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The Controllable Ball Joint Mechanism∗

Yung Cheng TUNG∗∗, Wei-Hua CHIENG∗∗ and ShrWai HO∗∗∗

A controllable ball joint mechanism with three rotational degrees of freedom is proposed
in this paper. The mechanism is composed of three bevel gears, one of which rotates with
respect to a fixed frame and the others rotate with respect to individual floating frames. The
output is the resultant motion of the differential motions by the motors that rotates the bevel
gears at the fixed frame and the floating frames. The mechanism is capable of a large rota-
tion, and the structure is potentially compact. The necessary inverse and forward kinematic
analyses as well as the derivation of kinematic singularity are provided according to the kine-
matical equivalent structure described in this paper.

Key Words: Bevel-Gear Mechanisms, Universal Joint, Motion Simulator

1. Introduction

Bevel-gear mechanisms have been shown to have the
following advantages: (1) existing closed form solution
for inverse kinematics, (2) workspace is easy to be deter-
mined, (3) the actuators can be mounted remotely from
the center. During past two decades, several studies have
been done on these bevel-gear type mechanisms. Chang
and Tsai (1989)(1) proposed the first systematic procedure
for structural synthesis of spherical mechanisms. The two-
DOF geared kinematic chains were generated, and then a
ground link was added in series with the input links coax-
ially to form a three-DOF planetary gear train. Belfiore
and Tsai (1991)(2) introduced the concept to develop a new
methodology for structural synthesis of three and four-
DOF gear train mechanisms. This methodology is based
on the partial separation between the kinematic structure
and function in order to reduce the dimension of the prob-
lem and make any combinational algorithm easy to imple-
ment. The graph representation presented by Buchshaum
and Freudenstein (1970)(3) often suffers from the prob-
lem of pseudo isomorphic graphs (Lin and Tsai, 1989(4);
Freudenstein, 1971(5)).

The analysis of bevel-gear mechanisms is relatively
complex, due to the fact that the carriers and planet
gears may possess simultaneous angular velocities about
non-parallel axes. The conventional tabular or analyti-
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cal method, which concentrates on planar epicyclic gear
trains, is no longer applicable. To overcome this diffi-
culty, Yang and Freudenstein (1973)(6) applied the dual
relative velocity and dual matrix of transformation for the
analysis of epicyclic bevel-gear trains and hypoid gears.
Freudenstein et al. (1984)(7) suggested using the conven-
tional method in conjunction with the Rodrigues equa-
tion. Hsu and Lam (1992)(8) has shown an efficient method
for developing three-DOF bevel-gear mechanisms synthe-
sized from geared kinematic chains.

This paper presents an innovative mechanism called
the controllable ball joint mechanism which is design for
the use of a three-DOF motion simulator. This mechan-
ism mainly integrates the universal joint with the differ-
ential bevel gear mechanism. The universal joint is lo-
cated at the center of the mechanism which minimizes the
space requirement of the motion simulator. The control-
lable ball joint mechanism employs coaxial input axles,
which requires no complex electrical connector such as
rotary joints for the electrical wiring. The key feature for
this mechanism is that it employs a simple structure, how-
ever, with the capability of high payload.

2. Nomenclatures

O : center point of universal joint
i, j, k : three unit vectors of universal joint that passes

through point O
θ1, θ2, θ3 : input angles driven by motors 1, 2, and 3 re-

spectively
j4 : unit vectors along axis 4
β4 : rotation angle along axis 4 relative to j
θ5 : rotation angle along axis 4 relative to k5

k5 : unit vectors along axis 5
β6 : rotation angle along axis 4 relative to j4

JSME International Journal Series C, Vol. 49, No. 4, 2006



1152

A1, A2, A3, A4 : pivots of universal revolute joints which
points toward O

C2 : loci of pivots A2

C3 : loci of pivots A3

u1 : normalized vector along pivot A2

u4 : normalized vector along pivot A3

b : unit vector perpendiculars to both the input axis
and the output axis

b′ : unit vector perpendiculars to both axis b and w4o

u1-u1-w1 : coordinate frame which is rotated about axis
w1o (= w1) by an angle of φ1 from coordinate
frame u1o-u1o-w1o

u4-u4-w4 : coordinate frame which is rotated about axis
w4o (= w4) by an angle of φ2 from coordinate
frame u4o-u4o-w4o

ϕ : misalign angle of the universal joint
α1 : intersection angle between axis b and axis u1

α2 : intersection angle between axis b′ and axis u4
φ1 : intersection angle between u1 and u1o

φ2 : intersection angle between u4 and u4o

G1, G2 : Gear contact point (mesh point)

3. Kinematic Structure

The controllable ball joint mechanism consists of
seven links, six turning pairs, one universal joint, and two
bevel gear pairs. There are three independent axes of rota-
tion. The three axes of rotation intersect at the center point
O. The end effector is connected to one of the input links
through a universal joint.

The inputs are θ1, θ2, θ3 at link 1, 2, and 3 respec-
tively. Link 2 rotates with respect to link 1 about the k1-
axis. The pitch motion is accomplished by rotating link 3
with respect to link 2 about the j4-axis. The roll motion is
obtained by rotating axis 4 with respect to link 3 about the
k5-axis. Therefore, continuously unobstructed rotations
about the three joint axes can be achieved. Figure 1 shows
the schematic diagram of the ball joint mechanism.

Figure 2 shows the graph representation of control-
lable ball joint mechanism. It is composed of nodes, which
represent joints, and edges, which represent links. To dis-
tinguish the differences between pair connections, gear
pairs are denoted by dotted lines, turning pairs (revolute
joints) are denoted by simple lines, and the simple lines
are labeled according to their axis locations in space. The
vertex denoting the fixed link is labeled by two small con-
centric circles. The links and corresponding vertices are
numbered from 0 to 6. The two gear pairs are 3-4 and 4-5.
The turning pairs are 0-1, 1-2, 1-3, 2-4, 4-6, and 5-6. The
universal joint is inserted between 1 and 5.

The number of degrees of freedom of a mechanism
is the minimum number of coordinates necessary to de-
scribe its configuration and motion. The number of de-
grees of freedom of a mechanism, for instance F, may be
determined by the Gruebler’s mobility equation:

Fig. 1 Schematic diagram of the controllable ball joint
mechanism

Fig. 2 Graph representation

F =λ(l− j−1)+
∑

f j (1)

The controllable ball joint mechanism in Fig. 2 consists of
seven links, six turning pairs, a universal joint, and two
bevel gear pairs. Substituting l = 7, j = 9,

∑
f j = 12, and

λ = 3 which describes the spherical mechanism, Eq. (1)
yields that F = 3. Therefore, the controllable ball joint
mechanism is a three-degree-of-freedom spherical mech-
anism.

4. Hybrid of Serial-Link and Parallel Manipulators

The serial-link manipulator, such as industrial robots,
is used commonly in the automation industry when the
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parallel manipulator, such as Steward Platform, is often
applied in the motion simulator applications which require
the high payload. Differing from the serial-link manipu-
lator the controllable ball joint mechanism employs two
transmission paths, one through the bevel gear pairs and
the other through the universal joint, from the input link
to the output end effector. On the other hand, the con-
trollable ball joint mechanism isn’t a fully parallel ma-
nipulator which typically consists of extensible legs in a
number that equals to the number of degrees of freedom
of the mechanism. The controllable ball joint mechanism
is a hybrid of serial-link and parallel manipulators, which
may be structurally stronger than the serial-link manipula-
tor however weaker than a fully parallel manipulator. The
fully parallel manipulator utilizes plural arms, which may
interfere one another, to support the end effector, hence it
trades off the dexterity and the workspace capacity with its
high payload. The controllable ball joint mechanism em-
bodies the merit of good dexterity and workspace capacity
from the serial-link manipulator and also the merit of high
payload from a parallel manipulator. The application of
the controllable ball joint mechanism on the motion simu-
lation to present better motion cues may be sound.

5. Universal Joint

The controllable ball joint mechanism introduced a
universal joint between the fixed frame and the end effec-
tor. The shaft misalignment angle between the input and
output axes of the universal joint is induced by the differ-
ential motion of the bevel gears. A general universal joint
diagram as shown in Fig. 3 is described by a spherical four
bar linkage. Four revolute joints located at position A1,
A2, A3, and A4. Joint axes of these revolute joints are
pointing toward the center of the sphere S. Three chords
A1A2, A2A3, A3A4 are then always lying on the surface
of the sphere. The loci of pivots A2 and A3 forms circu-
lar contours C2 and C3. The practical design of univer-
sal joint usually employs the redundancy, which replaces
chord A2A3 be a cross-pin structure. The coordinate frame
u1o-u1o-w1o is rotated to coordinate frame u1-u1-w1 about
axis w1o (=w1) by an angle of φ1, where u1 is the normal-
ized vector of

−−−→
OA2. The rotation transformation matrix is

a 3 by 3 matrix and defined that
1o
1R=R(w1o,φ1) (2)

The rotational matrix of equivalent axis is

R(w,φ)

=


wxwxvφ+cφ wxwyvφ−wz sφ wxwzvφ+wysφ
wxwyvφ+wz sφ wywyvφ+cφ wywzvφ−wxsφ
wxwzvφ−wysφ wywzvφ+wx sφ wzwzvφ+cφ



where cφ= cosφ, sφ= sinφ, and vφ=1−cosφ.
The misalign angle between the input axis and the

output axis is given as ϕ about the common axis b of the

two circular contours C2 and C3. The rotational transfor-
mation from the coordinate frame u1o-u1o-w1o to the coor-
dinate frame u4o-u4o-w4o is derived as

1o
4oR=R(b,ϕ) (3)

The coordinate frame u4o-u4o-w4o is rotated to coordinate
frame u4-u4-w4 about axis w4o (= w4) by an angle of φ2,
where u4 is the normalized vector of vector

−−−→
OA3. The ro-

tational transformation may be written as follows:
4o
4R=R(w4o,φ2) (4)

The intersection angle between axis b and axis u1 is de-
noted as α1. The unit vector b′ as shown in Fig. 3 is per-
pendicular to both axis b and w4o. It is obtained that

b′=w4o× b

The relation of input/output angle of the universal joint is
known (Fischer and Freudenstein, 1984(7)) as

α2 = tan−1

(
tanα1

cosϕ

)
(5)

The intersection angle α1 is

α1 = tan−1

(
(b×u1) ·w4o

b ·u1

)
(6)

where

u1=R(w1o,φ1)u1o

The intersection angle between u4 and u4o may be obtained
that

Fig. 3 Coordinate systems in a universal joint
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φ2= tan−1

(
(u4o× b′) ·w4o

u4o · b′
)
+α2 (7)

The resultant transformation from the coordinate frame
u1o-u1o-w1o to coordinate frame u4-u4-w4 is

1o
4R= 1o

4oR 4o
4R=R(b,ϕ)R(w4o,φ2)

6. Bevel-Gear Mechanism

Kinematic analysis of the ball joint mechanism can
be treated as a process to find out the corresponding out-
put orientation from the three input angles. By comparing
Fig. 3 with Fig. 1, the following equivalences are found:

φ2= θ5,

ϕ=β6,

w4o = k5,

u4o = j,

b= j4, and

u1= i1.

This allows the Eq. (7) to be rewritten as follows.

θ5= tan−1

(
j× (k5× j4) · k5

j · (k5× j4)

)
+ tan−1

(
( j4× i1) · k5

j4 · i1 cosβ6

)

(8)

According to definition, it is derived that

i1=R(k,θ1)i1o=R(k,θ1)i= [ cosθ1 sinθ1 0 ]T

(9)

j4=R(k,θ2)i4o =R(k,θ2) j= [ −sinθ2 cosθ2 0 ]T

(10)

k5 =R( j4,β6)k= [ cosθ2 sinβ6 sinθ2 sinβ6 cosβ6 ]T

(11)

thus,

j× (k5× j4) · k5= ( j · j4)− ( j · k5)( j4 · k5)= cosθ2

(12)

j · (k5× j4)= sinθ2 (13)

Substituting Eqs. (9) and (10) into (8), we obtain that

θ5= θ2+ tan−1

(
tanθ2− tanθ1

1+ tanθ2 tanθ1

)

= θ1

(14)

Considering the pure rolling condition at the contact point
G1 between two bevel gears indicated as link 4 and link 3,
we have the following relation at all instances.

β̇4r4+ θ̇2r3= θ̇3r3 (15)

By assuming that all angles are initially at their zero de-
gree of rotation, Eq. (12) may be further derived as

β4r4+θ2r3= θ3r3 (16)

Considering the pure rolling condition at the contact point
G2 between two epicyclic gears indicated as link 5 and
link 4, we have

−β6r4+θ5r5 =−β4r4+θ2r3 (17)

where r3, r4, and r5 denotes the radius of the gear on link
3, 4, and 5 respectively. From Eq. (16), we obtain that

β4 =
(θ3−θ2)r3

r4
(18)

Combining Eqs. (14), (17) and (18), we have

β6 =
θ5r5− (2θ2−θ3)r3

r4

=
θ1r5− (2θ2−θ3)r3

r4

(19)

As shown in Fig. 1, it is necessary to have r3 = r5 in
order to have a proper bevel gear mesh at gear 4. Let ξ =
r4/r5, Eq. (19) yields that

β6 =
θ3+θ1−2θ2

ξ
(20)

From Eqs. (14) and (20), it is obtained that
θ2
β6

θ5

=
1
ξ


0 ξ 0
1 −2 1
ξ 0 0



θ1
θ2
θ3

 (21)

7. Forward Kinematics of the Controllable Ball Joint
Mechanism

According to Fig. 1, the rotational transformation
from ground and link 5 can be derived as follows:

0
5T=R(k,θ2)R( j4,β6)R(k5,θ5−θ2)

=


a11 a12 a13

a21 a22 a23

a31 a32 a33


(22)

The entries of matrix 0
5T are enumerated and listed in Ap-

pendix I. The arguments θ1, β6, and (θ5− θ2), in Eq. (21)
are also known as Z-Y-Z Euler angles.

The output angle is defined in terms of X-Y-Z Euler
angles, the transformation is derived by initially rotates
about the X-axis by a roll angle γ, then rotates about the
Y-axis by a pitch angle β, and then rotate about the Z-axis
by a yaw angle α.

RXYZ =R(k,α)R( j,β)R(i,γ)

=


c11 c12 c13

c21 c22 c23

c31 c32 c33


= 0

5T

(23)

The entries of matrix RXYZ are enumerated and listed in
Appendix II. The following relations are then derived.

β= tan−1


−a31√
a2

11+a2
21


= tan−1

(
sinθ2 cosβ6 cos(θ1−θ2)+cosθ2 sin(θ1−θ2)
cosθ2 cosβ6 cos(θ1−θ2)−sinθ2 sin(θ1−θ2)

)

(24)
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α= tan−1

(
a21/cosβ
a11/cosβ

)

= tan−1

(
(sinθ2 cosβ6 cos(θ1−θ2)+cosθ2 sin(θ1−θ2))/cosβ
(cosθ2 cosβ6 cos(θ1−θ2)−sinθ2 sin(θ1−θ2))/cosβ

)

(25)

γ= tan−1

(
a32/cosβ
a33/cosβ

)

= tan−1

(−sin(θ1−θ2)sin((θ3+θ1−2θ2)/ξ)/cosβ
cos((θ3+θ1−2θ2)/ξ)/cosβ

)

(26)

where

β6=
θ1−2θ2+θ3

ξ

8. Inverse Kinematics of the Controllable Ball Joint
Mechanism

For solving the inverse kinematics problem, mapping
the Cartesian space to joint space. The X-Y-Z fixed angle
frame is introduced with angles of roll γ, pitch β, and yaw
α.

0
5T=R(k,θ2)R( j4,β6)R(k5,θ5−θ2)

=RXYZ
(27)

It is derived that

β6= tan−1



√
c2

13+c2
23

c33



= ξ tan−1



√
sin2βcos2γ+sin2γ

cosβcosγ



(28)

θ2= tan−1

(
c23/sinβ6

c13/sinβ6

)

= tan−1

(
(sinαsinβcosγ−cosαsinγ)/sinβ6

(cosαsinβcosγ+sinαsinγ)/sinβ6

)

(29)

θ1= tan−1

(
c32/sinβ6

c31/sinβ6

)
+θ2

= tan−1

(
cosβsinγ/sinβ6

−sinβ/sinβ6

)
+θ2

(30)

θ3=2θ2−θ1+β6 (31)

9. Kinematic Singularities

The inverse Jacobian matrix that correlates the out-
puts, i.e. the Cartesian space angles γ, β, and α, to the
inputs, i.e. the joint space angles θ1, θ2, and θ3 may be
derived as follows.

θ̇1
θ̇2
θ̇3

= Jq


α̇

β̇

γ̇

 (32)

where

(a) (c)

(b) (d)

Fig. 4 Kinematic singularity examples

Jq =


k11 k12 k13

k21 k22 k23

k31 k32 k33

 (33)

The entries of the inverse Jacobian matrix obtained from
Eqs. (28) to (31) are listed in Appendix III. A kinematic
singularity occurs when any entry of Jq goes to infinity.
It may be immediately seen from Appendix III that the
inverse Jacobian matrix is irrelevant with the yaw angle
α. Thus, different angles of yaw α can cause no singu-
larity. Different kinematic singularities may be verified
throughout all entries. As an example, it is obtained from
Appendix III that the singularity occurs at

sin2βcscγ+cos2βsinγ=0,

which yields that the singularity occurs at β = γ = 0◦ or
180◦.

Figure 4 (a) and (c) compares two different postures
can possibly obtained due to output Euler angles β = γ =
0◦. Starting from the posture in Fig. 4 (a), the end effector
can only bend forward to perform the output pitch velocity
β̇ as shown in Fig. 4 (c). On the other hand, starting from
the posture in Fig. 4 (b), the end effector will produce a
constrained output roll velocity that α̇ = µβ̇, where µ is a
constant depending on the posture, as shown in Fig. 4 (d).

10. Implementation and Result

Figure 5 demonstrates an actual implementation of
the controllable ball joint mechanism according to Fig. 1.
Three motors are used for driving each of the input links
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Fig. 5 Photo of the actual implementation

(a)

(b)

(c)

Fig. 6 Inverse kinematics: (a) given output Euler angles,
(b) calculated input angle, and (c) calculated input
velocity

via belts and pulleys. Subjected to the output Euler angles

that α=
π

10
cosωt, β= − π

12
cosωt+

π

50
and γ =

3π
10

cosωt

as shown in Fig. 6 (a), the input link rotation, according
to Eqs. (28) to (31), are calculated and shown in Fig. 6 (b)
and (c). Note that there is no singularity in the above tra-
jectory for it is confined that β>0.

Dexterity associated with the speed limitation of the

(a)

(b)

(c)

Fig. 7 Forward kinematics: (a) given input velocity, (b) the
corresponding input angle, and (c) calculated output
Euler angles

input can be considered as the ability of the manipulator
to arbitrarily drive its pose, or apply wrenches in arbitrary
directions. Figure 7 (a) shows the result when the motor
speed limitation 3 degree/sec is applied to the speed of the
input link in Fig. 6 (c). Comparing the input in Fig. 6 (a)
with the forward kinematics result in Fig. 7 (c), it is found
that the output yaw angle α is less sensitive to the speed
limitation when other Euler angles when other output an-
gles are distorted due to the same speed limitation.

11. Experiments

Referring to Fig. 5, the proposed controllable ball
joint mechanism employs three AC induction motors.
Each motor is coupled to a 1 : 50 gear head. The outputs
of the gear heads connected to the individual input axles
through timing belts. The specifications of the major com-
ponents are given as follows.

(a) Motor:
AC induction motor: 220 VAC, 60 Hz
Output power: 3.7 kW
Rated speed: 1 745 RPM
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Rated torque: 2.080 kg ·m
(b) Motor drive: ATV31HU40M3X, Telemecanique
(c) Gear head ratio: 1 : 50
(d) Timing belt pulley ratio: 1 : 1
(e) Bevel gears’ specification:

The pitch and roll workspace of the motion simulator is
limited by the maximum misalignment angle of the uni-
versal joint. The yaw workspace is ±180◦, i.e.

γmax=βmax =±30◦

αmax =±180◦

The digital controller mainly consists of an industrial PC
with Pentium IV CPU. The AD/DA card is used, for a low
cost concern, to directly convert the commands from the
controller to analog output and feed to the motor drive.

Figure 8 shows the result from the experiments. Fig-
ure 8 (a) shows a set of motion instructions recorded from
an interactive game. The motion instructions are given in
Euler angles as the desired output. These output Euler an-
gles are then fed to the digital controller for calculating
the input angle command according to Eqs. (28) to (31).
The input angle command of each input axle, as shown in
Fig. 8 (b), is converted to the analog voltage command and
fed to the motor drive. The actual input angle of each input
axle is obtained by recording the encoder positions, which
is shown in Fig. 8 (c). The difference between the input an-
gle command and actual input angle is resulted from the
servo response including the gain and phase correspond-
ing to different frequencies. Due to the presence of the
servo response, the actual Euler angle output, as shown
in Fig. 8 (d), is different from the desired Euler angle as
shown in Fig. 8 (a). The servo response determines the
trajectory following error of the output Euler angles of the
motion simulator. Adjustment of the servo response must
follow the optimization of certain motion performance in-
dex which is beyond the topic of this paper. In fact, the
proposed mechanism is verified useful to be a motion sim-
ulator.

12. Conclusion

An innovative design of three degrees-of-freedom
mechanism, called controllable ball joint mechanism,
combining the conventional robot wrist and a universal
joint is presented in this paper. Closed-form solutions
for the inverse and forward kinematics of this mechanism
are also derived. According to the kinematic singularity
analysis, it is found that the mechanism is singular at its
neutral position of roll and pitch angles. Hence either the

(a)

(b)

(c)

(d)

Fig. 8 Experimental data: (a) given output Euler angles of
the upper platform, (b) input angle of each input axle
calculated by controller, (c) actual input angle of each
input axle read from encoders, and (d) actual output
Euler angles derived from the actual input angles
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roll or the pitch angle of this mechanism must be confined
away from zero in order to avoid the kinematic singularity.
Such mechanism is potentially useful to the applications
of three degrees-of-freedom motion simulator. It can be
implemented, with a real-time controller, as a personal en-
tertainment platform or vehicle simulator to disorient the
pilot or passenger into an exciting virtual world.
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Appendix I

Entries of matrix 0
5T

a11= cosθ2 cosβ6 cos(θ5−θ2)−sinθ2 sin(θ5−θ2)

a12=−cosθ2 cosβ6 sin(θ5−θ2)−sinθ2 cos(θ5−θ2)

a13= cosθ2 sinβ6

a21= sinθ2 cosβ6 cos(θ5−θ2)+cosθ2 sin(θ5−θ2)

a22=−sinθ2 cosβ6 sin(θ5−θ2)+cosθ2 cos(θ5−θ2)

a23= sinθ2 sinβ6

a31=−sinβ6 cos(θ5−θ2)

a32=−sinβ6 sin(θ5−θ2)

a33= cosβ6

Appendix II

Entries of matrix RXYZ

c11= cosαcosβ

c12= cosαsinβsinγ−sinαcosγ

c13= cosαsinβcosγ+sinαsinγ

c21= sinαcosβ

c22= sinαsinβsinγ+cosαcosγ

c23= sinαsinβcosγ−cosαsinγ

c31=−sinβ

c32= cosβsinγ

c33= cosβcosγ

Appendix III

Entries of the Jacobian matrix in Eq. (33)

k11=
∂θ1
∂α
=−1

k12=
∂θ1
∂β

=
1

sin2βcscγ+cos2βsinγ
+

1
cosβcotγ−secβcscγsecγ

k13=
∂θ1
∂γ

=− 1
tanβsecγ+cotβsinγ tanγ

+
1

sinβcos2γ+cscβsin2γ

k21=
∂θ2
∂α
=−1

k22=
∂θ2
∂β
=

1
cosβcotγ−secβcscγsecγ

k23=
∂θ2
∂γ
=

1

sinβcos2γ+cscβsin2γ

k31=
∂θ3
∂α
=−2

k32=
∂θ3
∂β

=
1

sin2βcscγ+cos2βsinγ
− ξ sinβcosγ√

sin2β+cos2βsin2γ

− 2
cotγsinβtanβ+secβtanγ

k33=
∂θ3
∂γ

=

4

[
(cosβcosγ−2)sinβ+ξcosβcosγ

√
sin2β+cos2βsin2γ

]

cos(2β)+2cos2βcos(2γ)−3
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