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Abstract- This paper presents an achievable codeword weight
lower bound associated with weight-2 input sequences of a class
of turbo codes. The class of codes has an interleaver structure that
encompasses most practical interleavers used by turbo codes. It
partitions the incoming information sequence into blocks of the
same size and the interleaver performs intra-block and inter-
block permutations. Both pre- and post-permuted blocks are
individually tail-biting encoded. Following [4], we refer to the
codeword associated with a weight-2 input sequence as a weight-
2 error event. We apply a special permutation function that
incorporates the separate encoding concept to derive a lower
bound of the weight-2 error event. This lower bound reveals
that (i) a larger component code period gives better distance for
the weight-2 error events, and (ii) separate encoding results in
improved distance if the block length is suitably chosen and is
large enough.

I. INTRODUCTION

Consider a reasonable good interleaver of size N. Partition-
ing an N-bit group into L = FN W] or LN Wj -bit blocks,
we find the interleaving rule renders an inter-block permutation
structure like that shown in Fig. 1. Such a structure can be
found in other codes such as product codes (block turbo codes,
BTCs). Hence both classic convolutional turbo codes (CTCs)
and BTCs can be considered as subclasses of the recently
proposed inter-block permuted (IBP) turbo codes (IBPTCs) [3]
whose interleaver performs consecutive intra- and then inter-
block permutations.

However, an interleaver used in a classic CTC, after the
above virtual partition, usually yields a non-regular local
interleaving structure, i.e., the interleaving relation between a
block and other blocks in the same group does not follow the
same permutation rule. In contrast, product codes and some
IBPTCs have much more regular local interleaving structures.
An appropriate regular local interleaving (and deinterleaving)
structure makes implementation easier and offers properties
that are useful for parallel decoding, e.g., (memory access)
contention-free and simpler routing requirement.

Another distinction between classic CTCs and other sub-
classes of IBPTCs is that, for a classic CTC with an in-
terleaving size of N bits (in L virtual blocks), encoding of
consecutive blocks is often continuous. On the other hand, a
product code arranges N information bits in a two dimensional
array and encodes each row and column separately (discon-
tinuously). The class of IBP turbo codes (IBPTCs) can also
encodes each block separately.

Between the two separate (discontinuous) encoding options,
the tail-biting encoding scheme, since it can do without tail-
bits, gives a higher spectral efficiency. Moreover, it was shown
that [1], [2], as a tail-biting CTC can eliminate some error
events across neighboring blocks, improved distance properties
can be obtained. Weiss et al. [2] proposed a product code
(without the check-on-check part) whose column and row
vectors are tail-biting encoded convolutional codewords and
derived some distance properties.
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Fig. 1. The inherent inter-block interleaving structure can be found in most
practical interleavers.

The codeword associated with a weight-2 input sequence
was called a weight-2 error event by Breiling [4] for an
obvious reason. Most CTC interleaver designs [6], [3] take
this class of error events into account, trying to maximize the
minimum weight of these error events. Breiling [4] suggested a
novel partition strategy to derive upper bounds for the weight-
2 error events. Although the upper bound is not as tight as
more general upper bounds [4], [5] which consider other error
events as well, weight-2 error event remains an important
design concern.
As mentioned before, a general IBP interleaver [3] encom-

passes many existing interleavers as special subclasses. It is
built on smaller interleavers and uses some re-permutation
across these interleavers to construct a larger interleaver. By
using a suitable IBP rule, an IBPTC can possess good distance
properties. It is therefore reasonable to conjecture that the dis-
tance spectrum of a CTC using an IBP interleaver and separate
encoding would offer some desired properties. The purpose of
this paper is to validate a part of this conjecture. We derive a
general lower bound for the weight-2 error events associated
with general IBP-interleaved CTCs. By analyzing the effects
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of selected particular system parameters on this general bound
we obtain some useful design guidelines. We use a simplified
partition rule presented in [4] and apply a regular permutation
function to derive the bound. We also examine some special
cases and evaluate distance lower bounds of the weight-2 error
events for different block lengths.

The rest paper is organized as follows. The next section
presents our derivation of the achievable weight-2 lower
bound. In section III, we examine some special codes, evaluate
the corresponding distance bounds and discuss the resulting
design constraints. The last section contains some concluding
remarks.

II. THE ACHIEVABLE WEIGHT-2 INPUT LOWER BOUND

For convenience of subsequent discourse, we need to define
some notations to begin with.

Definition 1:

lxly X mod Y. (1)
Definition 2:

IIXIIY = { X lx =XX0 (2)
Definition 3: scrbjLb(u) is the weight of a length-L tail-

biting convolutional code output for a input sequence u.
Definition 4:

W21(L) = min scrbL(u J),
i,j,ji-jj T,AO,|L-i+jlT,-

tU

The simplified partition rule for the
(k = 0) and post-permutation (k = 1)
is given by

F(k)
j{+ C: ° <ji < FTL '

i + Tcj : ° < j < LT }7

ith pre-permutation
sets F( , k = 0,1

0 < i < LI T
ILIT, < i < Tc

(5)

An exemplary partition of (5) is shown in Fig. 2 where the
integers represent the coordinates of either an pre-permutation
or post-permutation sequence. Each row represents an index
set Fk) and is of size 8 or 7.

Tc=

(3)

where u'j is a weight-2 input sequence with nonzero elements
at coordinates i and j.

Definition 5:

9 1 ) 2 i3 6 4 j5

1 1 41 2 3 4 56

211 2 O2 3 45" 6

31 i22 3 O 3 i4 15 ;

4 1i2 i3 4 4 G5 /

51 42 i3 44 15 O 5

41 32 3 445 6

7 642 j3 44 5 ;6 1

1 2 3 45 5

W1 (L) = min scrb (u '), (4)

where u' is a weight- I input sequence with the nonzero
element located at coordinate i.

scrbfL (uij) is lower-bounded by a i +H13 or a (L Tij) +
13 [4], where T, is the period of the convolutional code
used. Moreover scrbjLj(uij) > W2(L) if i - j Ir, 0
and L i -ijT, :y7 0; otherwise scrbfL (uij) = a

min (L}, -) + 13. Furthermore, if no puncturing
is applied, the linearity of the convolutional code implies
a (L-TC) + 3< W2(L) < (L+T+) + 1.

A. Partition rule

Systematic recursive convolutional code used in a CTC is
equivalent to an IIR scrambler whose period has a great impact
on the distance property of the associated CTC. A finite weight
codeword can be generated by a weight-k input sequence,
k > 2. If k = 2, the distance of these two nonzero coordinates
must be divisible by the period. Breiling [4] applies this
property to partition the coordinates of input sequences into
some equivalence classes in which any two coordinates is
associated with a finite weight codeword. He concluded that
a larger component period implies a smaller probability in
generating low weight codewords.

Fig. 2. Partition of equivalence classes; L = 66, T, = 9.

B. Main Theorem

In this section we establish our main result whose proof
needs the following two lemmas.
Lemma 1: For each integer set Sx = {f0, 1, 2, ..., X -1},

there exists a permutation rule Hx such that minj#AjESx(iS-

jix+w1-x(i) -wx(j)Ix, li-jX +x-1FX(i) w-X(j)lX,X-
xi- Ix + FX(i) - Fx(j) x, 2X -ji - jlx - I7FX(i) -

x(j)|x) > r + 1, where r = Xa -1. A permutation
satisfying these constraints is

qilq
x

gcd(X, r) (6)

Proof: It is obvious that the inequality holds if i -jIx >
r and X -i -jlx > r. Hence we consider i -jlx < r or
X -i -jlx < r only.
When i > j and 0 < i-j < r, gcd(X, r) < r and r =

X-] 1< X implies that q = X/gcd(X, r) > x >
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X > r while 0 < i-j < r leads to

i -j+ jlq - lilq
q

{ i-j+lq+j-ilq
q

if ljlq
i-j- li-jl

q
if ljlq

i-j+q+(j -i)
q

- lilq > 0,
1-j-(i-j)

q
- lilq < 0-

It follows that

7iX(t)- lx(i)lx

q x q

r(i -j)+i -ij + ljlq -liq
qan

and

Proof: We place the elements in the jth n-element
set in a cycle by j + i (NI + N2 -L22]), where 0 <
i < n and 0 < j < N1. The elements of the
jth (n- 1)-element set are placed at positions indexed

( [iN2+±j-N] (N1+Al)+N1+ iN2 N1+jl,1,

0 ~(7) by NlN2n+Al-+LNN2+JMN iN2 +-i <Al3,
N|N|2 In + 13 + - 3(N Al+) +N

+ iN2 + j-N1 - 3A3M2, otherwise,
whereO<i<n- 1,N <j<Ni+N2,Ml =N2 L-N2],
M2 = N2 N2] and M3 = Ml N2 n It is easy to see
that such an arrangement achieve the bounds and no larger
minimum separation can be found. U

lxIx

> r

X 7Fj-(i) wx(ji)x

X- ri+ q rj + V x x
q -x q=

X r(r ) +lIX X r2 +r

> r2+1-r2+r- = r.

Therefore, minj,j,s.(i j+ 7FX(i) -wx(j) Ix i
1FX(i) -wx(j)lx) > r + 1.
This permutation function is q-invariant in that

7Fx(li - qlx) - wx(Ij - qlx)lx

N9+

=9j+X

(i q) + (i-q)-i-qlq
q

-r(j q) + (ji-q)- Ij- qlq
q

= ri +
t iq rj.+ xl x

q x q x

7Fx(i) - wx(j)Ix
We now show that both the remaining cases can be converted
into the above case.

(A) For the case i < j andO < j-i < r, we have li-jlx
i + X -jlx = i + X -mq -(j-mq)lx = i'- j'l and

w-Fx(Ii+X-mqIx)--wx(jr-mqIx)Ix = 7FX(i)- wx(j)|x,
X >i' = i + X -mqlx > j' = Ij-mqlx >O for some

m > 0.

(B)Ifi>j,X -i -jlx = X+j -ilx = X+j-
mq-(i-mq)l = lj'-i'l and 7-Fx(1i-mqIx)--wx(IX+j-
mqlx)Ix = 17x (i) - wrx(j)Ix, x > V = Ii + X >mqx>
j' = Ij-mqlx >O for some m > 0.

Lemma 2: Given N1 distinct n-element sets and N2 distinct
(n -)-element sets, where n > 1. If we arrange all elements
in these N1 + N2 sets into a cycle, the minimum separation
among elements in the same set is lower-bounded by N1 +
N2 -FN21 for the n-element sets, and N1 + N2 -L]N2 for
the (n -1)-element sets. Moreover, there are at most IN2 In
element pairs with separation N1 + N2 -F N2] for these n-

element sets.

n= 8

/0 9 1 82 63 44 25 0 \

1 1 0 1 92 73 54 35-5 1'.

2 1 12 02 83 64 45 2>-

G1 5N2= 6 \8111z=-==~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~1
4 '41=N2=

Fig. 3. Set mapping; N1 = 3, N2 = 6 and n 8.

Fig. 3 shows a exemplary placement for N1 3, N2 = 6
and n = 8. The minimum septation in these N1 8-element and
N2 7-element sets is at least 7 and 8, respectively. Moreover,
there are only IN2 8 = 6 element pair with separation 7 for
these 8 element sets.

Since the scrambler output weight of the weight-2 error
events is lower-bounded by the difference of an (i, j) coordi-
nate pair, the weight of a tail-biting encoded CTC is lower-
bounded by

min (2 + W(i, j, L) + W(w(i), w(j), L))
l,j

where wF is a length L permutation function and

{ W(iL+ othei-rT =0
W(i, j,L) = aLc-ii + 13 IL|- Ii-jIIT,

W2 (L) , otherwise

(8)

O (9)

Based on the above results, we can prove
Theorem 1: There exists a separate tail-biting encoded CTC

of block length L whose minimum codeword weight W2,min
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for weight-2 input sequences is lower-bounded by

W2,min > 2 + 2p3 + min (W2 (L) + aDmin 13,

aTDmin min ( Nmax ]2 N2 IN,,,) +
oDmax max ( Nmax] -2IN22 IN ))), (10)

where 2W14(L) > 2 + CTDmin + W2(L) + /3, Dmin dT,-UN 1 Dmax = dTs - LN N2 = dTs L dN dax Nil'ax l d dT,'
Nmax = d2T% 1, d=gcd(|L T,7Tc) and T, is the number of
blocks involved in encoding.

Proof: Tail-biting encoding results in low-weight code-
words whose nonzero coordinates are confined to the tail
and the head parts of two consecutive sets. This hap-
pens if one nonzero coordinate of a weight-2 input se-
quence belongs to Fk) and the other one belongs to

(li+T-ILITk) IT, One can then place the set F(k)
-(k)right after the set Fi so that they form a cycle. If

gcd(IL IT, Tc) = d, we have d cycles with the mth cycle being
(k) _ I{(k) F(k) (k)F~m - lFm7 lrlm+T,-ILITJIT,' |m+2(T,-ILIT9)IT,'
|(k -1)(TC LT)}, where 0< m < d.

(k)Mapping the coordinates in FmV sequentially to the integers
in the interval [0 m 1 = i], we obtain the set

SlF(k)l = {0,1,2,. - 1}. We further partition SjF(k)
into dT, sets {Si}, where ISi Nmax [d2ii 1 for

0 < i < N dT and I,Si Nmin LdiTJ for
dT - N2 = dT < i < dT,. According to Lemma 2,
we can maximize the minimum separation of Si to Dmin =
dT _ [N>] and Dmax= dTi, NL ] for 0 < i < N
and dlS N2 < i < dT, respectively.
We can construct an IBP rule such that p C Si and q C Si

are permuted to the same block iff Ii -jIT = 0. Since all
blocks can apply the same partition rule for permutation, such
an IBP rule does exist.

Incorporating separate encoding results in that two indexes
in two different blocks produce a codeword weight larger than
the bound, either the pre-permuted or the post-permuted pair
makes the codeword weight 2W1(L). Therefore we consider
the case two indexes are permuted to the same block.

There are d sets Si and d sets SI (2) All Si C S F(1)l
can be permuted to different SIF(2) If two indexes are in two
different Si's, either the pre-permuted or the post-permuted
pair makes the codeword weight > W2(L), which is larger
than the bound. Therefore we only have to consider the case
when a coordinate pair belongs to the same Si before and after
permutation.

According to Lemma 1, the separation sum of pre-
permutation and post-permutation for Si with Nmax and Nmin
elements can be F Nmax] and F/Nmin] respectively. Ac-
cording to Lemma 2, the minimum separation of two adjacent
indexes is Dmin and there are at most IN21Nmax pairs with
such a separation. The minimum codeword weight is thus

lower-bounded by 2 + avDmin min(2 N2 N,, F Nmax]) +
avDmax max(FNm-ax] -2 N2 Nm,as x

0) + 2/3.
Finally, we notice that small weight error event occurs when

the two coordinate pair (i,j) C Fm is such that i -j 4# 0
and IL -i -j IT 7y 0 and the separation of the permuted pair
(w-F l(i), (jFl(j)) is greater than TcDmin. The correspond-
ing codeword weight will be at least 2 + W2 (L) + aDmmi + /3.
Therefore, we have

wt(X'j) > 2 + 2/3+ min (W2(L) + CaDmin -3,

ovDmin min (2 N2 Nmas,,
oaDmax max ( Nmax

[1NI,])+
-2Nf2 ma7)) (1 1)

U
If L> (TC+ 2d)M, we have

TlcDmin min(2 N2 N Nm,,
+TcDmax max(V_Nmax 2 N2 Nmasc7,U)

< TcdTJs dJ

< Md( dlT +1+1)

< lsL + d2M2 + dM
< + (L-2dlili)L+d2M2+dM
< V'L_ 2dML+d2M2+dM = L, (12)

where M = TlT,. Then

aDmin min (2 N2 1N|, Nmax])

+ oDmaxmax VNmax 2N21N, °) + 13

<
aL

+1 < W2(L) + a,Tc c
(13)

if no puncturing is applied for the scrambler.
Corollary 1: If the block length L is greater than (TC +

2d)M and no puncturing is applied, then there exists a separate
encoding tail-biting turbo code whose minimum codeword
weight W2,min for weight-2 input sequences is lower-bounded
by

W2,min > 2 + aDDmin min (2 N2 IN,, [ Nmax

+ozDmax max N( max- 2 N2 N , 0) + 2/3, (14)

where 2W1(L) > 2 + avDmin + W2(L) + 13, M TcTs,
Dmin = dTS - [N2] Dmax =dT [J N2 =
dsl, d lldT ' Nmax =dTJ d=gcd(LIT,lTc) and Ti is
the number of blocks involved in encoding.

III. NUMERICAL EXAMPLES

We evaluates lower bounds for the scramblers given in Table
I. Figs. 4-6 plot the lower bounds for various interleaver length
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TABLE I

(a, B) FOR SOME SCRAMBLERS.

Scramblers TT (a, B)
1+D2

1+D+D2 3 (2, 2)
1 +D+D2 7 (4,2)

1+D +D4+D 15 (8,2)

T, L. Larger component code periods generally give better
bounds, as indicated by these curves.

Separate encoding improves the lower bounds for some
interleaver lengths but also imposes constraints on interleaver
lengths. These figures shows 10-50 weight improvements on
the lower bound for long interleaver lengths but W2(L) is
small for short interleaver lengths. Fig. 6 indicates that, the
lower bound is a decreasing function of T, for short block
length. Corollary ] says that W2 (L) is not a dominant factor of
the lower bound if the block length constraint L > (TC+2d)M
is satisfied.

Fig. 4 compares the upper bound [4] and the lower bound
we derived. The large "gap" between the upper and lower
bounds is due to the fact that [4] does not consider the weight-2
error events resulted from adjacent partitions but our derivation
does. The gap would be much reduced if these events were
taken into account.
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IV. CONCLUSION

This paper derives a general achievable codeword weight
lower bound for the weight-2 error events when a separate tail-
biting encoded CTC uses two identical scramblers (component
codes) and an IBP interleaver. The bound implies separate
encoding stands a better chance to obtain a weight-2 lower
bound larger than that of the conventional continuous encoding
scheme if the block length is not too small and is properly
chosen. The relationships between these two parameters and

the lower bound provide useful design guideline for the
800 separate tail-biting encoded CTCs.
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