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Abstract Occurrence of rainstorm events can be char-
acterized by the number of events, storm duration,
rainfall depth, inter-event time and temporal variation
of rainfall within a rainstorm event. This paper presents
a Monte-Carlo based stochastic hourly rainfall genera-
tion model considering correlated non-normal random
rainstorm characteristics, as well as dependence of var-
ious rainstorm patterns on rainfall depth, duration, and
season. The proposed model was verified by comparing
the derived rainfall depth–duration–frequency relations
from the simulated rainfall sequences with those from
observed annual maximum rainfalls based on the hourly
rainfall data at the Hong Kong Observatory over the
period of 1884–1990. Through numerical experiments,
the proposed model was found to be capable of cap-
turing the essential statistical features of rainstorm
characteristics and those of annual extreme rainstorm
events according to the available data.

Keywords Rainstorm characteristics Æ Stochastic
modeling Æ Monte Carlo simulation

1 Introduction

Rainfall data are often required in water-related engi-
neering studies, such as flood forecast, prevention and
mitigation, seepage and infiltration analysis for slope
stability assessment. As a result, the quality and reli-
ability of hydrosystem engineering design and analysis
are affected by the length of rainfall record consisting of

a sequence of rainstorm events. The rainstorm events
can be characterized by the number of occurrence of
rainstorm events and the associated depth, duration,
inter-event (elapse) time as well as temporal pattern of
rainfall hyetograph (rainstorm pattern) (Marien and
Vandewiele 1986). In real-life hydrosystem design and
analysis engineers are often faced with the problem of
having insufficiently long rainfall record, especially when
rainfall depth–duration–frequency (DDF) relationships
are established on the basis of annual maximum data.
Therefore, it would be desirable to develop practical and
effective methods to fully utilize available rainfall re-
cords for maximum information extraction.

Several models have been developed to generate
precipitation sequences and they can be broadly cate-
gorized into two types: (1) meteorologic models; (2)
stochastic models (Onof et al. 2000). Meteorologic
models are generally deterministic which produce pre-
cipitation and other weather events by a large and
complex set of differential equations (Mason 1986). The
stochastic models mainly take into account of spatial
and temporal randomness of rainfall for modeling
rainfall process. That is, stochastic models simulate
rainstorm event sequences by using spatial and temporal
statistical properties of rainfall process extracted from
available records (Eagleson 1977; Waymire and Gupta
1981a, b, c; Lovejoy and Schertzer 1990; Gupta and
Waymire 1994; Tan and Sia 1997; Guenni and Bardossy
2002).

According to the variables to be simulated, the sto-
chastic rainfall modeling procedure can further be clas-
sified into two types according to: (1) rain-cell models
and (2) rainstorm characteristics models. The concept
behind the rain-cell models is that the rainfall sequences
are composed of multiple rain cells. Waymire and Gupta
(1981a, b, c) published a series of papers on the con-
tinuous time rainfall modeling which stimulated much of
subsequent works. More recently efforts have been fo-
cused on the variation of two models, namely, the
Bartlett–Lewis model and Nyman–Scott model. These
two models have been applied to simulate point-rainfall
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process (Waymire and Gupta 1981a, b, c; Cowpertwait
1991, 1994, 1998, 2004; Cowpertwait et al. 1996a, b;
Glasbey et al. 1995; Verhoest et al. 1997; Onof et al.
2000; Koutsoyiannis and Xanthopoulos 1990; Kout-
soyiannis 1994, 2001a, 2003; Koutsoyiannis and Man-
etas 1996; Koutsoyiannis and Onof 2001b)

Alternatively, rainstorm characteristics models gen-
erate rainstorm event sequences by preserving the sta-
tistical features of rainstorm characteristics, such as the
number of occurrence of rainstorm events, the associ-
ated depth, duration, inter-event (elapse) time, and
rainstorm pattern. Raudkivi and Lawgun (1970) pro-
posed a first-order Markov process model along with a
Weibull distribution to simulate rainstorm characteris-
tics of duration, depth and time between events based on
observed 10-min rainfall data. Eagleson (1977) consid-
ered the above three rainstorm characteristics of hourly
rainfalls to be statistically independent and modeled
them by simple exponential distributions. Marien and
Vandewiele (1986) developed an at-site probabilistic
rainfall generator considering independence of rain-
storm duration, depth, and inter-arrival time using 10-
min point rainfall data in Belgium. Acreman (1990)
developed a stochastic model to generate hourly-based
rainfall event sequences at the single-site in which the
rainfall duration, total rainfall depth, dry spells are
modeled by an exponential distribution, conditional
gamma distribution and generalized Pareto distribution,
respectively. Acreman’s model further uses a beta dis-
tribution to define the rainfall patterns based on the
average profile of observed rainstorm events. Lambert
and Kuczera (1996) proposed a simple and parsimoni-
ous point-rainfall model capable of representing the in-
ter-event time, storm duration, average event intensity
and temporal distribution. They improved Eagleson’s
model by taking account of relationships between
statistical moments of rainstorm characteristics. Haber-
landt (1998) presented a renewal model to simulate
dry-spell and wet-spell durations of rainstorm events
and wet-spell amount by using Weibull and lognormal
distributions, along with a relationship between intensity
and wet-spell duration based on long-term (‡10 years)
5-min rain series.

As mentioned above, both rain-cell and rainstorm
characteristics models generate rainfall events sequences
by Monte Carlo simulation based on the probability
distributions that fit the statistical features of rainstorm
characteristics. In the Monte Carlo simulation, rain-
storm characteristics have been assumed to be statisti-
cally independent (e.g., Eaglson’s model, Bartlett–Lewis
and Nyman–Scott model) or correlated (e.g., Lambert
and Kuczera’s model and Acreman’s model). Their
major difference is the means by which total rainfall
depth of a specified duration is disaggregated into
rainfalls of finer time resolution for establishing a rain-
fall hyetograph. Acreman’s model uses a beta distribu-
tion to describe the averaged cumulated rainfall profile
and Eagleson’s model assumes the rainstorm patterns
are rectangular pluses. In addition, the Bartlett–Lewis

and Nyman–Scott models describe rainfall process as
being consisted of separating and overlapping rain cells.
Rainfall hyetographs then can be defined by the occur-
rences of a series of rain cells with varying, but constant,
intensities of different durations which are allowed to
overlap. To compare above models, Cameron et al.
(2000) evaluated three stochastic rainfall models based
on their ability to reproduce the standard and extreme
statistics of 1- and 24-h seasonal maximum rainfall using
observed hourly rainfall data at three sites in UK. The
three models evaluated were the modified Eagleson’s
exponential model (MEEM), the cumulative density
function and generalized Pareto distribution model
(CDFGPDM) by Cameron et al. (1999), and the
random parameter Bartlett–Lewis gamma model
(RPBLGM). It was found that the MEEM and
RPBLGM can effectively reproduce certain standard
rainstorm statistics, but relatively poor in reproducing
the statistics of 1 and 24-h seasonal maximum rainfall.
Overall, the CDFGPDM generally performed well
under all criteria.

The main thrust of this paper is to present a practical
framework which stochastically generates correlated
non-normal rainstorm characteristics, including rainfall
depth ordinates defining the rainstorm pattern. The
proposed model preserves the statistics of correlated
rainstorm characteristics extracted from observed rain-
fall data. Unlike earlier works of assuming either sta-
tistical independence (e.g., Eaglson’s model) or the
simplistic relationships of statistical moments between
the rainfall intensity and duration (e.g., Lambert and
Kuczera’s model), the proposed model employs a prac-
tical and flexible way to deal with multivariate non-
normal rainstorm characteristics by incorporating their
marginal distributions and correlations. Furthermore,
the proposed model considers storms of varying patterns
and their intrinsic variability to better capture what
might be occurring in reality than adopting an averaged
profile of all available rainstorm events.

2 Development of stochastic rainstorm event model

Occurrence of rainstorm events can be characterized by
the number of events, storm duration, rainfall depth,

Fig. 1 Definition of rainstorm characteristics
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inter-event time and rainstorm pattern as shown in
Fig. 1. The stochastic model presented herein for gen-
erating rainstorm events is composed of three major
components: (1) generation of the number of rainstorm
events; (2) generation of storm depth, duration, and
inter-event time for each event; and (3) generation of
rainstorm pattern for each event.

2.1 Generation of number of rainstorm events

2.1.1 Definition of rainstorm event

To analyze the probabilistic properties of rainstorm
characteristics and to synthesize rainstorm events, it is
necessary to separate the time series of point-rainfall
observations into individual events. From the physical
and meteorological perspectives, it is desirable to treat
individual rainstorm as an event within which rain may
fall intermittently. In doing so, rainfall characteristics
between different rainstorm events are assumed to be
statistically independent for which several methods have
been used to identify such rainstorm events: (a) auto-
correlation method (Morris 1978); (b) rank correlation
method (Bonta and Rao 1988); and (c) exponential
method (Eagleson 1977; Bonta and Rao 1988; Restrepo
and Eagleson 1982). The above methods do not base on
the meteorologically meaningful feature; numerical
investigations of rainfall records by the methods have
also shown considerable degree of variability in deter-
mining rainstorm events.

Alternatively, many rainfall–runoff studies, particu-
larly for stormwater drainage engineering, mainly con-
cern with dry and wet periods of rainfalls composed of
rainstorm events, regardless whether the rainfalls are
from the same rainstorm or not. By this way of sepa-
rating rainstorm events, two types of event are normally
used: (1) events consisting of non-zero depths in rainfall
sequences separated by dry time (Yen and Chow 1980)
and (2) events consisting of a sequence that possibly
contain zero depth according to the specific criteria.

It is expected that the simulated rainfall sequences
based on the observed rainstorm characteristics would
be affected by the adopted definition of rainstorm
events. Since this study focuses on those rainstorm
events that could potentially produce significant runoff,
the criteria for defining and separating rainstorm events
are based on the total rainfall amount, rainfall intensity,
along with a specific threshold of dry period.

2.1.2 Modeling number of rainstorm events

To generate rainstorm sequences over a period of several
years, the distribution properties for annual number of
rainstorm events must be specified in advance. Poisson
distribution is commonly adopted to describe annual
random occurrence of hydrological events for the pulse-
based and profile-based stochastic rainfall modeling

(Eagleson 1977; Alexandersson 1985; Marien and
Vandewiele 1986; Waymire and Gupta 1981a, b, c).
Hence, Poisson distribution is considered and tested
herein to model annual number of rainstorm event
occurrences.

To test Poisson distribution, Cunnane (1979) applied
the Fisher dispersion index, DI, defined as

DI ¼
XN

i¼1

ðmi � �mÞ2

�m
¼ ðN � 1ÞVarðmÞ

EðmÞ ; ð1Þ

where mi is the annual number of hydrologic events
observed in the ith year (i = 1, 2,..., N), and �m is the
sample mean of mi. The test statistics DI follows a v2

distribution with N � 1 degree of freedom. The
hypothesis on Poisson distribution is not rejected if the
P-value associated with the sample DI is larger than the
specified significance level, which is set at 5 or 1% in
general practice.

2.2 Generation of storm duration, rainfall depth,
and inter-event time

In reality, storm duration, rainfall depth, and inter-event
time are inherent correlated and their probabilistic dis-
tributions are likely to be non-normal. Therefore, the
generation of these three rainstorm characteristics
should preserve their respective marginal statistical
properties and correlation relations.

2.2.1 Monte Carlo simulation for multivariate
non-normal random variables

As mentioned above, storm duration, rainfall depth, and
inter-event time could be a mixture of non-normal cor-
related variables and it is generally difficult to establish
their joint distribution. To simulate multivariate non-
normal random variates, Chang et al. (1997) proposed a
practical procedure utilizing information on marginal
distributions and correlations. The multivariate MCS
procedure involves following three steps:

Transformation to standard normal space This step
transforms correlated variables from their original do-
main to the standard normal space by the Nataf bivar-
iate distribution model (Nataf 1962),

qij ¼
Z1

�1

Z1

�1

xi � li

ri

� �
xj � lj

rj

� �
/ijðzi; zjjq�ijÞ dzidzj;

ð2Þ

where zi and zj are bivariate standard normal variables
with the correlation coefficient qij

* and the joint standard
normal density function /ij(•); xi and xj are the corre-
lated variables in the original space having, respectively,
the means li and lj, standard deviations ri and rj, and
correlation coefficient qij. The equivalent correlation in
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the normal space qij
* can be obtained by solving Eq. 2

conditioned on the marginal PDFs of xi and xj as well as
qij. Through an extensive numerical experiment, a set of
semi-empirical formula has been developed by Liu and
Der Kiureghian (1986) from which a transformation
factor Tij, depending on the marginal distributions and
correlation of xi and xj, can be determined to modify qij

in the original space to qij
* in the normal space by

q�ij ¼ Tij � qij ð3Þ

Orthogonal transform After the normal transforma-
tion, orthogonal transform is applied to transform cor-
related multivariate standard normal variables into
uncorrelated standard normal variables for which the
random variates can be easily generated.

Inverse transformation Upon the generation of multi-
variate standard normal random variates zi

*, one can
obtain the corresponding random variates in the original
space by the following inverse transformation

xi ¼ F �1i U z�i
� �� �

; ð4Þ

where Fi(Æ) is the marginal cumulative distribution
function (CDF) of random variable xi in the original
space and U(Æ) is standard normal CDF. The graphical
procedure of the multivariate Monte Carol simulation is
shown in Fig. 2.

2.2.2 Marginal distributions for rainstorm duration,
depth, and inter-event time

According to Eq. 4, to invert the generated standard
normal random variates back to the originally non-
normal ones, the marginal distributions of rainstorm
duration, depth, and inter-event time are to be known in
advance. The best-fit marginal distribution of a random
variable can be chosen by the Kolmogorov–Smirnov (K-
S) test based on their sample statistics. In the K-S test,
the probability distribution under consideration is not
rejected if the sample value of the test statistic is less
than the critical value associated with the desired sig-
nificant level. This is equivalent to that the P-value
corresponding to the sample test statistic value is larger
than the desired significance level. However, it is com-
mon to encounter the situation that several probability
distributions can be statistically plausible for a specified
significance level. To choose one among several plausi-
ble distributions, this study selects the best-fit marginal
distributions for the rainstorm duration, depth, and in-
ter-event time that correspond to the largest P-value.

2.3 Generation of rainstorm pattern

A rainstorm hyetograph represents the time distribution
of rainfall depth (or intensity) within a rainstorm event.

Fig. 2 Graphical illustration of
multivariate Monte Carlo
simulation (Tung and Yen
2005)
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The rainstorm pattern (shape of hyetograph) has sig-
nificant effects on the hydrologic response of a wa-
tershed. As rainstorm patterns vary from one event to
another, it is necessary to have a procedure to generate
the rainstorm patterns of different events in stochastic
rainstorm simulation. In the following subsections, brief
descriptions about the procedure are given and readers
are referred to Wu et al. (2006) for more detail discus-
sions.

2.3.1 Characterization of rainstorm patterns

During a rainstorm event, the rainfall intensities
(depths) vary with time. Owing to the variation of
rainstorm duration and total depth from one event to
another, the classification of the similarity or dissimi-
larity of different rainstorm patterns can be best done by
using a dimensionless scale. Non-dimensionlized rain-
storm patterns can be obtained by adjusting the scale of
the duration and depth of a rainfall mass curve as

s ¼ t
d

; Fs ¼
Ds�d

Dd
; Ps ¼ Fs � Fs�1 ð5Þ

in which s is the dimensionless time,s 2 (0, 1]; d is the
storm duration; Fs is the dimensionless cumulative
rainfall representing the cumulative fraction of rainfall
depth, Fs 2 [0, 1]; Ps is the dimensionless incremental
rainfall amount representing rainfall percentage incre-
ment in each time interval; Dt is the cumulative rainfall
depth at time t(t = s · d); and Dd is the total rainfall
depth. It is noted that Fs at the first dimensionless time
s1 is equal to Ps1 : A graphical illustration of the non-
dimensionalization of rainstorm pattern is shown in
Fig. 3. The use of dimensionless rainstorm patterns re-
moves the effects of storm duration and depth leaving
the temporal variation as the sole factor differentiating
different rainstorm patterns.

2.3.2 Identification of rainstorm pattern

As rainstorm pattern varies among events, it is practical
to classify them into several representative types so that
individual rainfall patterns within each type are similar
to one another, but not necessarily identical, whereas
individual rainfall patterns between different types are

dissimilar. Non-dimensionalization allows rainstorm
events with different durations and depths to be exam-
ined together to facilitate the identification of represen-
tative rainstorm patterns. This can be accomplished by
statistical cluster analysis based on dimensionless rain-
fall mass curves. In this study, a non-dimensionalized
rainfall mass curve is divided into 12 intervals and the
corresponding dimensionless rainfall mass ordinates Fs

at s = j/12 with j = 1, 2, ..., 12 are used to represent a
rainstorm pattern. In statistical cluster analysis, the K-
mean clustering method on the basis of Euclidean dis-
tance (MacQueen 1967) is applied herein to categorize
the patterns of all rainstorm events under consideration
into several representative types.

2.3.3 Simulation of rainstorm pattern

After actual rainstorm patterns are classified into sev-
eral distinct types, the simulation of rainstorm patterns
for each event can be carried out in two steps: (1)
generate rainstorm type and (2) generate plausible
rainfall hyetographs for the rainstorm type under con-
sideration. In step (1), the multinomial distribution is
used to define the occurrence probabilities associated
with each of the representative types of rainstorm
pattern. As the occurrence of a particular rainstorm
patterns might be affected by storm duration, depth,
and season, such effects can be investigated by exam-
ining contingency tables shown later in model appli-
cation section.

To generate rainfall hyetograph in step (2), two spe-
cial features of dimensionless rainstorm patterns must be
observed: (1) P1/12 + P2/12 + � � � + P12/12 = 1 as 0 £
F1/12 £ F2/12 £ � � � £ F12/12 = 1 and (2) 0 £ Ps £ 1
for s = 1/12, 2/12, ..., 12/12. In addition to the above
two special features, the ordinates of the dimensionless
rainfall hyetograph Ps’s are generally correlated non-
normal random variables.

In this study, a practical approach using the log-ratio
transformation (Aitchison 1986) is applied to treat P1/12,
P2/12, ..., P12/12 as compositional data. Furthermore, the
Johnson distribution system is used to describe the
marginal distribution of log-ratio variables associated
with P1/12, P2/12, ..., P12/12. The log-ratio transformation
and Johnson distribution system are briefly described
below.

Fig. 3 Non-dimensionalization
of storm profile
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Log-ratio transformation To generate random con-
strained dimensionless rainfall hyetograph ordinates
subject to P1/12 + P2/12 + � � � + P12/12 = 1 and
0 £ Ps £ 1, random P1/12, P2/12,..., P12/12 are trans-
formed into a set of unconstrained variables by the
following log-ratio transformation

Rs ¼ ln
Ps

Ps�

� �
; s ¼ 1=12; 2=12; . . . 12=12; s 6¼ s�; ð6Þ

where s* is the specified dimensionless time with Ps�
being the associated non-negative dimensionless rainfall
hyetograph ordinate.

Since 0 £ Ps £ 1 for s = 1/12, 2/12, ..., 12/12, the
transformed variables Rs range from �¥ to ¥. Note
that, in the log-ratio transformation of actual data,
neither Ps nor Ps� can be zero to avoid numerical
problem. The inverse transformation of log-ratio vari-
ables results in

Ps ¼
exp Rsð Þ

1þ
P12=12

s0 6¼ s�
s0 ¼ 1=12

exp Rs0ð Þ
;

s ¼ 1=12; 2=12; . . . ; 12=12

Ps ¼
1

1þ
P12=12

s0 6¼ s�
s0 ¼ 1=12

exp Rs0ð Þ
; s ¼ s�

ð7Þ

As can be seen that 0 £ Ps £ 1 and P1/12 + P2/

12 + � � � + P12/12 = 1 are automatically satisfied. In
this study, generating rainstorm pattern is to simulate
eleven correlated log-ratio variables Rs of dimensionless
rainfall ordinates, not involving the one at s = s*.

Johnson distribution system for normal transforma-
tion To generate dimensionless rainfall hyetograph
defined by the 11 log-ratio random variables Rs’s, it is
necessary to identify the corresponding best-fit marginal
distributions. This study adopted the Johnson distribu-
tion as the marginal distribution for Rs. Fang and Tung
(1996) found that the Johnson distribution system is
more flexible to fit the rainstorm pattern than other
distributions.

Johnson (1949) introduced a system of frequency
curve consisting of four parameters

Z ¼ cþ d g
X � n

k

� �
ð8Þ

where Z is standard normal random variable; g(.) is a
monotonic function of the original random variable X; n
and k are the location and scale parameters, respectively.
There are three types of Johnson distribution: (1) log-
normal system (SL): Z = c + d ln (X � n), n £ X (2)
unbounded system (SU): Z = c + dsinh � 1 [(X � n)/k ];

(3) bounded system (SB): Z = c + d ln [(X � n)/(n + k
� X)], n £ X £ n + k.

These three curves cover the entire region of feasible
distribution defined by the product–moment ratio dia-
gram (Johnson 1949; Tadikamalla 1980). Hill et al.
(1976) provided an algorithm to estimate the parameters
of the Johnson distribution by matching the first four
product–moments of X and to determine one of the best-
fit Johnson distribution type.

2.3.4 Procedure for generating dimensionless hyetograph

Based on the characterization and identification of
rainstorm events, log-ratio transformation, and MCS
with Johnson distribution system, the dimensionless
rainfall hyetograph ordinates Ps are generated. Specifi-
cally, the generation procedure for Ps is mostly similar to
the procedure of generating the storm duration, depth
and inter-event time shown in Fig. 2, but the only dif-
ference is that the Johnson distribution is selected to be
candidate probability distributions. In addition, the
parameters (c, d, n, k) in the Johnson distribution of each
log-ratio variable Rs associated with the rainstorm type
under consideration are determined from the statistical
moments of all log-ratio variables R1/12, R2/12, ..., R12/12.

2.4 Generation of rainstorm events sequence

To simulate rainstorm sequences at a site, major steps in
the proposed stochastic model are shown in Fig. 4 and
are summarized below:

Step 1. Based on the retrieved rainstorm event data,
summarize relevant seasonal statistical proper-
ties of rainstorm characteristics (number of
events, duration, depth, inter-event time, ordi-
nates of rainfall hyetograph, and type of rain-
storm pattern) including their statistical
moments, correlation relationships, and mar-
ginal probability distributions.

Step 2. Generate the number of rainstorm events for
each season year-by-year over the simulated
time period.

Step 3. For each generated rainstorm event, determine
its rainstorm pattern type by the multinomial
distribution and generate rainstorm depth,
duration, and inter-event time by the procedure
for simulating correlated multivariate non-nor-
mal variables described in Sect. 2.2.

Step 4. For each rainstorm event, according to its
rainfall pattern type, generate the ordinates of
dimensionless rainfall hyetograph using the log-
ratio transformation along with the Johnson
distribution described in Sect. 2.3.

Step 5. Convert generated dimensionless rainfall hye-
tograph to its original scale based on the cor-
responding depth and duration.
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3 Model application

3.1 Description of rainfall data

For model application and performance evaluation,
hourly rainfall data from 1884 to 1990 at the Hong
Kong Observatory (HKO), with an interruption in
1940–1946 due to the World War II, were used to
determine the distributional properties of rainstorm
characteristics for the development of the stochastic
rainstorm generation model

The criteria for extracting rainstorm events are based
on dry-time, event rainfall amount, and hourly rainfall
amount. As the study focuses rainfall events that could
potentially produce significant runoff event, criteria
adopted for rainstorm events retrieval are the
followings: (1) dry-time ‡ 1-h; (2) event rainfall
amount ‡ 30 mm/event; and (3) any hourly rainfall
amount within an event ‡ 10 mm/h. According to the
above criteria, a total of 1,690 rainstorm events over the

period of 1884–1939, 1947–1990 were extracted and their
associated rainstorm characteristics are analyzed.

3.2 Analysis of statistical features of storm
characteristics

The number of occurrence of rainstorm events, storm
duration, rainfall depth, inter-event time and temporal
distribution of rainfall are the main features considered
in the proposed stochastic model. To model rainstorm
events more accurately, an understanding of these
rainstorm characteristics as affected by seasonality is
helpful through a statistical analysis of storm charac-
teristics with respect to months or seasons.

3.2.1 Number of occurrence of rainstorm events

Table 1 shows the total number of rainstorm events over
the record period by month, season, dry-period (Janu-

Fig. 4 Schematic diagram of
generating rainstorm events
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ary–March and October–December), and wet-period
(April–September). It is clearly observed that summer
(April–June) and autumn (July–September) seasons
have significantly higher number of rainstorm events
than spring (January–March) and winter (October–
December) seasons.

3.2.2 Storm duration, rainfall depth and inter-event time

By the two-sample K-S test for the equality of proba-
bility distributions, Table 2 shows that the P-value for
storm duration, rainfall depth, and inter-event time in
spring-winter and summer-autumn are greater than the
5% significant level. This indicates that the probability
distributions for these storm characteristics in spring
and winter seasons do not differ statistically. The same
can be said about the storm characteristics in summer
and autumn seasons. Therefore, according to Tables 1
and 2, it is plausible to divide a single year into dry- and
wet-periods in which the former period contains winter

and spring seasons while the latter includes summer and
autumn seasons.

Table 3 summarizes statistical features, including
product–moments and L-moments, derived from all
available rainfall data in the dry- and wet-periods. The
mean and standard deviation of storm duration, rainfall
depth, and inter-event time in the dry-period are greater
than those in the wet-period. This is because that sig-
nificantly higher number of rainstorm events occurs in
the wet-period (see Table 1) so that rainstorm events in
the wet-period would have shorter duration with possi-
bly higher rainfall intensity. Since the statistical prop-
erties of rainstorm characteristics in the dry-period and
wet-period are very different, it is therefore sensible to
develop a bi-seasonal stochastic model to capture sea-
sonally varying characteristics of rainstorm events in the
dry-periods and wet-periods. The need to consider sea-
sonal variation in rainfall modeling was also pointed out
by Haberlandt (1998).

As shown in Table 4, the storm duration and rainfall
depth have strong positive correlation in both dry-peri-
ods and wet-periods. This implies that total rainfall
amount for a rainstorm event has a general increasing
tendency as the storm duration increases. However,
Table 4 also reveals that the inter-event time is only
weakly correlated with storm duration and rainfall
amount. Such correlation features are incorporated in
stochastic generation of rainstorm characteristics in dry-
and wet-periods by the multivariate MCS described
previously.

Table 1 Number of rainstorm event occurrences by month, season,
dry- and wet-periods during 1884–1939, 1947–1990

Time period Number of
storm events

January 9
February 13
March 38
April 136
May 276
June 297
July 280
August 292
September 228
October 78
November 30
December 13
Spring (January–March) 60
Summer (April–June) 709
Autumn (July–September) 800
Winter (October–December) 121
Dry-period (Spring and Winter) 181
Wet-period (Summer and Autumn) 1,509
Total 1,690

Table 2 P-values of two-sample K-S test on equality of distribu-
tion for storm duration, rainfall depth, and inter-event time in
various seasons

Storm charac. Season Spring Summer Autumn

Storm duration Summer 0.000
Autumn 0.000 0.092
Winter 0.152 0.000 0.000

Rainfall depth Summer 0.000
Autumn 0.000 0.158
Winter 0.236 0.000 0.000

Inter-event time Summer 0.000
Autumn 0.000 0.475
Winter 0.500 0.000 0.000

Table 3 Statistics of storm duration, rainfall depth, and inter-event
time

Period Mean SD Skew Kurt L-Cv L-skew L-kurt

Storm duration (mean and SD in hour)
Dry 10.64 7.46 1.63 5.49 0.36 0.32 0.19
Wet 7.68 5.07 2.09 9.48 0.33 0.31 0.21
Year 8.00 5.46 2.12 9.19 0.34 0.32 0.21

Rainfall depth (mean and SD in mm)
Dry 71.21 64.07 3.17 14.26 0.37 0.54 0.32
Wet 69.04 53.66 3.38 19.45 0.33 0.48 0.28
Year 69.28 54.89 3.37 18.74 0.34 0.48 0.29

Inter-event time (mean and SD in hour)
Dry 398.08 604.48 1.66 5.05 0.73 0.50 0.15
Wet 271.8 341.33 2.19 9.82 0.61 0.40 0.16
Year 285.45 380.72 2.30 9.92 0.63 0.43 0.18

Table 4 Correlation coefficients of storm duration, rainfall depth,
and inter-event time in different time periods

Period Dur-Dep Dur-IeT Dep-IeT

Dry 0.685 �0.048 �0.159
Wet 0.662 0.025 �0.025
Year 0.656 0.025 �0.050

Dur Duration, Dep depth, IeT inter-event time
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To stochastically generate rainstorm events, the
probability distribution for the number of rainstorm
event occurrences should be determined in advance.
Poisson process is often found suitable to describe the
occurrences of random hydrologic events in time and
space (Clark 1998). The sample values of dispersion in-
dex, Eq. 1, and the corresponding P-values for the three
partial records and full 100-year record are listed in
Table 5. It shows that in the dry-period the P-values are

well above the normally specified significant levels of 1
and 5%. As in the wet-period, the P-values are lower
than 5%, but higher than 1% except for the case of first
m = 50-year. Overall speaking, the Poisson distribution
is suitable to describe random occurrences of rainstorm
events at the HKO in both dry- and wet-periods.

The results of goodness-of-fit test on the various
probability distributions for storm depth, rainfall depth
and inter-event time by the one-sample K-S test under
different partial record lengths are summarized in Ta-
ble 6. It is observed that the P-value associated with a
given distribution for a particular rainstorm character-
istic has a decreasing trend with increase in the record
length. This is expected because as sample size increases
it becomes easier to discern whether or not the
hypothesized distribution is the true underlying distri-
bution. There are more storm events in the wet-period
than in the dry-period and the P-value for the former
period is smaller than that of the latter period. Most P-
values associated with candidate distributions consid-
ered for rainstorm characteristics are greater than 1% in
the dry-period while those P-values for the wet-period of
the first 50 and 80 years are close to zero. To select the
best-fit distribution for each storm characteristic, the

Table 5 Statistics and dispersion index for the number of storm
event occurrences in dry- and wet-periods for first 20, 50, and
80 years of record

Record length Period Mean SD Dispersion
index

P-value

First 20-year Dry 1.60 1.43 24.22 0.188
Wet 13.25 4.87 33.97 0.019

First 50-year Dry 1.86 1.34 47.44 0.536
Wet 13.70 4.61 76.01 0.008

First 80-year Dry 1.68 1.26 75.23 0.599
Wet 13.83 4.38 109.38 0.013

100-year Dry 1.73 1.32 99.71 0.461
Wet 14.25 4.45 137.58 0.006

Table 6 P-values of probability distributions for storm duration, rainfall depth, and inter-event time under different record lengths

Record length Period Storm duration Rainfall depth Inter-event time

Distribution P-value Distribution P-value Distribution P-value

First 20-year Dry N 3.12E-02 N 9.50E-03 N 2.03E-01
LN 3.62E-01 LN 1.19E-01 LN 2.37E-01
GAM 2.54E-01 GAM 5.53E-02 GAM 2.05E-01
EXP 2.00E-03 EXP 5.95E-02 EXP 7.22E-02

Wet N 0.00E+00 N 0.00E+00 N 0.00E+00
LN 5.29E-02 LN 2.00E-04 LN 6.20E-03
GAM 2.06E-02 GAM 0.00E+00 GAM 4.22E-01
EXP 0.00E+00 EXP 0.00E+00 EXP 0.00E+00

First 50-year Dry N 5.00E-04 N 0.00E+00 N 1.67E-02
LN 1.99E-01 LN 1.10E-02 LN 4.50E-02
GAM 5.61E-02 GAM 3.00E-04 GAM 2.63E-01
EXP 0.00E+00 EXP 3.00E-04 EXP 4.32E-02

Wet N 0.00E+00 N 0.00E+00 N 0.00E+00
LN 6.00E-04 LN 0.00E+00 LN 0.00E+00
GAM 1.00E-04 GAM 0.00E+00 GAM 3.20E-03
EXP 0.00E+00 EXP 0.00E+00 EXP 0.00E+00

First 80-year Dry N 2.00E-04 N 0.00E+00 N 1.49E-02
LN 1.95E-01 LN 7.00E-04 LN 8.50E-03
GAM 6.06E-02 GAM 0.00E+00 GAM 1.06E-01
EXP 0.00E+00 EXP 0.00E+00 EXP 9.33E-02

Wet N 0.00E+00 N 0.00E+00 N 0.00E+00
LN 0.00E+00 LN 0.00E+00 LN 0.00E+00
GAM 0.00E+00 GAM 0.00E+00 GAM 1.00E-04
EXP 0.00E+00 EXP 0.00E+00 EXP 0.00E+00

100-year Dry N 0.00E+00 N 0.00E+00 N 2.20E-03
LN 1.11E-01 LN 1.00E-04 LN 6.20E-03
GAM 1.50E-02 GAM 0.00E+00 GAM 9.92E-02
EXP 0.00E+00 EXP 0.00E+00 EXP 1.14E-02

Wet N 0.00E+00 N 0.00E+00 N 0.00E+00
LN 0.00E+00 LN 0.00E+00 LN 0.00E+00
GAM 0.00E+00 GAM 0.00E+00 GAM 0.00E+00
EXP 0.00E+00 EXP 0.00E+00 EXP 0.00E+00

N Normal, LN lognormal, GAM gamma, EXP exponential
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one having the largest P-value is chosen. Hence, the
best-fit distributions of storm characteristics in the dry-
period and wet-period under various sub-record lengths
can be obtained, except for those in wet-period of the
first 50 and 80 years which are zero. Overall speaking, it
is found that the best-fit distribution for storm duration
and rainfall depth is the two-parameter lognormal dis-
tribution, while for inter-event time the two-parameter
gamma distribution is the best-fit one. The same result
for inter-event time was obtained by Yen et al. (1993) in
their study on hourly rainfall at Urbana, IL using zero-
rainfall period to separate rainstorm events. As a result
of the K-S test, the lognormal distribution was employed
in this study for generating storm duration and depth,
whereas the gamma distribution was used for generating
inter-event time.

3.2.3 Temporal distribution of rainfall
(Rainstorm pattern)

Referring to Fig. 4, upon the generation of storm
duration, rainfall depth and inter-event time, the next
step is to generate plausible rainfall hyetographs to
establish the sequence of rainstorm events. To achieve
that, statistical features of dimensionless rainfall hyeto-
graph ordinates defining rainstorm pattern at the HKO
are examined. Statistical analysis for the temporal dis-
tributions of rainstorm patterns includes two parts: (1)
identification of typical rainstorm patterns and (2)
investigation of the factors affecting the frequency
occurrence of rainstorm patterns.

Classification of typical rainstorm patterns In this
study, typical rainstorm patterns are classified using the
statistical cluster analysis based on the ordinates of
dimensionless rainfall mass curve ordinates Fs. Accord-
ing to the dimensionless mass curve of 1,690 rainstorm
events extracted, six representative rainstorm patterns
shown in Fig. 5 are identified through classification
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Fig. 5 Representative
rainstorm patterns at the HKO

Table 7 Contingency table of storm pattern based on storm
duration and rainfall depth in wet-period (April–September)

Rainfall
depth (mm)

Storm duration (h) Total

0–5 5–10 10–20 >20

Pattern-A1
0–50 66 58 6 0 130
50–100 16 63 10 0 89
100–200 1 7 14 1 23
>200 0 0 6 0 6
Total 83 128 36 1 248

Pattern-A2
0–50 66 100 12 0 178
50–100 22 98 33 1 154
100–200 2 20 15 3 40
>200 0 0 6 3 9
Total 90 218 66 7 381

Pattern-C
0–50 55 92 10 0 157
50–100 19 56 21 0 96
100–200 2 17 23 5 47
>200 0 0 5 2 7
Total 76 165 59 7 307

Pattern-U
0–50 39 53 19 0 111
50–100 5 44 34 4 87
100–200 0 9 22 8 39
>200 1 0 1 10 12
Total 45 106 76 22 249

Pattern-D1
0–50 36 46 8 0 90
50–100 13 44 19 1 77
100–200 1 9 13 5 28
>200 0 0 3 7 10
Total 50 99 43 13 205

Pattern-D2
0–50 42 26 2 0 70
50–100 12 12 9 1 34
100–200 0 3 4 3 10
>200 0 0 2 1 3
Total 54 41 17 5 117
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process (Wu et al. 2006). The six rainstorm patterns
consist of four basic types of hyetograph: advanced type
(A1 and A2); central-peaked type (C); uniform type (U);
and delayed type (D1 and D2). The advanced types have
relatively higher rainfall intensity during early part of
rainstorm event, whereas the delayed types are just the
opposite. A central-peaked pattern has relatively high
rainfall in the middle and tapers off towards the begin-
ning and ending of the rainstorm event, while the uni-
form type reveals relatively constant rainfall intensity
throughout the storm duration.

Factors affecting the occurrence of rainstorm pat-
terns To investigate the frequency occurrence of rain-
storm patterns affected by the storm duration, rainfall
depth, and seasonality, the six representative rainstorm
patterns are grouped by storm duration and rainfall
depth in the form of contingency table (see Table 7 for
wet-period as an example). It can be clearly observed
that occurrence frequencies of the six representative
rainstorm patterns are not uniform with respect to storm
duration and rainfall amount at the HKO. Hence,
occurrence frequencies of the six representative rain-

Table 8 Comparison of statistics of observed and simulated rain-
storm characteristics

Record Duration
(h)

Depth
(mm)

Inter-event
time (h)

Based on first 20-year observationsa

Mean Entire 7.97 68.93 287.42
Observed 8.15 72.26 293.09
Simulated
Mean 8.17 72.36 301.75
SD 0.13 1.41 8.26

SD Entire 5.41 54.98 381.97
Observed 5.44 60.22 406.84
Simulated
Mean 5.45 60.25 405.59
SD 0.26 2.99 17.04

Skew Entire 2.08 3.44 2.29
Observed 2.04 3.57 2.19
Simulated
Mean 2.33 3.06 2.69
SD 0.60 0.63 0.38

Kurtosis Entire 8.87 19.34 9.94
Observed 8.86 20.91 8.29
Simulated
Mean 13.73 19.87 14.31
SD 11.76 10.76 5.70

L-Cv Entire 0.34 0.34 0.63
Observed 0.33 0.35 0.65
Simulated
Mean 0.33 0.39 0.61
SD 0.011 0.01 0.01

L-skew Entire 0.31 0.49 0.42
Observed 0.31 0.49 0.46
Simulated
Mean 0.30 0.36 0.45
SD 0.03 0.02 0.02

L-kurt Entire 0.21 0.29 0.18
Observed 0.21 0.29 0.21
Simulated
Mean 0.20 0.23 0.22
SD 0.03 0.03 0.04

Correlation
coefficient

Dur, Dep Dur, IeT Dep, IeT

Entire 0.66 0.04 �0.04
Observed 0.65 0.09 �0.04
Simulated
Mean 0.66 0.09 �0.04
SD 0.02 0.03 0.02

Record Duration
(h)

Depth
(mm)

Inter-event
time (h)

Based on first 50-year observationsb

Mean Entire 7.97 68.85 287.42
Observed 8.05 67.97 296.90
Simulated
Mean 8.07 68.00 301.22
SD 0.09 0.90 6.60

SD Entire 5.41 54.98 381.97
Observed 5.32 55.74 405.15
Simulated
Mean 5.36 55.79 406.05
SD 0.18 2.09 15.32

Skew Entire 2.08 3.44 2.29
Observed 2.13 3.92 2.21
Simulated
Mean 2.23 3.39 2.50
SD 0.44 0.54 0.30

Table 8 (Contd.)

Record Duration
(h)

Depth
(mm)

Inter-event
time (h)

Kurt Entire 8.87 19.34 9.95
Observed 9.40 24.38 8.77
Simulated
Mean 11.87 21.77 12.06
SD 7.59 10.24 4.19

L-Cv Entire 0.34 0.34 0.63
Observed 0.33 0.33 0.65
Simulated
Mean 0.33 0.36 0.63
SD 0.01 0.01 0.01

L-skew Entire 0.32 0.49 0.42
Observed 0.31 0.50 0.44
Simulated
Mean 0.31 0.49 0.46
SD 0.02 0.01 0.01

L-kurt Entire 0.21 0.29 0.18
Observed 0.21 0.31 0.18
Simulated
Mean 0.21 0.29 0.21
SD 0.02 0.02 0.03

Correlation
coefficient

Dur, Dep Dur, IeT Dep, IeT

Entire 0.66 0.04 �0.04
Observed 0.65 0.09 �0.04
Simulated
Mean 0.66 0.09 �0.04
SD 0.02 0.03 0.02

Dur Duration, Dep depth, IeT inter-event time
aEntire = 100-year observed rainfall data, Observed = first 20-
year observed rainfall data, Simulated = first 20-year ob-
served + 80-year of simulated rainfall data
bEntire = 100-year observed rainfall data, Observed = first 50-
year observed rainfall data, Simulated = first 50-year ob-
served + 50-year of simulated rainfall data
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storm patterns would depend on the storm duration and
rainfall depth and such dependency should be accounted
for in the simulation model for a more realistic genera-
tion of rainstorm events.

For a rainstorm event generated with the specified
rainfall duration and depth in a dry or wet period, the
random selection of a particular rainstorm pattern for
that event can be made by using a multinomial distri-
bution model with the following probability distribu-
tion,

Qk ¼
nk

P6

k0¼1
nk0

; k ¼ 1; 2; . . . ; 6; ð9Þ

where Qk is the probability of occurrence of rainstorm
pattern k; and nk is the number of occurrences of rain-
storm pattern k whose dependence on rainfall depth,
duration, and season can be obtain from the contin-
gency tables.

3.3 Performance evaluation and verification
of proposed model

The proposed rainstorm generation model is evaluated
by examining the general and extreme statistics of sim-
ulated rainstorm characteristics. In particular, on the
extreme rainfall statistics, comparisons are made on the
annual maximum rainfall frequency relations derived
from the simulated rainstorm event sequence with those
directly obtained on the basis of assumed ‘available’
rainfall data. The performance evaluation specifically
aims at: (1) examining the ability of the proposed model
to preserve the essential statistical features of relevant
rainstorm characteristics and those of the annual maxi-
mum rainfall series and (2) investigating the capability of
the proposed model to add synthesized rainfall record
with the expectation to enhance the accuracy and reli-
ability of rainfall frequency analysis. The evaluation
procedure is outlined below.

Table 9 Comparison of statistics of observed and simulated annual
maximum rainfall for different durations

Statistics Record length 1-h 2-h 6-h 12-h 24-h

Based on the first 20 years of observationsa

Mean (mm) Entire 59.03 89.90 144.52 181.69 232.22
Observed 53.57 85.19 150.92 187.85 250.69
Simulated
Mean 52.98 86.47 151.07 186.96 217.82
SD 1.51 2.39 4.01 4.92 5.71

SD (mm) Entire 17.28 29.92 61.53 76.16 99.35
Observed 15.69 33.91 72.25 83.26 130.01
Simulated
Mean 19.22 32.02 59.36 76.00 95.32
SD 1.94 2.81 5.43 7.20 8.37

Skew Entire 0.70 0.68 1.97 1.58 1.48
Observed 0.74 0.99 1.75 1.49 1.85
Simulated
Mean 1.55 1.45 1.56 1.53 1.85
SD 0.71 0.52 0.47 0.51 0.42

Kurt Entire 3.20 3.17 8.77 7.03 6.94
Observed 2.93 3.43 6.48 5.89 7.27
Simulated
Mean 7.65 6.65 7.03 6.93 9.03
SD 6.80 3.56 3.31 3.65 3.05

L-Cv Entire 0.16 0.19 0.22 0.22 0.23
Observed 0.17 0.23 0.25 0.24 0.27
Simulated
Mean 0.19 0.20 0.21 0.21 0.22
SD 0.03 0.03 0.01 0.01 0.03

L-skew Entire 0.13 0.13 0.25 0.22 0.20
Observed 0.20 0.23 0.29 0.23 0.27
Simulated
Mean 0.22 0.22 0.22 0.22 0.24
SD 0.10 0.11 0.04 0.04 0.09

L-kurt Entire 0.12 0.12 0.22 0.16 0.16
Observed 0.18 0.16 0.28 0.27 0.29
Simulated
Mean 0.18 0.17 0.18 0.18 0.18
SD 0.11 0.11 0.04 0.03 0.10

Based on the first 50 years of observationsb

Mean (mm) Entire 59.03 89.90 144.52 181.69 232.22
Observed 54.54 84.62 145.01 182.25 232.13
Simulated
Mean 52.35 82.93 141.94 177.42 211.57
SD 1.30 2.05 3.35 4.47 5.50

SD (mm) Entire 17.28 29.92 61.53 76.16 99.35
Observed 15.77 31.12 70.73 86.08 111.13
Simulated
Mean 17.13 29.19 57.74 73.49 93.45
SD 1.52 2.31 3.89 5.01 5.97

Skew Entire 0.70 0.68 1.97 1.58 1.48
Observed 0.76 1.04 2.18 1.96 1.93
Simulated
Mean 1.20 1.28 2.11 1.86 1.97
SD 0.41 0.42 0.34 0.33 0.31

Kurt Entire 3.20 3.17 8.77 7.03 6.94
Observed 3.25 3.87 8.75 7.80 7.99
Simulated
Mean 5.41 5.46 10.11 8.47 9.32
SD 2.59 2.87 2.53 2.20 1.99

L-Cv Entire 0.16 0.19 0.22 0.22 0.23
Observed 0.16 0.20 0.24 0.24 0.25
Simulated
Mean 0.18 0.19 0.20 0.21 0.22
SD 0.01 0.01 0.01 0.01 0.01

L-skew Entire 0.13 0.13 0.25 0.22 0.20
Observed 0.17 0.20 0.32 0.29 0.29

Table 9 (Contd.)

Statistics Record length 1-h 2-h 6-h 12-h 24-h

Simulated
Mean 0.19 0.21 0.25 0.24 0.26
SD 0.04 0.04 0.03 0.03 0.03

L-kurt Entire 0.12 0.12 0.22 0.16 0.16
Observed 0.13 0.16 0.27 0.23 0.19
Simulated
Mean 0.16 0.17 0.22 0.20 0.19
SD 0.03 0.03 0.03 0.03 0.02

aEntire = 100-year observed rainfall data, Observed = first 20-
year observed rainfall data, Simulated = first 20-year ob-
served + 80-year of simulated rainfall data
bEntire = 100-year observed rainfall data, Observed = first 50-
year observed rainfall data, Simulated = first 50-year ob-
served + 50-year of simulated rainfall data
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Step 1. Based on the complete n-year rainfall data series
calculate the statistical properties of rainstorm
characteristics and annual maximum rainfall
frequency relations, hn.

Step 2. To emulate the situation of adding synthesized
rainfall record and to preserve its time-series
structure, select the first m years out of the total
record of n years (m £ n) and treat them as the
available data. Then, based on the ‘available’
rainfall data series, rainstorm events according

to the prescribed criteria and annual maximum
rainfalls of different durations are extracted.
The rainstorm characteristics statistics and fre-
quency quantiles from the m-year of ‘available’
rainstorm record is denoted as hm, 0. From the
statistical characteristics of extracted rainstorm
events in the first m years, apply the proposed
model to simulate rainfall event sequences for a
period of (n � m) years. Calculate the statistics
of simulated rainstorm characteristics and
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combine m-year of ‘available’ and (n � m)-year
of simulated rainstorm events to estimate its
frequency quantiles, denoted as hm, n�m.

Step 3. Repeat step 2 a number of times to obtain the
statistical properties of simulated rainstorm
characteristics including their probability
bounds.

Using 100 years of hourly rainfall record at the Hong
Kong Observatory (n = 100 years), three partial record

periods (m = 20, 50, and 80 years) starting from the
beginning of the entire record (i.e., 1,884) were used as
the ‘available’ record in the performance evaluation.
Fifty synthesized rainstorm sequences of additional
synthesized (n � m)-year are generated for each m-year
of ‘available’ record.

Performance evaluation was conducted by comparing
the statistical moments of rainstorm characteristics and
those of annual maximum rainfalls of various durations
from the simulated rainstorm events under the three
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partial record lengths with those under the entire
100 years of observed rainfall data.

3.3.1 Comparison of statistics of rainstorm
characteristics

For illustration, the first four product–moments and
L-moments associated with the rainstorm characteristics
of additional synthesized record sequences based on
three sub-record lengths are compared with those from
the full 100-year record. Table 8 shows the comparison
of the first and second moments of observed and simu-

lated rainstorm characteristics. It is observed that the
mean values of the statistics of rainstorm characteristics
with additional synthesized record are reasonably
close with those from the full 100 years of observations
(even with the first 20 years). The standard deviation
associated with the simulation results reveals that the
variation of rainstorm characteristics generated by the
model and the values are relatively small, except for
higher order product moments. Table 8 also indicate that
as the partial record length increases, the discrepancy in
statistical features of rainstorm characteristics between
the full and partial records, as expected, decreases.
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3.3.2 Comparison of annual maximum rainfall statistics

Referring to Table 9, statistical moments associated
with the annual maximum rainfalls of varying durations
under different partial record lengths and data samples
are listed. It can be observed that the third and fourth-
order moments (especially the product–moments) of the
annual maximum rainfalls from the data series with
additional synthesized data are not close to those of the
entire data as the first two moments. Between the data

series with and without additional synthesized data the
former offers a closer match for the second moments to
those of the 100-year data series, especially when the
partial record length is short and the storm duration is
longer. For 1-h annual maximum rainfall, the proposed
model provides less accurate estimation of the statistical
moments than those without additional synthesized
data. This could be attributed to the limitation of sim-
ulated hourly rainfall profile to capture the true tem-
poral pattern of the short-duration rainstorm events.
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From the well-known frequency factor equation, i.e.,
XT = l + rKT, one can see that the frequency rela-
tionship is a combined effect of statistical moments of
various orders, it may not be so easy to assess how the
accuracy of individual moment would affect the overall
behavior of the entire frequency curve.

3.3.3 Comparison of annual maximum rainfall
frequency relationship

Rainfall depth–frequency relations derived from the
‘available’ partial record and those using additional
synthesized data are compared with the depth–fre-
quency relations from the complete set of 100-year. For
illustration, Figs. 6 and 7, respectively, show the mean,
medium, 90% bound of rainfall depth–frequency curves
of three selected storm durations (1-, 6-, and 12-h)
derived under ‘available’ record length of 20 and
50 years. Note that 90% bound indicates the random
variability of outputs from the proposed model. It is
observed that the 90% bound of simulated depth–fre-
quency curve can capture the ‘true’ frequency curve
based on the entire 100-year complete record. Fur-
thermore, by adding synthesized data to the in ‘avail-
able’ record, the mean and median of simulated depth–
frequency curves are closer to the 100-year curve and
the 90% bound becomes tighter. It is also interesting to
observe that, based solely on the ‘available’ data
without adding synthesized data, the depth–frequency
curves for some durations (i.e., 6 and 12-h based 20 and
50 years of ‘available’ data) lie outside the 90% bound
of simulated results.

From Figs. 6 and 7 one observes that the mean
depth–frequency curve lies relatively higher above the
median curve indicating that the proposed stochastic
rainstorm generating model produces positively-skewed
estimation of rainfall quantile, especially for larger re-
turn period, such as 200-year or above, and shorter
storm duration (1- or 2-h) when the ‘available’ record
length is 20 or 50 years. As the storm duration and
‘available’ record length become longer, the mean and
median depth–frequency curves coincide together. For
the majority of the cases considered, the median depth–
frequency curves are closer to those obtained on the
basis of full 100-year record.

Figures 8 and 9 show the absolute error percentage of
the depth–frequency relationships, defined as

em;0 ¼
hm;0 � hn

hn

����

����� 100%; em;n�m ¼
hm;n�m � hn

hn

����

����� 100%

ð10Þ

under different partial record lengths with respect to
those established by using full 100-year records in which
h = xT

t denoting estimated T-year t-h rainfall depth. It
is clearly observed that both median and mean depth–
frequency curves calculated from combining ‘available’
and synthesized data using the proposed rainstorm

generation model would enhance the accuracy of rainfall
frequency analysis, especially when the return period is
high.

Numerical results also point out that if the return
periods of interest is significantly smaller than ‘available’
record length [e.g., T £ 5-year with m = 20-year;
T £ 10-year with m = 50-year; T £ 50-year with
m = 80-year (not shown)], adding synthesized record is
a futile task which produces no improvement on the
estimated quantiles, if not making the estimates less
accurate. On the other hand, it is interesting to note that,
for the limited conditions considered herein, the addition
of rainstorm record by the proposed model has good
potential to greatly enhance the accuracy of estimated
rainfall quantiles with return period closer to or larger
than the ‘available’ record length.

4 Conclusions

This paper presents a practical stochastic model for
generating hourly-based rainstorm events according to
the statistics of rainstorm characteristics, including
number of occurrence of rainstorm events, storm dura-
tion, rainfall depth, inter-event time and rainstorm
pattern. The proposed rainstorm generation model in-
volves the use of Poisson distribution for generating
number of rainstorm events and multivariate Monte
Carlo simulation for storm duration, rainfall depth, and
inter-event time, as well as constrained multivariate
simulation conditioned on the total rainfall amount and
storm duration for the corresponding rainfall hyeto-
graph.

From the numerical experiments, the proposed model
was found to be capable of capturing the essential sta-
tistical features of rainstorm characteristics and extreme
events based on the available data. Furthermore, the
proposed model shows promising potential to improve
the accuracy of short rainfall record in establishing
rainfall IDF relations, especially for events having re-
turn period close to or longer than the available record
length.

Note that, in this study, the simulations of rainstorm
events were made for the dry- and wet-periods in the
example application. The proposed model, however, can
be applied to deal with rainfall data associated with any
time-interval of interest, such as month, if necessary.
Moreover, as the proposed model requires the specifi-
cation of statistical properties of rainstorm characteris-
tics at a site, it is applicable for simulating rainstorm
events at ungauged sites provided that relevant infor-
mation about rainstorm characteristics are estimated by
a proper regional analysis.
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