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Measuring Process Performance Based

on Expected Loss with Asymmetric

Tolerances

W.L. PEARN,� Y.C. CHANG�� & CHIEN-WEI WU†

�Department of Industrial Engineering & Management, National Chiao Tung University,

Taiwan, ��Department of Industrial Engineering & Management, Ching Yun University, Taiwan,
†Department of Industrial Engineering and Systems Management, Feng Chia University, Taiwan

ABSTRACT By approaching capability from the point of view of process loss similar to Cpm,
Johnson (1992) provided the expected relative loss Le to consider the proximity of the target
value. Putting the loss in relative terms, a user needs only to specify the target and the distance
from the target at which the product would have zero worth to quantify the process loss. Tsui
(1997) expressed the index Le as Le ¼ Lot þ Lpe, which provides an uncontaminated separation
between information concerning the process relative off-target loss (Lot) and the process relative
inconsistency loss (Lpe). Unfortunately, the index Le inconsistently measures process capability in
many cases, particularly for processes with asymmetric tolerances, and thus reflects process
potential and performance inaccurately. In this paper, we consider a generalization, which we
refer to as L00e , to deal with processes with asymmetric tolerances. The generalization is shown to
be superior to the original index Le. In the cases of symmetric tolerances, the new generalization
of process loss indices L00e , L00ot and L00pe reduces to the original index Le, Lot, and Lpe, respectively.
We investigate the statistical properties of a natural estimator of L00e L00ot and L00pe when the
underlying process is normally distributed. We obtained the rth moment, expected value, and the
variance of the natural estimator L̂00e , L̂00ot, and L̂00pe. We also analyzed the bias and the mean
squared error in each case. The new generalization L00e measures process loss more accurately
than the original index Le.

KEY WORDS: Asymmetric tolerances, bias, mean squared error, process capability indices, process
loss indices

Introduction

In the last two decades, numerous process capability indices have been proposed to

provide a unitless measure on whether a process is capable of reproducing items

meeting the quality requirement preset by the product designer. Those indices are effective

tools for process capability analysis and quality assurance. The formulas of those indices

are easy to understand and straightforward to apply. Kane (1986) considered two basic

indices Cp and Cpk, and investigated some properties of their estimators. Boyles (1991)
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noted that Cpk is a yield-based index. Unfortunately, the designs of Cp and Cpk are inde-

pendent of the target value T, which can fail to account for process targeting (the ability to

cluster around the target).

For this reason, Chan et al. (1988) developed the index Cpm, which takes the process

targeting into consideration. We note that the index Cpm is not originally designed to

provide an exact measure on the number of non-conforming items. But, Cpm includes

the process departure (m� T)2 (rather than 6s alone) in the denominator of the definition

to reflect the degree of process targeting. Actually, the denominator of the index Cpm is the

expected quadratic loss, which is closely related to process departure. For on target pro-

cesses, the value of Cpm index reaches its maximum, implying that the process capability

runs under the desired condition. We know that Cpm is a larger-the-better index and hence,

small values of Cpm may be contributed by high expected loss resulting in poorer process

capability. Therefore, the index Cpm is considered to be more sensitive than Cp and Cpk in

reflecting process targeting. In the literature, another well-known larger-the-better index

Ca introduced by Pearn et al. (1998) describes process capability in terms of process

location only and provides a quantified measure of the amount that a process is off-

target. Pearn et al. (1992) investigated the index Cpmk, which takes into account the

process yield as well as the process loss. Those five well-known indices have been

defined explicitly as:

Cp ¼
USL� LSL

6s
, Ca ¼ 1�

jm� T j

d
(1)

C pk ¼ min
USL� m

3s
,
m� LSL

3s

� �
, C pm ¼

USL� LSL

6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 þ (m� T)2

p (2)

C pmk ¼ min
USL� m

3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 þ (m� T)2

p ,
m� LSL

3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 þ (m� T)2

p
( )

(3)

where m is the process mean, s is the process standard deviation, USL is the upper speci-

fication limit, LSL is the lower specification limit, T is the target value and d ¼ (USL –

LSL)/2 is half the length of the specification interval.

Loss Function

The quadratic loss function is considered to distinguish the products that fall inside the

specification limits by increasing the penalty as the departure from the target increases.

To provide information on the variation about the target value, several possibilities

have been tried. Hsiang & Taguchi (1985) first introduced the loss function approach to

quality improvement with focuses on the reduction of variation around the target value.

This concept pays attention to the product designer’s original intent; that is, critical

values at target lead to maximum product performance. In the development of this

concept, Hsiang & Taguchi noted that any value x of a particular product’s critical charac-

teristic X incurs some monetary loss, which is denoted by L(x), to the customer and/or

society as it moves away from the target value. This loss function is defined as

L(x) ¼ k(x� T)2 (4)

where k is some positive constant. Therefore, no loss is incurred when the characteristic is

‘perfect’ (i.e. x ¼ T ) and L(x) ¼ 0, and increasing losses are incurred as the measured

1106 W. L. Pearn et al.
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value moves away from the target. While the reasons for using a continuous loss function

such as the loss function (4) are understood, obtaining precise estimates for the parameter k

turns out to be uneasy.

Loss Index

The quadratic loss function itself does not provide any relationship between the specifi-

cation limits and the unknown parameter k. To address these issues, Johnson (1992) devel-

oped the relative expected loss Le for symmetric tolerances cases, which provides unitless

measures on process performance for industrial applications. Using Le for measuring

process performance, estimation for parameter k becomes unnecessary. Tsui (1997)

rewrote Le as Le ¼ Lot þ Lpe, providing an uncontaminated separation between infor-

mation concerning the relative off-target squared (Lot) and the potential relative expected

loss (Lpe). The index Le is defined as the ratio of the expected quadratic loss and the square

of half specification width:

Le ¼

ð1

�1

(x� T)2

d2

� �
dF(x) ¼

m� T

d

� �2

þ
s

d

� 	2

(5)

where once again m is the process mean, s is the process standard deviation, d ¼ (USL –

LSL)/2 is the half specification width, USL and LSL are the upper and the lower specifica-

tion limits, T is the target value, and F(x) is the cumulative distribution function of the

measured characteristic. If we define Lot ¼ ½(m� T)=d�2 and Lpe ¼ (s=d)2, then Le can

be expressed as Le ¼ Lot þ Lpe. We note that Lot measures the relative process departure,

which has been referred to as the process relative off-target loss index. On the other hand,

Lpe measures process variation relative to the specification tolerance, which has been

referred to as the process relative inconsistency loss index. The distributional and some

statistical properties of estimators of these process loss indices (Le, Lot, Lpe) have been

investigated in Pearn et al. (2004a).

We note that the mathematical relationship Le ¼ (3Cpm)�2, Lot ¼ (1� Ca)2, and

Lpe ¼ (3Cp)�2 can be established. The greatest advantage of using Le over Cpm is that

the estimator of the former has better statistical properties than that of the latter, as the

former does not involve a reciprocal transformation of process mean and variance.

Most research in quality assurance literature has a focus on cases in which the

manufacturing tolerance is symmetric. A process is said to have a symmetric tolerance

if the target value T is set to be the midpoint of the specification interval [LSL, USL],

i.e. T ¼ m ¼ (USLþ LSL)/2. Investigations on symmetric cases can be found in Kane

(1986), Chan et al. (1988), Choi & Owen (1990), Boyles (1991), Pearn et al. (1992,

2004b, 2005), Vännman (1995), Vännman & Kotz (1995), and Spiring (1997). Although

cases with symmetric tolerances are common in practical situations, cases with asym-

metric tolerances also may occur in the manufacturing industry.

From the customer’s point of view, asymmetric tolerances reflect that deviations from

the target are less tolerable in one direction than in the other (see Boyles, 1994, Vännman

(1997), and Wu & Tang (1998)). Usually they are not related to the shape of the supplier’s

process distribution. However, asymmetric tolerances can also arise in situations where

the tolerances are symmetric to begin with, but the process distribution is skewed or

follows a non-normal distribution. Dealing with this, the data have been transformed to

achieve approximate normality, as shown by Chou et al. (1998) who have used Johnson

curves to transform non-normal process data. Excluding Boyles (1994), Vännman

Measuring Process Performance 1107
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(1997), Pearn et al. (1998, 1999), and Chen et al. (1999), unfortunately, there has been

comparatively little research published on cases with asymmetric tolerances.

In the asymmetric tolerances situation, using Le would be risky and probably the results

obtained misleading. Consider the following example with asymmetric tolerance (LSL, T,

USL), where T ¼ (3USLþ LSL)/4 and s ¼ d=3. For processes A and B with mA ¼

T � d=2 ¼ m (the midpoint of the specification interval) and mB ¼ T þ d=2 ¼ USL.

Both processes have the index value Le ¼ 13=36 and equal degree of clustering around

the target, that is, jm� T j ¼ d=2 for both processes A and B. However, the expected pro-

portions non-conforming are approximately 0.27% for process A and 50% for process

B. Obviously, Le inconsistently measures process capability in this case, and is inappropri-

ate for those with asymmetric tolerances. This problem calls for a need to generalize the

index Le to cover situations with asymmetric tolerances so that appropriate use of the

process loss index can be continued.

A Generalization L00e

In this section, we consider a new generalization of Le to handle processes with asym-

metric tolerances. We refer to this generalization as L00e , which may be defined as follows:

L00e ¼
A

d�

� �2

þ
s

d�

� 	2

(6)

where A ¼ max {(m� T) � d=Du, (T � m) � d=Dl}, Du ¼ USL� T , Dl ¼ T � LSL,

d� ¼ min {Du, Dl}. We denoted (A=d�)2 by L00ot, (s=d�)2 by L00pe and hence

L00e ¼ L00ot þ L00pe. Obviously, if the tolerances are symmetric (T ¼ m), then A ¼ jm� Tj,

Du ¼ Dl ¼ d, and d� ¼ d ¼ (USL� LSL)=2. Accordingly, the new generalization

defined in equation (6) reduces to the original index Le as in equation (5).

In developing the new generalization, we have replaced the term jm� T j in Le by A.

This ensures that the new index obtains the minimal value at m ¼ T regardless of

whether the tolerances are symmetric or asymmetric. By substituting the half specification

width d by d�, L00e is sensitive to target value T and obtains a larger value when T is far from

m ¼ (USLþ LSL)/2. For processes with asymmetric tolerances, the corresponding loss

function is also asymmetric in T. We take into account the asymmetry of the loss function

by adding the factors (d=Du) and (� d=Dl) to (m� T) according to whether m is greater or

less than T. The factors (d=Du) and (� d=Dl) ensure that if processes A and B with mA .

T and mB , T satisfy (mA � T)=Du ¼ (T � mB)=Dl, then the index values given to A and

B are the same. In addition, it is easy to verify that if the process is on target, then L00e ¼

L00pe ¼ (s=d�)2 is the minimum value.

Comparisons of L00e and Le

To examine some basic difference between L00e and Le, in the following, the generalization

L00e is compared with the original index Le. We consider the following example with man-

ufacturing specifications LSL ¼ T – 1.50d, USL ¼ Tþ 0.50d. Table 1 displays the values

of Le, Lot, Lpe, L00e , L00ot, and L00pe for various values of m, with fixed s ¼ d=4. And these index

values of L00e , L00ot, Le, Lot, L00pe and Lpe versus m are plotted in Figure 1 (from bottom to top in

plot). We note that Le and Lot have the minimum value at the target. But their values at the

upper specification limit (say, when the expected proportion non-conforming is 50%) are

equal to those at the midpoint m. See Table 1, the values of Le and Lot are 0.313 and 0.250,

1108 W. L. Pearn et al.
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respectively, either for m ¼ USL ¼ T þ 0:5d or m ¼ m ¼ T � 0:5d. These indices, being

symmetric about the target value, do not take into account the location of the process

mean.

On the other hand, the new index L00e we proposed takes into account the location of the

process mean for asymmetric tolerances. Thus, given two processes A and B with mA . T

and mB , T satisfying (mA � T) ¼ (T � mB) and Dl . Du, B has significantly higher yield

Table 1. A comparison among Le, Lot, Lpe, L00e , L00ot, and L00pe for various values of m with fixed s ¼ d/4

m Le Lot Lpe L00e L00ot L00pe

LSL 2.313 2.250 0.063 4.063 4.000 0.25

T̃ 2 1.45d 2.165 2.103 0.063 3.800 3.738 0.25

T̃ 2 1.40d 2.023 1.960 0.063 3.547 3.484 0.25

T̃ 2 1.35d 1.885 1.823 0.063 3.303 3.240 0.25

T̃ 2 1.30d 1.753 1.690 0.063 3.067 3.004 0.25

T̃ 2 1.25d 1.625 1.563 0.063 2.840 2.778 0.25

T̃ 2 1.20d 1.503 1.440 0.063 2.623 2.560 0.25

T̃ 2 1.15d 1.385 1.323 0.063 2.414 2.351 0.25

T̃ 2 1.10d 1.273 1.210 0.063 2.214 2.151 0.25

T̃ 2 1.05d 1.165 1.103 0.063 2.023 1.960 0.25

T̃ 2 1.00d 1.063 1.000 0.063 1.840 1.778 0.25

T̃ 2 0.95d 0.965 0.903 0.063 1.667 1.604 0.25

T̃ 2 0.90d 0.872 0.810 0.063 1.503 1.440 0.25

T̃ 2 0.85d 0.785 0.722 0.063 1.347 1.284 0.25

T̃ 2 0.80d 0.702 0.640 0.063 1.200 1.138 0.25

T̃ 2 0.75d 0.625 0.562 0.063 1.063 1.000 0.25

T̃ 2 0.70d 0.552 0.490 0.063 0.934 0.871 0.25

T̃ 2 0.65d 0.485 0.422 0.063 0.814 0.751 0.25

T̃ 2 0.60d 0.422 0.360 0.063 0.702 0.640 0.25

T̃ 2 0.55d 0.365 0.302 0.063 0.600 0.538 0.25

T̃ 2 0.50d 0.313 0.250 0.063 0.507 0.444 0.25

T̃ 2 0.45d 0.265 0.203 0.063 0.423 0.360 0.25

T̃ 2 0.40d 0.223 0.160 0.063 0.347 0.284 0.25

T̃ 2 0.35d 0.185 0.123 0.063 0.280 0.218 0.25

T̃ 2 0.30d 0.153 0.090 0.063 0.223 0.160 0.25

T̃ 2 0.25d 0.125 0.063 0.063 0.174 0.111 0.25

T̃ 2 0.20d 0.103 0.040 0.063 0.134 0.071 0.25

T̃ 2 0.15d 0.085 0.023 0.063 0.103 0.040 0.25

T̃ 2 0.10d 0.073 0.010 0.063 0.080 0.018 0.25

T̃ 2 0.05d 0.065 0.003 0.063 0.067 0.004 0.25

T 0.063 0.000 0.063 0.063 0.000 0.25

Tþ 0.05d 0.065 0.003 0.063 0.103 0.040 0.25

Tþ 1.0d 0.073 0.010 0.063 0.223 0.160 0.25

Tþ 1.5d 0.085 0.023 0.063 0.423 0.360 0.25

Tþ 2.0d 0.103 0.040 0.063 0.703 0.640 0.25

Tþ 0.25d 0.125 0.063 0.063 1.063 1.000 0.25

Tþ 0.30d 0.153 0.090 0.063 1.503 1.440 0.25

Tþ 0.35d 0.185 0.123 0.063 2.023 1.960 0.25

Tþ 0.40d 0.223 0.160 0.063 2.623 2.560 0.25

Tþ 0.45d 0.265 0.203 0.063 3.303 3.240 0.25

USL 0.313 0.250 0.063 4.063 4.000 0.25

Measuring Process Performance 1109
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that A, so the index value of the new generalization L00e of A is greater than the index value

of B. We note that L00e is of the smaller-the-better type as one may expect, since process loss

is smaller the better. An illustrative example is L00e ¼ 4.063 for mA ¼ T þ 0:5d and

L00e ¼ 0.507 for mB ¼ T � 0:5d in Table 1. These two process means have equal departure

from the target, but B has significantly higher yield than A, so intuitively A should score

higher than B. Therefore, we conclude that the proposed new generalization L00e is superior

to the original index Le.

Estimation of the Process Loss Indices

We consider the case when the characteristic of the underlying process is normally distrib-

uted. Let X1,X2, . . . ,Xn be a random sample drawing from a normal distribution with mean

m and variance s2 measuring the characteristic under investigation.

Estimation of L00e

To estimate the new generalization of loss index L00e , we consider the natural estimator

which can be defined as follows:

L̂
00

e ¼
Â

d�

 !2

þ
Sn

d�

� �2

(7)

where Â ¼ max {( �X � T) � d=Du, (T � �X) � d=Dl}, the mean m is estimated by the sample

mean, �X ¼
Pn

i¼1 Xi=n, and the variance s2 by S2
n ¼

Pn
i¼1 (Xi � �X)2=n, the maximum like-

lihood estimator. For the case where the production tolerance is symmetric, Â may be sim-

plified as j �X � T j. Therefore, the estimator L̂00e reduces to L̂e ¼ (n�1d�2)
Pn

i¼1 (Xi � T)2,

the natural estimator of Le discuss by Johnson (1992). Consequently, we may view the

estimator L̂00e as a direct extension of L̂e. Now we focus on some statistical properties of

this natural estimator L̂00e .

Figure 1. Plots of L00e , L00ot, Le, Lot, L00pe and Lpe versus m (top to bottom in plot)

1110 W. L. Pearn et al.
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Proposition 1

Let X1,X2, . . . ,Xn be a random sample form N(m, s2), Y ¼ max2 {duZ, � dlZ}, where Z ¼ffiffiffi
n
p

( �X � T)=s is distributed as N(d, 1) and d ¼
ffiffiffi
n
p

(m� T)=s. Then Y has a weighted non-

central chi-square distribution with one degree of freedom (d.f.) and non-centrality par-

ameter d. The probability density function of Y is:

fY (y) ¼
e�l=2

2
ffiffiffiffi
p
p

X1
j¼0

(Pj)G
1þ j

2

� �
(d�2

u )fYj
(yu)þ (� 1)j(d�2

l )fYj
(yl)


 �
(8)

where Pj ¼ (
ffiffiffi
2
p

d)j=(j!), du ¼ d=Du,dl ¼ d=Dl, yu ¼ (y=d2
u), yl ¼ (y=d2

l ), l ¼ d2,

d ¼
ffiffiffi
n
p

(m� T)=s, and Yj is distributed as x2
1þj . For the case when du ¼ dl ¼ 1, this

formula reduces to the probability density function of a non-central chi-square distribution

with one d.f. and non-centrality parameter d.

Proof

Based on the notation of Proposition 1, the cumulative distribution function of Y is:

FY (y) ¼

ð ffiffi
y
p
=du

�
ffiffi
y
p
=dl

1ffiffiffiffiffiffi
2p
p exp �

(z� d)2

2

� �
dz (9)

Then

fY (y) ¼
e�l=2

2
ffiffiffiffi
p
p

(d�2
u )

2
ffiffiffiffiffi
yu
p e�yu=2ed

ffiffiffi
yu
p

þ
(d�2

l )

2
ffiffiffiffi
yl
p e�yl=2ed

ffiffiffi
yl
p

� �
(10)

Expanding ey in power series, we obtain

fY (y) ¼
e�l=2

2
ffiffiffiffi
p
p

X1
j¼0

(Pj)G
1þ j

2

� �
(d�2

u )fY j(yu)þ (� 1)j(d�2
l )fYj

(yl)

 �

(11)

This completes the proof.

Proposition 2
The rth moment about zero of L̂00e is:

E(L̂
00

e )r ¼
s2

nd�2

� �r
e�l=2

2
ffiffiffiffi
p
p

X1
j¼0

(Pj) � 2
r � G

nþ j

2
þ r

� �
�

Xr

i¼0

r

i

� �
G(½(1þ j)=2� þ i)

G(½(nþ j)=2� þ i)
� (d2

u � 1)i þ (� 1)j(d2
l � 1)i


 �( )
(12)

Proof

For the sake of deriving the rth moment of L̂00e , the following notation is introduced:

1. B ¼ s2=(nd�2),

2. K ¼ (nS2
n)=(s 2),

3. Y ¼ max2 {duZ, � dlZ}.
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Assume that the process is normally distributed with mean m and variance s2, then K is

distributed as x2
n�1, Y is distributed as a weighted non-central chi-square distribution with

one d.f. and non-centrality parameter d (see Proposition 1). In the notation the estimator L̂00e
can be represented as L̂00e ¼ B(Y þ K). Thus, the rth moment of L̂00e is

E(L̂00e )r ¼ (Br)E(Y þ K)r. Since Y is distributed as a weighted non-central chi-square dis-

tribution with one d.f. and non-centrality parameter d, we have

E(L̂
00

e )r ¼ (Br)
e�l=2

2
ffiffiffiffi
p
p

X1
j¼0

(Pj)G
1þ j

2

� �
{E½K þ (d2

u)Yj�
r
þ (� 1)jE½K þ (d2

l )Yj�
r} (13)

where Yj is distributed as x2
1þj. Let Hj ¼ Yj=(K þ Yj) and Wj ¼ K þ Yj. Under the assump-

tion of normality, Hj and Wj are independent random variables (see, for instance, Johnson

& Kotz, 1970), and Hj is distributed according to b((1þ j)=2, (n� 1)=2). Furthermore, Wj

has a chi-square distribution with (nþ j ) degrees of freedom. Therefore

E(K þ vYj)
r ¼ E(Wj)

rE(1þ (v� 1)Hj)
r (14)

E(Wj)
r ¼

2rG((nþ j)=2þ r)

G((nþ j)=2)
(15)

and

E(1þ (v� 1)Hj)
r ¼

Xr

i¼0

r

i

� �
(v� 1)i G(½(1þ j)=2� þ i)G((nþ 1)=2)

G(½(nþ j)=2� þ i)G((1þ j)=2)
(16)

Combining the results, we can obtain the rth moment of L̂00e as stated in Proposition 2. This

completes the proof.

From the derivations given in Propositions 1–2, we have the rth moment of L̂00e as:

E(L̂
00

e )r ¼
s2

nd�2

� �r
e�l=2

2
ffiffiffiffi
p
p

X1
j¼0

(Pj)2
rG

nþ j

2
þ r

� �

Xr

i¼0

r

i

� �
G(½(1þ j)=2� þ i)

G(½(nþ j)=2� þ i)
� (d2

u � 1)i þ (� 1)j(d2
l � 1)i


 �( )
(17)

where Pj ¼ (
ffiffiffi
2
p

d)j=(j!), du ¼ d=Du, dl ¼ d=Dl, yu ¼ (y=d2
u), yl ¼ (y=d2

l ), l ¼ d2, d ¼ffiffiffi
n
p

(m� T)=s . In particular, the expected value and the variance of L̂00e can be obtained
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as follows:

E(L̂00e ) ¼
(n� 1)s2

nd�2

� �
þ

s2

nd�2

� �
e�l=2

2
ffiffiffiffi
p
p

�
X1
j¼0

(Pj) � G
1þ j

2

� �
� (1þ j) � d2

u þ (� 1)jd2
l


 �
(18)

Var(L̂00e ) ¼
s4

n2d�4

� �
e�l=2

2
ffiffiffiffi
p
p

�
X1
j¼0

(Pj) � G
1þ j

2

� �
� (1þ j) � (3þ j) � d4

u þ (� 1)jd4
l


 �

�
s2

nd�2

� �
e�l=2

2
ffiffiffiffi
p
p

X1
j¼0

(Pj) � G
1þ j

2

� �
� (1þ j) � d2

u þ (� 1)jd2
l


 �( )2

þ
2(n� 1)s4

n2d�4

� �
(19)

We note that the estimator L̂00e is biased. The bias of L̂00e may be computed as

Bias(L̂00e ) ¼ E(L̂00e )� L00e , and the mean squared error, which is more relevant to the analysis

of process quality, is MSE(L̂00e ) ¼ Var(L̂00e )þ ½Bias(L̂00e )�2. To explore the behavior of the

estimator L̂00e , the bias and the mean squared error were calculated using computer software

for various values of a ¼ (m� T)=s, b ¼ s=d�, du, dl, and sample size n. For example,

Table 2 displays the bias and the MSE of L̂00e for a ¼ 21.0(0.5)1.0, b ¼ 1, du ¼ 5/4,

dl ¼ 5/6, and n ¼ 10(10)100.

The results in Table 2 indicate that as jaj increases, the bias and the mean squared error

also increase. Further, as the sample size increases, the bias and the mean squared error

decrease. The bias of L̂00e versus n are plotted in Figure 2 with a ¼ 21.0, 0, 1.0 (from

bottom to top in the plot). Figure 3 plots the MSE of L̂00e versus n with a ¼ 0, 21.0, 1.0

(from bottom to top in the plot).

Table 2. The Bias and MSE of L̂00e for a ¼ 21.0(0.5)1.0, b ¼ 1, du ¼ 5/4, dl ¼ 5/6, and

n ¼ 10(10)100

a ¼ 21.0 a ¼ 20.5 a ¼ 0 a ¼ 0.5 a ¼ 1.0

n Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE

10 20.0305 0.3835 20.0289 0.2384 0.0128 0.2113 0.0546 0.4772 0.0562 1.2086

20 20.0153 0.1941 20.0152 0.1217 0.0064 0.1028 0.0280 0.2302 0.0281 0.5963

30 20.0102 0.1299 20.0102 0.0817 0.0043 0.0679 0.0187 0.1516 0.0187 0.3957

40 20.0076 0.0976 20.0076 0.0615 0.0032 0.0507 0.0141 0.1130 0.0141 0.2961

50 20.0061 0.0782 20.0061 0.0493 0.0026 0.0405 0.0112 0.0901 0.0112 0.2366

60 20.0051 0.0652 20.0051 0.0411 0.0021 0.0336 0.0094 0.0749 0.0094 0.1970

70 20.0044 0.0559 20.0044 0.0353 0.0018 0.0288 0.0080 0.0641 0.0080 0.1687

80 20.0038 0.0490 20.0038 0.0309 0.0016 0.0252 0.0070 0.0560 0.0070 0.1476

90 20.0034 0.0435 20.0034 0.0275 0.0014 0.0224 0.0062 0.0497 0.0062 0.1311

100 20.0031 0.0392 20.0031 0.0247 0.0013 0.0201 0.0056 0.0447 0.0056 0.1180
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Table 3 displays the relative error and relative bias of L̂00e , defined as ½MSER(L̂00e )�1=2 ¼

{E½(L̂00e � L00e )=L00e �
2}1=2 and BiasR(L̂00e ) ¼ ½E(L̂00e )� L00e �=L

00
e , respectively, for

a ¼ 21.0(0.5)1.0, b ¼ 1, du ¼ 5/4, dl ¼ 5/6, and n ¼ 10(10)100. The square root of

the relative mean squared error is a direct measurement, which presents the expected rela-

tive error of the estimation from the true L00e . For example, with n ¼ 100, a ¼ 0.5 we have

Figure 2. Plots of bias of L̂00e versus n with a ¼ 21.0, 0, 1.0 (bottom to top in plot)

Figure 3. Plots of MSE of L̂00e versus n with a ¼ 0, 21.0, 1.0 (bottom to top in plot)
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½MSER(L̂00e)�1=2 ¼ 0.1521. Thus, for n ¼ 100, a ¼ 0.5 we expect that the average error of L̂00e
would be no greater than 15.21% of the true L00e . On the other hand, the relative bias BiasR(L̂00e)

is investigated to analyze the accuracy of the natural estimator L̂00e . For example, with

n ¼ 100, a ¼ 0.5 we has BiasR(L̂00e) ¼ 0.0040, that is, 0.4% relative bias for the true L00e .

From the case where the production tolerance is symmetric, since du ¼ dl ¼ 1, L̂00e is an

unbiased estimator of L00e , or equivalently, Bias(L̂00e ) ¼ 0. The unbiased estimator depends

only on the complete, sufficient statistic ( �X, S2
n) for (m, s2), by the Lehmann-Scheffé

Theorem we know that L̂00e is a uniformly minimum variance unbiased estimator

(UMVUE) of L00e . In addition, we have the rth moment of L̂00e for symmetric tolerance as

E(L̂00e )r ¼ E(L̂e)r ¼
s 2

nd2

� �rX1
j¼0

e�l=2(l=2) j

j!

� �
2rG((n=2)þ jþ r)

G((n=2)þ j)

� �
(20)

Estimation of L00ot

To estimate the new off-target loss index L00ot ¼ (A)2=(d�)2, we consider the natural estima-

tor L̂00ot ¼ (Â)2=(d�)2. The rth moment about zero for L̂00ot is:

E(L̂00ot)
r ¼

s2

nd�2

� �r
e�l=2

2
ffiffiffiffi
p
p

X1
j¼0

(Pj)2
rG

1þ j

2
þ r

� �
d2r

u þ (� 1)jd2r
l


 �
(21)

In particular, the expected value and the variance of L̂00ot can be obtained as follows:

E(L̂00ot) ¼
s2

nd�2

� �
e�l=2

2
ffiffiffiffi
p
p

X1
j¼0

(Pj) � G
1þ j

2

� �
� (1þ j) � d2

u þ (� 1)jd2
l


 �
(22)

Var(L̂00ot) ¼
s4

n2d�4

� �
e�l=2

2
ffiffiffiffi
p
p

X1
j¼0

(Pj) � G
1þ j

2

� �
� (1þ j) � (3þ j) � d4

u þ (� 1)jd4
l


 �

�
s2

nd�2

� �
e�l=2

2
ffiffiffiffi
p
p

X1
j¼0

(Pj) � G
1þ j

2

� �
� (1þ j) � d2

u þ (� 1) jd2
l


 �( )2

(23)

Table 3. The BiasR and
ffiffiffiffiffiffiffiffiffiffiffiffiffi
MSER

p
of L̂

00

e for a ¼ 21.0(0.5)1.0, b ¼ 1, du ¼ 5/4, dl ¼ 5/6, and

n ¼ 10(10)100

a ¼ 21.0 a ¼ 20.5 a ¼ 0 a ¼ 0.5 a ¼ 1.0

n BiasR

ffiffiffiffiffiffiffiffiffiffiffiffiffi
MSER

p
BiasR

ffiffiffiffiffiffiffiffiffiffiffiffiffi
MSER

p
BiasR

ffiffiffiffiffiffiffiffiffiffiffiffiffi
MSER

p
BiasR

ffiffiffiffiffiffiffiffiffiffiffiffiffi
MSER

p
BiasR

ffiffiffiffiffiffiffiffiffiffiffiffiffi
MSER

p

10 20.0180 0.3655 20.0247 0.4160 0.0128 0.4597 0.0393 0.4968 0.0219 0.4290

20 20.0090 0.2600 20.0129 0.2973 0.0064 0.3207 0.0201 0.3450 0.0110 0.3013

30 20.0060 0.2127 20.0087 0.2435 0.0043 0.2606 0.0135 0.2800 0.0073 0.2455

40 20.0045 0.1844 20.0065 0.2112 0.0032 0.2252 0.0101 0.2418 0.0055 0.2124

50 20.0036 0.1650 20.0052 0.1891 0.0026 0.2011 0.0081 0.2159 0.0044 0.1898

60 20.0030 0.1507 20.0043 0.1728 0.0021 0.1834 0.0067 0.1968 0.0037 0.1732

70 20.0026 0.1396 20.0037 0.1600 0.0018 0.1697 0.0058 0.1821 0.0031 0.1603

80 20.0023 0.1306 20.0033 0.1497 0.0016 0.1587 0.0051 0.1702 0.0027 0.1499

90 20.0020 0.1231 20.0029 0.1412 0.0014 0.1495 0.0045 0.1604 0.0024 0.1413

100 20.0018 0.1168 20.0026 0.1340 0.0013 0.1418 0.0040 0.1521 0.0022 0.1340
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We note that the estimator L̂00ot is biased. The bias of L̂00ot may be computed as

Bias(L̂00ot) ¼ E(L̂00ot)� L00ot, and the mean squared error, which is more relevant to the analy-

sis of process quality, is MSE(L̂00ot) ¼ Var(L̂00ot)þ ½Bias(L̂00ot)�
2 . Table 4 displays the bias and

the MSE of L̂00ot for a ¼ 21.0(0.5)1.0, b ¼ 1, du ¼ 5/4, dl ¼ 5/6, and n ¼ 10(10)50. The

results in Table 4 indicate that as jaj increases, the mean squared error also increases.

Further, as the sample size increases, the bias and the mean squared error decrease. The

bias of L̂00ot versus n are plotted in Figure 4 with a ¼ 21.0, 0, 1.0 (from bottom to top in

the plot). And Figure 5 plots the MSE of L̂00ot versus n with a ¼ 0, 21.0, 1.0 (from

bottom to top in the plot).

Table 5 displays the relative error and relative bias of L̂00ot, defined as ½MSER(L̂00ot)�
1=2
¼

{E½(L̂00ot � L00ot)=L
00
ot�

2}1=2 and BiasR(L̂00ot) ¼ ½E(L̂00ot)� L00ot�=L
00
ot, respectively, for

a ¼ 21.0(0.5)1.0, b ¼ 1, du ¼ 5/4, dl ¼ 5/6, and n ¼ 10(10)100. The square root of

the relative mean squared error is a direct measurement, which presents the expected rela-

tive error of the estimation from the true L00ot. For example, with n ¼ 100, a ¼ 0.5 we have

½MSER(L̂00ot)�
1=2
¼ 0.4060. Thus, for n ¼ 100, a ¼ 0.5 we expect that the average error of

L00ot would be no greater than 40.6% of the true L00ot. On the other hand, the relative bias

BiasR(L̂00ot) is investigated to analyze the accuracy of the natural estimator L00ot. For

example, with n ¼ 100, a ¼ 0.5 we have BiasR(L̂00ot) ¼ 0.0400, that is, 4% relative bias

for the true L00ot.

For the case when the production tolerance is symmetric, Â may be simplified as j �X � T j

and the estimator L̂00ot reduces to L̂ot ¼ ( �X � T)2=(d)2, which is the maximum likelihood

estimator (MLE) of Lot. This is because that �X is the MLE of m, then by the invariance

property of MLE the result follows. Thus, we have the rth moment of L̂00ot for symmetric

tolerance as

E(L̂00ot)
r ¼ E(L̂ot)

r ¼
s2

nd2

� �rX1
j¼0

e�l=2(l=2)j

j!

� �
2rG((1=2)þ jþ r)

G((1=2)þ j)

� �
(24)

Estimation of L00pe

The index L00pe reflects the process inconsistency loss, and its natural estimator can

be defined as L̂00pe ¼ S2
n�1=d

�2, where S2
n�1 ¼

Pn
i¼1 (Xi � �X)2=(n� 1). This estimator is

Table 4. The Bias and MSE of L̂00ot for a ¼ 21.0(0.5)1.0, b ¼ 1, du ¼ 5/4, dl ¼ 5/6, and

n ¼ 10(10)100

a ¼ 21.0 a ¼ 20.5 a ¼ 0 a ¼ 0.5 a ¼ 1.0

n Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE

10 0.0695 0.2074 0.0711 0.0626 0.1128 0.0439 0.1546 0.3181 0.1562 1.0498

20 0.0347 0.1001 0.0348 0.0277 0.0564 0.0110 0.0780 0.1405 0.0781 0.5066

30 0.0231 0.0659 0.0232 0.0177 0.0376 0.0049 0.0521 0.0895 0.0521 0.3337

40 0.0174 0.0491 0.0174 0.0130 0.0282 0.0027 0.0391 0.0656 0.0391 0.2487

50 0.0139 0.0392 0.0139 0.0102 0.0226 0.0018 0.0312 0.0518 0.0312 0.1982

60 0.0116 0.0326 0.0116 0.0084 0.0188 0.0012 0.0260 0.0427 0.0260 0.1648

70 0.0099 0.0279 0.0099 0.0072 0.0161 0.0009 0.0223 0.0364 0.0223 0.1410

80 0.0087 0.0243 0.0087 0.0063 0.0141 0.0007 0.0195 0.0317 0.0195 0.1232

90 0.0077 0.0216 0.0077 0.0055 0.0125 0.0005 0.0174 0.0280 0.0174 0.1094

100 0.0069 0.0194 0.0069 0.0050 0.0113 0.0004 0.0156 0.0251 0.0156 0.0984
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unbiased and depends only on the complete, sufficient statistic S2
n�1 for s2. By

the Lehmann–Scheffé Theorem we know that L̂00pe is a uniformly minimum variance

unbiased estimator (UMVUE) of L00pe. On the assumption of normality, L̂00pe is distributed

as s2=½(n� 1)d�2� times a chi-square variable with (n� 1) degrees of freedom. The rth

Figure 4. Plots of bias of L̂00ot versus n with a ¼ 21.0, 0, 1.0 (bottom to top in plot)

Figure 5. Plots of MSE of L̂00ot versus n with a ¼ 0, 21.0, 1.0 (bottom to top in plot)
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moment about zero for L̂00pe is:

E(L̂00pe)r ¼
s2

(n� 1)d�2

� �r

�
2rG((n� 1)=2þ r)

G((n� 1)=2)

� �
(25)

In particular, the expected value and the variance of L̂00pe can be obtained as follows:

E(L̂00pe) ¼ L00pe (26)

and

Var(L̂00pe) ¼
2s4

(n� 1)d�4

� �
(27)

For the case when the production tolerance is symmetric, d� may be simplified as d and

the estimator L̂00pe reduces to L̂pe ¼ S2
n�1=d

2, which is a uniformly minimum variance

unbiased estimator (UMVUE) of Lpe. The rth moment of L̂00ot for symmetric tolerance

becomes

E(L̂00pe)r ¼ E(L̂ pe)r ¼
s2

(n� 1)d2

� �r

�
2rG((n� 1)=2þ r)

G((n� 1)=2)

� �
(28)

An Application Example

We consider a case study for the purpose of illustration. Consider the following example

involving a factory manufacturing high density Light Emitting Diodes (LEDs). Appli-

cation of LEDs is expanding rapidly since high intensity LEDs of a wide range of

colors have been recently developed and become available, which enabled application

of LEDs in a wide variety of areas such as instrument cluster lighting, color displays,

traffic signals, roadway signs (barricade lights), airport signaling and lighting, automotive

backlighting in dashboards and switches, telecommunication indicators and backlighting

Table 5. The BiasR and
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MSER

p
of L̂

00

ot for a ¼ 21.0(0.5)1.0, b ¼ 1, du ¼ 5/4, dl ¼ 5/6, and

n ¼ 10(10)100

a ¼ 21.0 a ¼ 20.5 a ¼ 0 a ¼ 0.5 a ¼ 1.0

n BiasR

ffiffiffiffiffiffiffiffiffiffiffiffiffi
MSER

p
BiasR

ffiffiffiffiffiffiffiffiffiffiffiffiffi
MSER

p
BiasR

ffiffiffiffiffiffiffiffiffiffiffiffiffi
MSER

p
BiasR

ffiffiffiffiffiffiffiffiffiffiffiffiffi
MSER

p
BiasR

ffiffiffiffiffiffiffiffiffiffiffiffiffi
MSER

p

10 0.1000 0.6557 0.4093 1.4414 — — 0.3959 1.4440 0.1000 0.6558

20 0.0500 0.4555 0.2007 0.9587 — — 0.1997 0.9594 0.0500 0.4555

30 0.0333 0.3697 0.1334 0.7658 — — 0.1333 0.7660 0.0333 0.3697

40 0.0250 0.3192 0.1000 0.6557 — — 0.1000 0.6558 0.0250 0.3192

50 0.0200 0.2850 0.0800 0.5824 — — 0.0800 0.5824 0.0200 0.2850

60 0.0167 0.2598 0.0667 0.5291 — — 0.0667 0.5292 0.0167 0.2598

70 0.0143 0.2403 0.0571 0.4882 — — 0.0571 0.4882 0.0143 0.2403

80 0.0125 0.2247 0.0500 0.4555 — — 0.0500 0.4555 0.0125 0.2247

90 0.0111 0.2117 0.0444 0.4286 — — 0.0444 0.4286 0.0111 0.2117

100 0.0100 0.2009 0.0400 0.4060 — — 0.0400 0.4060 0.0100 0.2017
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in telephones and fax backlighting for audio and video equipment, backlighting in office

equipment, indoor and outdoor message boards, flat backlight for LCDs, switches and

symbols, illumination purposes, alternatives to incandescent lamps, etc.

LEDs are peculiar light sources very different from lamps in terms of physical size, flux

level, spectrum, and spatial intensity distribution. And LED technology provides a number

of benefits over incandescent bulbs. With a focus on the critical characteristic, the lumi-

nous intensity of LED sources, we examine a particular LED product model. The upper

and the lower specification limits of luminous intensity are set to USL ¼ 100 mcd,

LSL ¼ 50 mcd, and the target value is set to T ¼ 80 mcd. We note that it is an asymmetric

tolerance case.

Now we consider a particular type of LED manufacturing process. Historical data based

on routine process monitoring shows that the process is under statistical control and the

process distribution is justified and is shown to be fairly close to the normal distribution.

A sample data collection procedure is implemented in the factory on a daily basis to

monitor/control process quality. The factory production resource and schedule allows

the data collection plan be implemented with a sample size n � 40. A simple approach

to determine the true value (rather than an upper confidence bound) of L00e is to perform

the sampling on a routine basis consecutively for a number of, say 30, days. The calculated

values of single-day L̂00e for 30 consecutive days are displayed in Table 6. The average L̂00e
value for the 30 days is obtained as E(L̂00e ) ¼ 0.660. Checking Table 3, the values of

BiasR(L̂00e ) is between –0.0065 and 0.0101. Therefore, the true value of L00e can be deter-

mined as 0.66/(1-0.65%) ¼ 0.6643. The error of the approximation becomes negligibly

small over time.

Conclusion

Johnson (1992) introduced the relative expected loss Le ¼ Lot þ Lpe, which provides an

uncontaminated separation between information concerning the relative off-target loss

(Lot) and the relative inconsistency loss (Lpe). The definitions of Lot and Lpe are the

square of the ratio of the deviation of mean from the target and the half specification

width, and the ratio of the process variance and the square of the half specification

width, respectively. Both of them have clear interpretations on process loss. In this

paper, we considered a new generalization L00e , a modification of the process loss index

Le, to handle processes with asymmetric tolerances. The new generalization L00e not only

takes the proximity of the target value into consideration, but also takes into account

the asymmetry of the specification limits. We also investigated the statistical properties

of the natural estimator of process loss indices L00e , L00ot, and L00pe assuming that the

process is normally distributed. We obtained the rth moment, expected value, and the var-

iance of the natural estimator L̂00e , L̂00ot, and L̂00pe, respectively. We also analyzed the bias and

the MSE. The new generalization L00e measures process loss more accurately than the

Table 6. The 30 consecutive days L̂00e

0.644 0.817 0.942 0.691 0.754 0.458

0.485 0.610 0.707 0.577 0.732 0.512

0.683 0.764 0.870 0.653 0.574 0.623

0.551 0.690 0.582 0.744 0.658 0.491

0.725 0.673 0.455 0.649 0.971 0.521
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original index Le. Therefore, the new generalization L00e should be recommended for

in-plant applications.
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