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Abstract This paper focuses on numerical methods for solving time-optimal con-

trol problems using discrete-valued controls. A numerical Two-Phase Scheme, which

combines admissible optimal control problem formulation with enhanced branch-and-

bound algorithms, is introduced to efficiently solve bang-bang control problems in the

field of engineering. In Phase I, the discrete restrictions are relaxed, and the resulting

continuous problem is solved by an existing optimal control solver. The information on

switching times obtained in Phase I is then used in Phase II wherein the discrete-valued

control problem is solved using the proposed algorithm. Two numerical examples, in-

cluding a third-order system and the F-8 fighter aircraft control problem, are presented

to demonstrate the use of this proposed scheme. Comparing to STC and CPET meth-

ods proposed in the literature, the proposed scheme provides a novel method to find a

different switching structure with a better minimum time for the F-8 fighter jet control

problem.

Keywords Two-Phase Scheme . Time-optimal control problem . Bang-bang

control . Enhanced branch-and-bound method . Admissible optimal control problem

formulation

1 Introduction

Time-optimal control problems (TOCP) have attracted the interest of researchers in

the area of optimal control because they often occur in practical applications. Thus, a
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series of essential results has been published concerning applications of Pontryagin’s

maximum principle to the time-optimal control of finite dimensional linear systems and

low-order nonlinear systems. However, in the case of state- and/or control-constrained

high-order nonlinear systems, solving the two-point boundary value problem that

results from Pontryagin’s maximum principle is difficult. Moreover, analytic solutions

are impractical if the dimension of a system exceeds three (Kirk, 1970). Therefore,

in recent research, many numerical techniques have been developed and adopted to

solve time-optimal control problems.

For a time-optimal control problem, one of the most common types of control

function is the piecewise-constant function by which a sequence of constant inputs is

used to control a given system with suitable switching times. Additionally, when the

control is bounded, a very commonly encountered type of piecewise-constant control

is bang-bang, which switches between the upper and lower bounds of the control

input. When the controls are assumed to be of the bang-bang type, the time-optimal

control problem becomes one of determining the switching times. Several methods

for determining TOCP switching times have been extensively studied in the literature

(see Kaya and Noakes, 1996; Bertrand and Epenoy, 2002; Simakov et al., 2002, for

examples). However, in these methods, the number of switching times must be known

before their algorithms can be applied. In most practical cases, however, the number of

switching times is unknown before the control problems are solved. To overcome the

numerical difficulties that arise during the process of finding the exact switching points,

Lee et al. (1997) propose the Control Parameterization Enhancing Transform (CPET).

CPET is also extended to deal with optimal discrete-valued control problems (Lee et

al., 1999) and is applied to solving the sensor scheduling problem (Lee et al., 2001).

In like manner, this paper focuses on developing a numerical method to solve time-

optimal control problems. This method consists of two computational phases: in the

first, switching times are calculated using existing optimal control methods; and in

the second, the resulting information is used to compute the discrete-valued control

strategy. The proposed algorithm, which integrates the existing optimal control solver

with an enhanced branch-and-bound method (Tseng et al., 1995), is implemented and

applied to some example systems, including that of the F-8 fighter aircraft.

The remainder of the paper is organized as follows. Section 2 introduces the general

formulation of the time-optimal control problem. Section 3 briefly discusses the theo-

retical basis and the architectural framework of the admissible optimal control problem

(AOCP) formulation. Section 4 presents an algorithm that integrates the AOCP with

the enhanced branch-and-bound method. Section 5 presents the Two-Phase Scheme

to overcome the difficulties associated with switching time computation methods.

Section 6 then describes three nonlinear numerical examples taken from the literature

and the numerical results obtained by applying the proposed algorithm. Section 7

concludes the paper.

2 Problem formulation

Consider a dynamical system described by the following nonlinear differential equa-

tions on [0, t f ]:

ẋ = f (t, b, x(t), u(t)) , t ∈ [
0, t f

]
(1)
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with the initial condition

x(0) = x0, (2)

where t f is the terminal time, b ∈ Rk is the vector of design variables, u ∈ Rm is a

vector of control functions and x ∈ Rnis a vector of state variables. The function

f ≡ [
f1, f2, . . . , fn

]T
is assumed to be continuously differentiable with respect to all

its arguments x0 is a given vector in Rn .

For a continuous control variable, any piecewise continuous function uc from [0, t f ]

into Rm may be taken as an admissible control function. For optimal discrete-valued

control problems, a piecewise-constant function ud, ud :
[
0, t f

] �→ Ud, may be taken

as an admissible control function, where Ud is a finite set in Rm . Let U be the class

of all such admissible control functions. Then a time-optimal control problem may be

stated formally as follows: Given the dynamical system (1, 2), find u =[uc, ud ]∈ U
such that the cost functional (performance index)

J0 =
∫ t f

0

dt = t f (3)

is minimized subject to the constraint

Ji = �i (b, x(t f ), t f ) +
∫ t f

0

Li (b, u(t), x(t), t) dt

{= 0; i = 1, . . . , Ne

≤ 0; i = Ne + 1, . . . , NT

(4)

and the following continuous inequality constraint on the function of the state and

control:

ψ j (b, u(t), x(t), t) ≤ 0; j = 1, . . . , q, ∀t ∈ [0, t f ]. (5)

where �i , Li , and ψ j are continuously differentiable with respct to their respective

arguments. Let this problem be referred to as Problem (PU). A control u ∈ U is said

to be a feasible control if it satisfies constraints (4) and (5). For a time-optimal control

problem, the terminal time, t f , is not fixed and is treated as a design variable in b.

The differential equations that govern the system described by Eq. (1) are expressed

in general first-order form. Equation (5) represents the mixed state and control con-

straints, and the terminal conditions are treated as equality constraints in the first term

of Eq. (4).

3 Admissible optimal control problem method

An admissible optimal control problem (AOCP) method was presented in earlier re-

search (Sage and White, 1977) and used to solve continuous time-optimal control

problems in Kaya and Noakes (1996); Lee et al. (1997). The core idea behind the

AOCP method is to treat an optimal control problem as an initial value problem and
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then adjust parameters and controls to satisfy optimality and constraints by applying

iterative methods of nonlinear programming. SQP methods (Rao, 1996; Arora, 1989)

are among the most widely used algorithms for solving general nonlinear program-

ming problems and hence the SQP, which the BFGS method (Arora, 1989) applied

to calculate the search direction, has been adopted in this paper. The approximate

trajectory x(t) is generated by solving the initial value problem defined in Eqs. (1) and

(2). Several effective and efficient numerical procedures can be used to integrate this

initial value problem with the internal interpolation of the state variable x(t). Hence, a

control parameterization technique is applied in which only control functions u(t) are

discretized. The entire time interval [0, t f ] is subdivided into N unequal time intervals,

and the time grid points are defined in vector form as

T = [t1, t2, . . . , tN ]T , (6)

where tN = t f . The control functions u(t) can be discretized for each time in-

terval, and then the resulting control vector can be represented by the following

equation:

U(D) = [
u(1), u(2), . . . , u(N )

]T

= [u1(t1), . . . , um(t1), u1(t2), . . . , um(t2), . . . , u1(tN ), . . . , um(tN )]T (7)

where u(l) ∈ Rm , l = 1. . . N , is the vector of control variables for the l-th time

interval [tl , tl+1].

The time grid vector T and the discretized control vector U(D) are herein treated

as design variables of the design variable vector P, and the terminal time t f is also

included as a design variable in T. To solve the system equation, the values of the

control functions between two time grids are needed, which can be approximated by

interpolating functions Iu, where Iu ∈ Rm . The entire design variable vector can be

written as P = [bT , TT , U(D)T
]T . The admissible control functions are represented in

the form u(P), and the state variable is expressed as x(P, t) to emphasize that it is a

function of the design variable vector P.

In the AOCP method, the system equation, Eq. (1), and the initial condition, Eq. (2),

constitute an initial value problem, and the corresponding state variables can be de-

termined by using the values of the design variables obtained in each iteration of an

SQP method, which the AOCP algorithm combines with the control discretization

process. Figure 1 illustrates the architectural framework of the AOCP method (Huang

and Tseng, 2003). This framework is based on an SQP method that cooperates with an

optimal control problem solver responsible for solving the initial value problems and

then using the solutions to calculate the values of cost functions (performance index)

and constraints. An SQP algorithm uses these values to update the design variables

and find the optimal solution.

Nonetheless, the AOCP method cannot deal with optimal discrete-valued con-

trol problems; therefore, some mixed integer nonlinear programming techniques are

needed. Hence, the algorithm developed in this paper is based on the AOCP but uses

the enhanced branch-and-bound method (Tseng et al., 1995) to solve the optimal

discrete-valued control problems. In each branching node of the branch-and-bound
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Initialization
        H(0) = I,  Initial guess P(0)

 Cost function J0(P
(k))

 Equality constraints h(P(k))
 Inequality constraints g(P(k))

J0(P
(k))

h(P(k))
g(P(k))

QP subproblem

Descent direction d(k)
Check  convergence

Line search
Search the step size

(k)

Update Hessian matrix 
H(k+1)

Update design variables
P(k+1) = P(k) + (k)d(k)

Show results

Discretization

Solve the initial value 
problems

Finite difference method

OCP Solver

Design Variable  P(k)

Time Interval, N

k = 0

k = k + 1

NO

YES

X(k)

Fig. 1 Conceptual flow chart of the AOCP algorithm

process, the AOCP is used as an optimal control problem solver to calculate continuous

solutions.

4 Mixed-integer nonlinear programming algorithm for solving
time-optimal control problems

Most discrete programming methods are based on the assumption that discontin-

uous optimization problems are transformed into multiple continuous optimization

sub-problems to take advantage of well-established continuous optimization algo-

rithms. These continuous optimization problems are solved by imposing constraints

on the discreteness of the design variables. The optimal discrete solution is taken
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from among the continuous solutions obtained in the optimization sub-problems.

However, the large number of discontinuous design variables greatly increases the

number of the continuous optimization sub-problems. Tseng et al. (1995) presents

an enhanced branch-and-bound method for reducing the number of executions of

the continuous-optimization scheme by intelligently selecting the bounding route.

Because such an enhanced branch-and-bound method dramatically reduces the to-

tal number of continuous optimization runs executed and speeds up its convergence

(Tseng et al., 1995), it is adopted herein and integrated with the AOCP to develop a

mixed integer NLP algorithm for solving time-optimal control problems (TOCP).

4.1 Integrating the AOCP and enhanced branch-and-bound method

The algorithm developed in this paper consists of three major processes: branching,

the AOCP, and bounding. Initially, all discrete-valued restrictions are relaxed and the

resulting continuous NLP problem is solved using the AOCP. If the solution of con-

tinuous optimum design problem occurs when all discrete-valued variable values are

in the discrete set Ud, which is preset by the user to meet practical requirements,

then an optimal solution is determined and the procedure ends. Otherwise, the algo-

rithm selects one of the discrete-valued variables whose value is not in the discrete

set Ud—for example, the j-th design variable, Pj , with value P̂j —and branches

on it.

4.1.1 Branching process

In the branching process, the original design domain is divided into three sub-domains

by two allowable discrete values, ūi and ūi+1, that are nearest to the continuous op-

timum, as shown in Fig. 2. Of the three sub-domains, sub-domain II, included in the

continuous solution but not in the feasible discontinuous solution, is dropped. In the

other two sub-domains, called nodes, two new NLP problems are formed by adding

simple bounds, P̂j ≤ ūi and P̂j ≥ ūi+1, respectively, to the continuous NLP problems.

One of the two new NLP problems is selected and solved next. Many search methods

based on tree searching—including depth-first search, breadth-first search and best-

first search—can be applied to choose the next branching node. The branching process

is repeated in each of the sub-domains until a feasible optimal solution is found in

which all the discrete variables have allowable discrete values. Obviously, the number

of sub-domains may grow exponentially so that a great deal of computing time is re-

quired. Thus, in the enhanced branch-and-bound method (Tseng et al., 1995), multiple

branching and unbalanced branching strategies have been developed to improve the

method’s efficiency.

4.1.2 Bounding process:

In discrete optimization, the minimum cost is always greater than or equal to the cost

of the original regular optimal design that was originally branched. This fact provides

a guideline for when branching should be stopped. If the branching process yields a

feasible discontinuous solution, then the corresponding cost value can be considered

a bound. Any other sub-domain that imposes a continuous minimum cost larger than
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Fig. 2 Conceptual layout of branching process

this bound does not need to be branched further. This bounding strategy can be used

to select the branching route intelligently and avoid the need for a complete search

over all the branches.

Algorithm: the AOCP and enhanced branch-and-bound

Initialization: Relax all discrete-valued restrictions and then place the resulting con-

tinuous NLP problem on the branching tree. Set the cost bound Jmax = ∞.

while (there are pending nodes in the branching tree) do
1. Select an unexplored node from the branching tree.

2. Control discretization.

3. Repeat (for k-th AOCP iteration )

(1) Solve the initial value problem for state variable x(k) of AOCP.

(2) Calculate the values of the cost function, J0, and the constraints.
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(3) Solve the QP(k) problem by applying the BFGS method to obtain the

descent direction d (k).

(4) if (QP(k) is feasible and convergent) then exit AOCP

(5) Find the step size α(k) of the SQP method by using the line search method.

(6) Update the design variable vector: P(k+1) = P(k) + α(k)d (k).

4. if (NLP is optimal) and (J0 < Jmax ) then
if (U(D)(k+1)

is feasible ) then
Update the current best point by setting the cost bound Jmax = J0.

Add this node to the feasible node matrix.

else
Evaluate the values of criteria for selecting the branch node.

Choose a discrete-valued variable U(D)(k+1)

i /∈ U and branch it.

Add two new NLP problems into the branching tree.

Drop this node.

endif
else

Stop branching on this node.

endif
end while

5 Two-phase scheme for solving TOCP

The mixed integer NLP algorithm developed in this paper is one type of switch-

ing time computation (STC) method. Most switching time computation methods

[see, for example, (Kaya and Noakes, 1996; Lucas and Kaya, 2001; Simakov et al.,

2002)] assume that the structure of the control is bang-bang and the number of

switching times is known. Unfortunately, the information on the switchings of sev-

eral practical time-optimal control problems is unknown and hard to compute using

analytical methods. Hence, to overcome this difficulty, this paper proposes a Two-

Phase Scheme that consists of the AOCP plus the mixed integer NLP method. In

Phase I, the AOCP is used to calculate the information on switchings with rough

time grids so that the information can be used in Phase II as the feasible ini-

tial design of the mixed integer NLP method. This scheme is described briefly

below.

Phase I

1. Follow the steps of the AOCP method proposed by Huang and Tseng (2003) to

solve the time-optimal control problem using continuous controls.

2. Based on the numerical results, extract information about the switching times and

terminal times, t f .

Phase II

3. Based on the information about switching times obtained in Phase I, the switchings

are treated as design variables and added into the time grid vector T that is given in
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Section 3. It should be noted that each interval between the upper and lower bounds

on each of those design variables must include one switching.

4. Insert the terminal time, t f , into the design variable vector P.

5. Discretize each control variable into the number of switchings plus one. Then the

discrete control vector, U(D) , defined in Eq. (7) can be add to the design variable

vector P and limit their corresponding upper and lower bounds by the original

bounds of the controls.

6. Solve the problem by applying the mixed integer NLP method, and then find the

optimal discrete-type control trajectories.

A third-order system shown in Section 6.1 is used to demonstrate those processes

of this numerical scheme.

6 Numerical examples

The numerical results for the following examples are obtained on an Intel Celeron

1.2 GHz computer with 512 MB of RAM memory. The AOCP is coded in FORTRAN,

and C language is used to implement the enhanced branch-and-bound method. The

Visual C++ 5.0 and Visual FORTRAN 5.0 installed in a Windows 2000 operating

system are adopted to compile the corresponding programs. The total CPU times for

solving the F-8 fighter craft problem in Phase I and Phase II are 3.605 and 1.782

seconds, respectively.

6.1 Third-order system

The following system of differential equations is a model of the third-order system

dynamics taken from Wu (1999).

ẋ1 = x2 (8)

ẋ2 = x3 (9)

ẋ3 = −10x3 + 10u (10)

The problem here is to find the control |u| ≤ 10 in order to bring the system from

the initial state [−10, 0, 0]T to the final state [0, 0, 0]T in minimum time.

First, this problem is solved directly by the mixed integer NLP method. Assume four

switching times (T1, T2, T3, T4) and five control arcs have values in the discrete set, Ud:

{−10, 10}. The terminal time, t f , is treated as a design variable, so the design variable

vector P can be expressed as [T1, T2, T3, T4, t f , Ud1, Ud2, Ud3, Ud4, Ud5]T . Notably,

the final conditions of the state variables are transferred to the equality constraints.

The TOCP problem becomes one of determining the switching times. Figure 3(a)

presents the continuous solution obtained by using the AOCP and the discrete solution

determined by applying the mixed integer NLP method proposed herein. The results

indicate that the control trajectory determined by the mixed integer NLP method

is of the bang-bang type and the solution consistent with the results obtained by

Wu (1999).
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Fig. 3 Control trajectories of the third-order system

Springer



A two-phase computational scheme for solving bang-bang control problems 455

As stated in Section 5, several assumptions must be made when the mixed integer

NLP method is applied to solving TOCP directly. Unfortunately, these assumptions

cannot be guaranteed to hold in practical cases. Consequently, the Two-Phase Scheme

proposed in this paper is needed. For illustration, the third-order system is again solved

using this Two-Phase Scheme. In Phase I, two switching times are found to be [0.330,

0.725]T and the terminal time t f is 0.7864. In the first phase, these switching data

need not be accurate because they are only used to help users decide on the number

of switching times, the control arcs and their corresponding boundaries. Thus, in

Phase II, the design variable vector P is re-formed as [T1, T2, t f , Ud1, Ud2, Ud3]T ,

and the numerical result obtained by applying the mixed integer NLP method is as

presented in Fig. 3(b). In Phase II, the switching times of discrete control input are

[0.323, 0.713]T , and the terminal time t f is 0.7813 seconds. The control trajectory

also agrees with that obtained by Wu (1999).

6.2 F-8 fighter aircraft

The F-8 fighter aircraft has been considered in several pioneering studies (Kaya and

Noakes, 1996; Banks and Mhana, 1992; Simakov et al., 2002), for example and has

become a standard for testing various optimal control strategies. A nonlinear dynamic

model of the F-8 fighter aircraft is considered below. The model is represented in state
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Phase I (Tf = 5.74173)

Phase II (Tf = 5.74216)

Fig. 4 Control trajectories for the F-8 fighter aircraft
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space by the following differential equations.

ẋ1 = −0.877x1 + x3 − 0.088x1x3 + 0.47x2
1 − 0.019x2

2 − x2
1 x3 + 3.846x3

1

−0.215u + 0.28x2
1 u − 0.47x1u2 + 0.63u3, (11)

Fig. 5 Trajectories of the states

and control input for the F-8

fighter aircraft
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Table 1 Results of various methods for the F-8 fight aircraft problem

Accuracy of

Method t f Switching times terminal constraints

STC (Kaya and Noakes, 1996) 6.3867 0.0761, 5.4672, 5.8241, 6.3867 ≤ 10−5

CPET (Lee et al., 1999) 6.0350 2.188, 2.352, 5.233, 5.563 ≤ 10−10

Two-Phase Scheme 5.7422 0.098, 2.027, 2.199, 4.944, 5.265 ≤ 10−10

ẋ2 = x3, (12)

ẋ3 = −4.208x1 − 0.396x3 − 0.47x2
1 − 3.564x3

1 − 20.967u

+6.265x2
1 u + 46x1u2 + 61.4u3, (13)

where x1 is the angle of attack in radians, x2 is the pitch angle, x3 is the pitch rate and the

control input u represents the tail deflection angle. For convenience of comparison, the

standard settings (Kaya and Noakes, 1996; Lee et al., 1997) are used. The control |u| ≤
0.05236 must be found that brings the system from its initial state

[
26.7π/180, 0, 0

]T

to the final state
[

0, 0, 0
]T

in minimum time.

When the Two-Phase Scheme is applied, as described in Section 5, the switch-

ing times computed in Phase I are 0.115, 2.067, 2.239, 4.995, and 5.282, and

the terminal time is t f = 5.7417. These switching data are used to set the de-

sign variables and their corresponding bounds, and then the problem is solved by

the mixed integer NLP method. Finally, the switching times for the discrete con-

trol input are 0.098, 2.027, 2.199, 4.944, and 5.265, and the terminal time t f is

5.74216. Figure 4 shows the comparison of the controls between Phase I and Phase

II, while Fig. 5 shows the trajectories of the states and the control of Phase I

and Phase II. This example is also solved by Kaya and Noakes (1996 using the

switching time computation method and by Lee et al. (1997) using the Control

Parameterization Enhancing Transform method. Table 1 shows the terminal time

t f , switching times and the accuracy of terminal constraints computed by vari-

ous methods for this problem. According to the numerical results, the Two-Phase

Scheme provides a better solution, and the accuracy of the terminal constraints is

acceptable.

7 Conclusion

This paper discusses a method for solving time-optimal control problems with discrete-

type control inputs that include the bang-bang type most commonly encountered when

the control is bounded. This two-phase computational scheme for finding a discrete

optimal control for time-optimal control problems is novel because its discrete control

can be more easily implemented than continuous control in practical applications. A

simple example, a third-order system, is presented to demonstrate the usage of the

proposed scheme. An F-8 fighter aircraft control problem is considered and solved

by application of the proposed scheme. Numerical results are obtained efficiently and
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accurately. The results reveal that the Two-Phase Scheme constitutes a viable method

for solving time-optimal control problems with discrete-valued controls.
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