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Abstract
Willink (2004 Metrologia 41 L5–6) is concerned that, in the society of
metrology, there is potential for confusion between coverage interval and
statistical coverage interval and he makes a precise interpretaion of these
two terms. We further clarify that the confidence of a coverage interval is
actually a statistical coverage interval.

Quite often a scientist is less interested in estimating
parameters and more concerned about gaining a notion about
where individual observations or measurements might fall.
There are two attempts to determine bounds from this notion.
The coverage interval (also called the reference interval in
clinical chemistry) refers to population-based reference values
obtained from a well-defined (normal or healthy people)
group of reference individuals. This is an interval with
two confidence limits that covers the individual values in
the population in some probabilistic sense. One method of
establishing a bound on single values in the population is to
determine a confidence interval for a fixed proportion of the
measurements. A common problem in clinical chemistry is
to determine the coverage interval for a particular test. This
reference interval represents a region of the distribution of
normal or healthy people. Once the reference interval is
determined, any patient with a suspected disease may have
the test and the result of the test can be compared with the
reference interval. A result outside the reference interval may
then be taken as confirmation of the disease.

The statistical coverage intervals are statistical intervals
that contain (or cover) at least a proportion p of a population
with a stated confidence 1−α. In recent years, the International
Organization for Standardization (ISO 3534-2 1993, ISO
16269-6 2005) and several expert scientists have advocated
calculation of the coverage interval and the statistical coverage
interval. Due to the potential for confusion between the
terms ‘coverage interval’ and ‘statistical coverage interval’,
Willink (2004) provided a clear interpretation of the roles that
these two terms play in the literature on metrology. The
interpretation has been taken further by Perruchet (2004)
in describing the differences between the terms ‘confidence
interval’, ‘coverage interval’ and ‘statistical coverage interval’.

In this paper, we want to clarify the relation between ‘coverage
interval’ and ‘statistical coverage interval’.

Suppose that a quantity (called a random variable in
statistics) X has a distribution with probability density function
f (x), and generally this function involves an unknown
parameter θ . A 100p% coverage interval for this quantity is
any interval (a, b) such that p = P(X ∈ (a, b)). On the other
hand, Wilks (1941) introduces a p-content statistical coverage
interval with confidence 1 −α as any random interval (T1, T2)

that satisfies

P {PX[(T1, T2)] � p} � 1 − α. (1)

There is a vast literature (see, for example, Wald (1943),
Paulson (1943), Guttman (1970) and, for a recent review,
Patel (1986)) that introduces techniques in constructing
a p-content statistical coverage interval with confidence
1 − α. However, this variety of techniques generally involves
approximation or simulation for the construction of a
statistical coverage interval. Thus, the connection between
a statistical coverage interval and a coverage interval has been
unclear.

Goodman and Madansky (1962) implicitly applied the
concept that a 100(1 − α)% confidence interval (T1, T2) of
a 100p% coverage interval (a, b) in the sense that

P {T1 � a < b � T2} = 1 − α

is a p-content statistical coverage interval with confidence
1 − α. Here we formally prove that any statistical coverage
interval is a confidence interval of a coverage interval with
some confidence. Suppose that (a, b) is a 100p% coverage
interval and we have a sample X1, ..., Xn from a distribution
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with distribution FX. Let (T1, T2) be a 100(1−α)% confidence
interval of (a, b). The following statements will help us clarify
some relations between the coverage interval and the statistical
coverage interval:

P {PX[(T1, T2)] � p} (2)

= P {FX(T2) − FX(T1) � p}
= P {FX(T2) − FX(T1) � FX(b) − FX(a)}
� P {FX(T1) � FX(a) < FX(b) � FX(T2)}
� P {T1 � a < b � T2}

as FX is non-decreasing. ��
Points of interest include the following:

(a) If we choose a random interval (T1, T2) that is a
100(1 − α)% confidence interval of (a, b), this indicates
that P {PX[(T1, T2)] � p} � 1 − α such that
(T1, T2) is a p-content statistical coverage interval at
confidence 1 − α.

(b) Suppose that (T1, T2) is only a random interval. Then it is
still a p-content statistical coverage interval at confidence
1 − α = P {T1 � a < b � T2}. The fact that every
random interval is also a statistical coverage interval is
noteworthy.

This connection contributes the construction of a statistical
coverage interval through the use of a coverage interval.
Choosing any a p-content coverage interval, then any random
interval which is a 100(1 − α)% confidence interval of it is a
p-content statistical coverage interval at confidence coefficient
1 − α.

Perhaps the most significant observation is that in (a).
Suppose we have a quantity X that has a normal distribution
N(µ, σ 2) where σ is a known constant. With a sample
X1, ..., Xn, let X̂ = 1

n
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The random interval of (4) is a γ -content statistical coverage
interval at confidence 1 − α because it is a 100(1 − α)%
confidence interval of a p coverage interval.

We further assume that both parameters µ and σ are
unknown. Wald and Wolfowitz (1946) first introduced the
normal tolerance interval of the form

(X̄ − kS, X̄ + kS). (5)

As noted in Guttman (1970), it is exceedingly complicated to
derive k to meet the requirement (1) for preassigned p and
1 − α. This leads to the approximation techniques by Wald
and Wolfowitz (1946), Weissberg and Beatty (1960) and Odeh
and Owen (1980). Let T = t (r, c) represent a random variable
with a non-central t distribution with r degrees of freedom
and a non-centrality parameter c. We also let tα(r, c) satisfy
α = P(T � tα(r, c)). We may show that(
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,
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is a 100(1 − α)% confidence interval for the coverage interval
of (3) and then it is also a p-content tolerance interval at
confidence 1−α. Moreover, from (2), an interval of (5) for any
k > 0 is also a p-content tolerance interval at some confidence.
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