ith discrete (−) values means that more than two splits may be
enerated.

Tables 5 and 6 list the best seven antecedents of decision
ules generated from iPTREE for negative and positive sign of

1
e

able 5
ntecedents of decision rules with high accuracy and corresponding details for negat

ntecedent

f Temp > 42 & NM > 1 & NP > 0
f Temp > 42 & NG > 2 & NG ≤ 3 & NK ≤ 0
f Mi = F & NI ≤ 3 & NK ≤ 0
f Mi = T & Temp ≤ 42
f Temp > 42 & NA > 0 & NF > 1 & NG ≤ 3 & NL ≤ 3 & NQ ≤ 1 & V ≤ 3
f Temp ≤ 42 & NY > 2
f Mi = A & Temp > 4 & Temp ≤ 40

ean
75 0.121 0.033
18 0.049 0.054
97 0.046 0.065

tability change, respectively. For convenience, all factors are
ubstituted for symbols described in Section 2.1. The rule size
eans the length of antecedent sentence and the support of one

ecision rule refers to the number of samples to which the rule
pplies in the dataset. For example, the first rule antecedent in
able 5: If Temp > 42 and NM > 1 and NP > 0, explores the infor-
ation:

If temperature is larger than 42 ◦C, and Methionine appears
above two times, and Proline appears, then the predicted sta-
bility change will be negative.

The accuracy of 100% with support of 52 means that total
2 samples fit this rule and their stability changes are predicted
xactly in the whole dataset. For the first rule antecedent in
able 6: If Mi = M and ASA > 15.92 and NV < =1, explores the

nformation:

If introduced residue is Methionine and tend toward exposed
mutation, and the Valine appear one time or not, then the
predicted stability change will be positive.
The accuracy of 100% with support of 10 means that total
0 samples fit this rule and their stability changes are predicted
xactly in the whole dataset.

ive sign of stability change (destabilizing)

Rule size AC (%) Number of data

3.0 100.0 52.0
4.0 100.0 17.0
3.0 100.0 9.0
2.0 97.4 39.0
7.0 96.9 32.0
2.0 94.4 195.0
3.0 89.7 232.0

3.4 96.9 82.3
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Table 6
Antecedents of decision rules with high accuracy and corresponding details for positive sign of stability change (stabilizing)

Antecedent Rule size AC (%) Number of data

If Mi = M & ASA > 15.92 & NV ≤ 1 3.0 100.0 10.0
If Temp > 42 & NI ≤ 3 & NK ≤ 1 & NL ≤ 3 & NP ≤ 2 & NR ≤ 2 & NV > 3 7.0 100.0 9.0
If Temp > 42 & NG ≤ 1 & NL > 3 & NM > 1 & NP ≤ 0 & NR ≤ 2 6.0 100.0 8.0
If Mi = D & NA ≤ 0 & NY ≤ 2 3.0 100.0 7.0
If Mi = A & pH ≤ 6 & Temp ≤ 4 3.0 100.0 6.0
If Temp > 42 & NE > 3 & NL > 3 & NM > 1 & NR ≤ 2 5.0 100.0 6.0
I
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f Temp > 42 & NG > 3 & NK ≤ 1 & NL ≤ 3 & NR ≤ 2

ean

Comparing Tables 5 and 6, the mean rule size values are 3.4
nd 4.6 for negative and positive sign, respectively; the mean
upport values are 82.3 and 11.9, respectively. It seems that the
ules for negative sign are simple and dominate more cases due
o the smaller size and higher support. On the other hand, the
rediction accuracy values are 96.9% and 98.8% for negative
nd positive sign, respectively. The 14 listed rules apply to total
59 samples (out of 1615), where negative and positive ones are
76 and 83, respectively. It shows that few rules can predict most
f cases with high accuracy, namely those rules are worthy to
ay attention.

Whereas the highest support may serve a general phe-
omenon, we focus on the seventh rule (with support of 232)
n Table 5:

If introduced residue is Alanine and temperature is between
4 ◦C and 40 ◦C, then the predicted relative stability change
will be negative.

Several previous researches have revealed some properties
bout Alanine in protein stability. Early, Val to Ala muta-
ions within the 50-residue major coat (gene VM) protein of
acteriophage M13 has been studied (Deber et al., 1993). It
mphasized that those Val to Ala mutations enhance protein

imer stability in the M13 system. Recently, The proline-free
riple mutant P7A/P9A/P50A was investigated using Fourier-
ransform infrared (FTIR) spectroscopy (Zscherp et al., 2003).
he thermal stability of the proline-free mutant is reduced by

i
v
h
s

able 7
erformance comparison among three feature sets using various TR values

R F3 F4

AC (%) SE (%) SP (%) AC (%)

0 85.5 79.6 87.2 85.8
0 87.0 82.2 88.4 86.4
0 86.0 81.1 87.4 86.9
0 87.0 81.2 88.8 86.4
0 86.1 80.6 87.7 87.0
00 87.0 82.0 88.5 87.2
00 86.7 81.8 88.1 87.0
00 86.5 80.8 88.2 87.1
00 86.4 81.1 88.0 87.2
00 86.1 81.5 87.4 86.6
000 86.5 81.1 88.1 86.6

ean 86.4 81.2 88.0 86.7
5.0 91.9 37.0

4.6 98.8 11.9

5 ◦C as compared to the wild type. Also, the impact of sin-
le cysteine residue mutations on the replication terminator
rotein (RTP) was reported (Vivian et al., 2003). The ther-
al unfolding temperatures (Tm) were calculated from thermal

nfolding curves derived for the wild-type and mutant RTP. The
TP.C110A mutant with 55.8 ◦C possesses the lowest stability
f the RTP molecules.

.5. Factor comparison of solvent accessibility and
econdary structure

To exhibit the factor analysis based on iPTREE method,
his section focuses on the discussion about relative importance
etween two factors, solvent accessibility and secondary struc-
ure, to the stability of protein mutants. Through dataset S1615,
e designed three feature sets which contain five common fea-

ures, namely the surrounding effect was included. F3 and F4
an, respectively, be regarded as the solvent accessibility and
he secondary structure factors working under the surrounding
ffect, and F5 indicates both factors exist with the same sur-
ounding effect.

Table 7 shows the results based on three feature sets with
arious TR values. It reveals the performance among three sets

s great but not significantly different. To make sure this obser-
ation, a one-way ANOVA was applied. In this case, the null
ypothesis is that the average accuracy values of three feature
ets are equal. And the alternative hypothesis is the average

F5

SE (%) SP (%) AC (%) SE (%) SP (%)

79.2 87.7 85.2 77.9 87.4
80.1 88.3 85.4 79.7 87.0
83.2 88.0 86.5 81.5 88.0
81.1 88.0 86.6 80.4 88.5
82.7 88.2 87.0 82.2 88.4
83.3 88.4 86.7 81.8 88.2
82.6 88.3 86.4 81.0 88.0
81.6 88.7 87.7 84.3 88.6
82.9 88.5 86.9 81.6 88.5
81.5 88.1 86.4 81.8 87.8
82.2 87.8 86.9 81.8 88.4

81.9 88.2 86.5 81.3 88.1
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ccuracy of these is unequal. According to one-way ANOVA
or difference in means at α = 0.05, statistics F = 0.92 (<3.12)
eans that the hypothesis: three conditions have equal means,

annot be rejected for two-tailed test. Namely, the solvent acces-
ibility or the secondary structure information provided similar
rediction accuracy. A reasonable inference is that the informa-
ion of local spatial environment (feature NX) dominates both
eatures under the same circumstance.

. Conclusions

In this paper, the proposed iPTREE was effectively applied to
stablish an accurate rule base from the thermodynamic database
f proteins and mutants. On the framework of iPTREE, poten-
ial knowledge of protein stability prediction can be extracted
nd transform to interpretable rules which can help the fur-
her validation by biochemistry experts. Meanwhile, the impor-
ance of factors effecting protein stability changes can be com-
ared by the prediction accuracy served as a comprehensive
ndex.

In addition, since the expression of one rule sentence is com-
osed of several key words of features and relation operators.
n other words, a set of significant features can directly help
o establish more interpretable rules. Besides, a set of effective
eatures also can improve the prediction performance, namely,
he correctness of the rule base. For this reason, selecting appro-
riate features will be a worthy issue in future researches.

Even though there is something to work on, we have showed
hat the method is relatively available, readable and fast to
xplore the knowledge of predicting protein stability changes
rom a large database. And the knowledge can provide us more
nderstanding about the protein stability change.
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