
Discrete Optimization 3 (2006) 366–381
www.elsevier.com/locate/disopt

On relocation problems with multiple identical working crews

A.V. Kononova, B.M.T. Linb,∗

a Sobolev Institute of Mathematics, Novosibirsk, Russia
b Department of Information and Finance Management, Institute of Information Management, National Chiao Tung University, Hsinchu 300,

Taiwan

Received 19 August 2004; received in revised form 8 May 2006; accepted 29 June 2006
Available online 22 August 2006

Abstract

The relocation problem was formulated from a public housing project. In its basic form, a set of buildings needed to be torn down
and erected by a single working crew. Given a fixed budget, the relocation problem seeks to determine a feasible reconstruction
sequence of the old buildings. This problem has been shown to be mathematically equivalent to the classical two-machine flowshop
of makespan minimization. In this paper, we consider a variant where multiple working crews are available for the redevelopment
project. Most of our results center on the situations where all buildings require the same redevelopment time. We first present a
strong NP-hardness proof for the case with two working crews. Then, we give a negative result about the approximability of the
studied problem. Approximation algorithms and associated performance-ratio analysis are designed for the cases with unbounded
as well as bounded numbers of machines.
c© 2006 Elsevier B.V. All rights reserved.

Keywords: Public housing project; Job scheduling; Resource constraints; Parallel machines; NP-hardness; Approximation

1. Introduction

The relocation problem was first proposed and formulated from a house redevelopment project in East Boston
Area [8,12,10]. The public housing project was initiated to rehabilitate a set of old buildings. Before the redevelopment
of a building, all its residents must be evacuated and accommodated in some temporary housing units. The capacity
of a new building is not necessarily the same as that of the old one. If a building is demolished, say for setting up a
municipal park or a parking structure, its new capacity becomes zero. On the other hand, a new building of several
housing units can be developed from a parking structure where the original housing capacity is zero. Furthermore,
residents might be relocated to different sites. Under a specified budget for preparing the temporary housing units, the
authority needed to determine a reconstruction sequence such that all residents could be temporarily housed during the
redevelopment process. In addition to the public housing issue, the relocation problem also has applications relevant to
database management [1]. The financial constraint problem [11] can be also treated as a special case of the relocation
problem. Or, we may simply treat the development of a building as a project to be conducted in which investments are
required for all projects and each project’s profit might be positive or negative.

∗ Corresponding author. Tel.: +886 3 5131472; fax: +886 3 5729915.
E-mail addresses: alvenko@math.nsc.ru (A.V. Kononov), bmtlin@mail.nctu.edu.tw (B.M.T. Lin).

1572-5286/$ - see front matter c© 2006 Elsevier B.V. All rights reserved.
doi:10.1016/j.disopt.2006.06.003

http://www.elsevier.com/locate/disopt
mailto:alvenko@math.nsc.ru
mailto:bmtlin@mail.nctu.edu.tw
http://dx.doi.org/10.1016/j.disopt.2006.06.003

A.V. Kononov, B.M.T. Lin / Discrete Optimization 3 (2006) 366–381 367

A special case of the relocation problem (RP) involves a single working crew, i.e. no two or more buildings can
be simultaneously developed. The relocation problem with a single crew can also be formulated as a single-machine
scheduling problem subject to resource constraints. Consider a set of n jobs N = {J1, J2, . . . , Jn} to process on a
single machine and a common pool of Ω0 units of single-type resources available for the jobs. Job Ji , 1 ≤ i ≤ n, is
allowed to start its processing only if the machine is free and there are at least αi units of resources available in the
pool. The processing will consume the acquired resources and takes pi time units. When job Ji is completed it will
immediately return βi units to the pool. No preemption is allowed. The problem is to determine a schedule such that
all jobs can be successfully processed. In a feasible schedule, resources must be sufficient to support the processing of
any job at any time. The relocation problem differs from conventional resource-constrained scheduling problems [2,
6] in the sense that the net contributions, δi = βi − αi , made by job Ji can be zero, negative or positive.

Kaplan and Amir [9] showed that for the single crew case the minimum amount of resources guaranteeing the
existence of feasible schedules is equivalent to the sum of idle times on machine two in the classical two-machine
flowshop [7] by letting αi and βi be the processing times of a job on the two machines of a flowshop. Therefore,
the feasibility testing of the single-crew relocation problem can be solved in O(n log n) time. Note that the theme of
the single-crew relocation problem centers on the feasibility only. In the original model presented by Kaplan [8],
job processing times and multiple working crews (or, machines) are addressed. That is, the buildings may have
different redevelopment times, and the redevelopment of several buildings can be overlapped if there are free crews
and sufficient resources. In scheduling theory terms, for a particular schedule σ , let Ωt (σ) be the amount of resources
available at time t ≥ 0, si (σ) the starting time of job Ji , and Ci (σ) the completion time of job Ji . We say that schedule
σ satisfies the resource condition if

Ωt (σ) = Ω0 +

∑
{Ji ∈N |Ci (σ)≤t}

(βi − αi) −

∑
{Ji ∈N |si (σ)≤t<Ci (σ)}

αi ≥ 0. (1)

The objective is to find a feasible schedule whose makespan is minimum. Kaplan [8] designed a myopic algorithm
to compose approximate schedules to minimize the makespan. Amir and Kaplan [1] later gave an NP-hardness
proof, based upon a reduction from the Partition problem. The complexity status of the case with two identical
parallel machines and unit-execution-time (UET) jobs has however remained open since it was mentioned in 1988.
In this paper, we show that this case is strongly NP-hard even if all jobs make non-negative contributions, i.e.
δi ≥ 0, 1 ≤ i ≤ n. Moreover, non-approxibability properties and approximation algorithms for the cases with
bounded and unbounded numbers of identical parallel machines will also be addressed.

The rest of this paper is organized as follows. In Section 2 we introduce a notion of mirror instance and give an
auxiliary result that will be deployed throughout this paper. Relations between the relocation problem to bin packing
will be included, too. Section 3 presents a basic property and a proof for the strong NP-hardness of the problem with
two machines. Non-approximability is addressed in Section 4. Section 5 is dedicated to the development and analysis
of several approximation algorithms. Finally, we shall give some concluding remarks in Section 6.

2. Preliminaries

Mirror instance and mirror schedule. Now we introduce a notion of mirror instance and obtain a simple but useful
result about the equivalence between the relocation problems with non-negative and non-positive net contributions.
The result will be deployed throughout this paper.

Given an instance I of RP and a particular schedule σ , throughout this paper Z(σ) denotes the makespan of feasible
schedule σ and OPT(I) stands for the optimal solution value of instance I . We define a mirror instance Id as follows.
Set α′

i = βi , β
′

i = αi , 1 ≤ i ≤ n, and Ω ′

0 = Ω0 +
∑n

i=1(βi − αi). For schedule σ of I , we set

si (σd) = Z(σ) − Ci (σ) and Ci (σd) = Z(σ) − si (σ) (2)

as the starting and completion times of job Ji to define schedule σd(Id) of instance Id . In schedule σd(Id) all jobs are
executed on the same machines as in schedule σ(I). Schedule σd(Id) is the mirror schedule of σ(I) and vice versa.

Lemma 1. Schedule σd(Id) is feasible with respect to Ω ′

0 and its makespan is equal to that of σ(I).

368 A.V. Kononov, B.M.T. Lin / Discrete Optimization 3 (2006) 366–381

Proof. It is obvious that schedule σd(Id) satisfies the scheduling conditions. We just need to check that the resource
constraints (1) also hold. In other words, we want to show that Ω ′

τ (σd) ≥ 0 for every τ ∈ [0, Z(σ)].
If τ = Z(σ), then all jobs have completed at time Z(σ) in σ(I). We get

Ω ′

Z(σ)(σd) = Ω ′

0 +

∑
{Ji ∈N }

(β ′

i − α′

i) = Ω ′

0 −

∑
{Ji ∈N }

(βi − αi) = Ω0 ≥ 0.

Let τ < Z(σ) and t = Z(σ) − τ . We have

Ω ′
τ (σd) = Ω ′

0 +

∑
{Ji ∈N |Ci (σd)≤τ }

(β ′

i − α′

i) −

∑
{Ji ∈N |si (σd)≤τ<Ci (σd)}

α′

i

= Ω0 +

∑
{Ji ∈N }

(βi − αi) +

∑
{Ji ∈N |Ci (σd)≤τ }

(αi − βi) −

∑
{Ji ∈N |si (σd)≤τ<Ci (σd)}

βi .

Using Eq. (2) and collecting entries of the summation terms we get

Ω ′
τ (σd) = Ω0 +

∑
{Ji ∈N |Ci (σ)<t}

βi −

∑
{Ji ∈N |si (σ)<t}

αi

= Ω0 +

∑
{Ji ∈N |Ci (σ)<t}

(βi − αi) −

∑
{Ji ∈N |si (σ)<t≤Ci (σ)}

αi .

Let t0 < t be the last moment when some job starts or finishes. If no job starts before time t we set t0 = 0. We can
rewrite the above equality as follows.

Ω0 +

∑
{Ji ∈N |Ci (σ)<t}

(βi − αi) −

∑
{Ji ∈N |si (σ)<t≤Ci (σ)}

αi

= Ω0 +

∑
{Ji ∈N |Ci (σ)≤t0}

(βi − αi) −

∑
{Ji ∈N |si (σ)≤t0<Ci (σ)}

αi

= Ωt0(σ) ≥ 0.

Therefore, the proof is complete. �

Note that Lemma 1 implies that all results formulated below for the problems with positive (non-negative) net
contributions also hold for the problems with negative (non-positive) net contributions.

Bin packing and relocation problems. From this point on we assume that all jobs have unit execution time. It
is obvious that there exits an optimal schedule in which all jobs start and complete at integral time points and are
executed during unit integral intervals. We can rewrite Eq. (1) as follows.

Ωt (σ) = Ω0 +

∑
{Ji ∈N |Ci (σ)≤t}

(βi − αi) −

∑
{Ji ∈N |si (σ)=t}

αi ≥ 0. (3)

Let us consider the relocation problem with an unbounded number of parallel identical machines and all jobs have zero
net contributions. In this case, the relocation problem is equivalent to the classical Bin Packing problem. Indeed, all
jobs in the optimal schedule are executed in unit integral intervals. Unit intervals in the relocation problem correspond
to bins in the Bin Packing problem, and the length of a schedule corresponds to the number of used bins. In the case
when the number of machines is bounded by m, we get the Cardinality Constrained Bin Packing problem in which the
maximum number of items packed into a bin is bounded by a positive integer m. It is well known that the last problem
is strongly NP-hard for any m ≥ 3 and can be reduced to the Matching Problem for m = 2. In the next section we
shall prove the strong NP-hardness for the two-machine relocation problem with unit execution times and αi < βi for
all jobs Ji , i = 1, . . . , n.

Once the relocation problem is shown to be strongly NP-hard we are interested in developing approximation
algorithms for finding good near-optimal solutions. We say that a polynomial-time algorithm A is a ρ-approximation
algorithm (or provides a ρ-approximation) for a minimization problem, if for any instance I of the problem it outputs a
feasible solution with the makespan at most ρ ×OPT(I). We say that a polynomial-time algorithm A is an asymptotic
ρ-approximation algorithm for a makespan minimization problem, if there exists a constant c such that for any instance
I of the problem it outputs a feasible solution with the makespan at most ρ × OPT(I) + c.

A.V. Kononov, B.M.T. Lin / Discrete Optimization 3 (2006) 366–381 369

As a corollary of the results for Bin Packing, we have that unless P = NP, there is no ρ-factor approximation
algorithm for the unbounded relocation problem for any ρ < 3

2 even if αi = βi and pi = 1 for all i . However,
there exist some algorithms for Bin Packing which have good asymptotic performances. The well-known result
by Fermandez de la Vega and Lueker [5] implies that for any fixed ε > 0 and each instance I of the unbounded
RP with zero net contribution and unit execution time, there exists a linear time algorithm Aε such that Aε(I) ≤

(1 + ε)O PT (I) +
1
ε2 , where Aε(I) is the approximate makespan reported by algorithm Aε . In the case with arbitrary

αi and βi , the relocation problem is harder than Bin Packing from an approximation point of view also. In Section 4,
we shall show that unless P = NP, there is no ρ-asymptotic approximation algorithm for the unbounded relocation
problem for any ρ < 4

3 .

3. Two machines

Now we consider the case where exactly two machines are available and δi > 0 for any job Ji . To facilitate our
discussion, we introduce another version of the relocation problem with dedicated parallel machines (RPD). For the
case of dedicated parallel machines we assume that each job must be processed on a specified machine. We start from
the case with two dedicated machines and all jobs have positive contributions. We denote this problem by RPD+

2 .
Though the corresponding problem without resource requirements is trivial, we shall show that RPD+

2 is NP-hard in
the strong sense. We start with formulating an NP-complete problem that is to be used in our proof.

NUMERICAL MATCHING WITH TARGET SUMS (NMTS)[SP17, [4]]

Instance: Disjoint sets X = {x1, . . . , xn} and Y = {y1, . . . , yn}, each containing n positive integers, and a target
vector (B1, B2, . . . , Bn).

Question: Can X ∪ Y be partitioned into n disjoint sets A1, A2, . . . , An each containing exactly one element from
each of X and Y such that for 1 ≤ i ≤ n,

∑
e j ∈Ai

e j = Bi ?
Without lost of generality we assume that

n∑
i=1

(xi + yi) =

n∑
i=1

Bi . (4)

As mentioned in [4] the strong NP-completeness of the NMTS problem can be obtained by a transformation from the
well-known Numerical 3-Dimensional Matching problem.

NUMERICAL 3-DIMENSIONAL MATCHING (N3DM)[SP16, [4]]

Instance: Constant E and three disjoint sets of positive integers X = {x1, . . . , xn}, Y = {y1, . . . , yn} and Z =

{z1, . . . , zn} such that E/4 < xi < E/2, E/4 < yi < E/2, E/4 < zi < E/2, for 1 ≤ i ≤ n.

Question: Can X ∪ Y ∪ Z be partitioned into n disjoint sets A1, A2, . . . , An such that each Ai , 1 ≤ i ≤ n, contains
exactly one element from each of X , Y and Z , and

∑
e j ∈Ai

e j = E?
Without loss of generality, E/4 is assumed to be integer, for otherwise we can multiply all integers by 4 and get

an equivalent problem with the required property. Indeed, since each set Ai , 1 ≤ i ≤ n, contains exactly one element
from Z we can assign elements from Z to sets A1, A2, . . . , An in an arbitrary way. Let set A1 contain element z1, set
A2 contain element z2, and so on. Now we have to assign exactly one element from each of X and Y , such that, for
1 ≤ i ≤ n,

∑
e j ∈Ai \{zi }

e j = E − zi . It follows that N3DM can be polynomially transformed into NMTS. Moreover,
we note that the bounds for elements of X , Y and Z in the N3DM problem imply the corresponding bounds for
elements of X , Y and B1, B2, . . . , Bn in the NMTS problem. For elements of X , Y , and B1, B2, . . . , Bn in NMTS,
there exists E such that E/4 < xi < E/2, E/4 < yi < E/2 and E/2 < Bi < 3E/4 for 1 ≤ i ≤ n.

Theorem 1. The RPD+

2 problem is NP-hard in the strong sense.

Proof. To establish the NP-hardness of the two-machine relocation problem, we present a polynomial-time reduction
from the NMTS problem. Suppose that we are given two sets of integers {x1, x2, . . . , xn}, and {y1, y2, . . . , yn}, and a
collection of targets B1, B2, . . . , Bn . Without loss of generality, we assume B1 ≤ B2 ≤ · · · ≤ Bn . We group all targets
with the same value together in a subset. Assume there are k different target values and let mi be the cardinality of i th

370 A.V. Kononov, B.M.T. Lin / Discrete Optimization 3 (2006) 366–381

subset. We get B1 = · · · = Bm1 < Bm1+1 = · · · = Bm1+m2 < · · · < Bm1+m2+···+mk−1+1 = · · · = Bm1+m2+···+mk =

Bn . Let M = 1 + maxi=1,...,k mi . Set B̄i = Bm1+m2+···+mi for all 1 ≤ i ≤ k.
We define an instance I of RPD+

2 as follows. In instance I , there are two machines, 2n basic jobs J1i , i =

1, 2, . . . , n, and J2i , i = 1, 2, . . . , n, and k − 1 connecting jobs J̄i , i = 1, . . . , k − 1. All connecting jobs and
jobs J1i , i = 1, 2, . . . , n, have to be executed on machine one, and jobs J2i , i = 1, 2, . . . , n, have to be executed on
machine two. For each integer xi , we create basic job J1i with α1i = 2Mxi and β1i = 2Mxi + 1. For each integer yi ,
we create basic job J2i with α2i = 2Myi and β2i = 2Myi + 1. Note that

β1i > α1i > M E/2 for all i = 1, . . . , n. (5)

We use ᾱi , β̄i , δ̄i to denote the amount of required resources, amount of returned resources and net contributions
of connecting job J̄i . For each connecting job J̄i , define ᾱi = 2M B̄i + 2mi and β̄i = 2M B̄i+1. Note that
δ̄i = 2M B̄i+1 − (2M B̄i + 2mi) = 2M(B̄i+1 − B̄i) − 2mi ≥ 2M − 2mi > 0. The inequality implies ᾱi < ᾱi+1 for
all i = 1, . . . , k − 2. Moreover, we have

ᾱi = 2M B̄i + 2mi > 2M B̄1 = 2M B1 > M E . (6)

Let the amount of initial resources be Ω0 = 2M B1. We want to show that the NMTS problem has an affirmative
answer if and only if instance I has a schedule σ with a makespan less than or equal to n + k − 1.

We first note that the maximum amount of available resources at any time cannot be greater than

Ω0 +

n∑
i=1

δ1i +

n∑
i=1

δ2i +

k−1∑
i=1

δ̄i = 2M B1 + 2n +

k−1∑
i=1

(2M B̄i+1 − 2M B̄i − 2mi)

= 2M B1 +

k∑
i=1

2mi +

k−1∑
i=1

(2M B̄i+1 − 2M B̄i − 2mi)

≤ 2M B̄k + 2mk

≤ 2M Bn + 2M − 2

= 2M

(
Bn + 1 −

1
M

)
<

3M E

2
. (7)

The last strict inequality follows from the fact that Bn and E/4 are integer. Eq. (7) together with Eqs. (5) and (6) imply
that no connecting job can be processed in parallel with any other job. This means that the makespan of any feasible
schedule is at least n + k − 1 and that if the schedule has a makespan of n + k − 1, then all basic jobs have to be
processed in pairs.

Proposition 1. In any feasible schedule σ , connecting job J̄i , 1 ≤ i ≤ k−1, cannot start before time
∑i

j=1 m j +i −1.

Proof. The proof is established by induction on index i . Let us consider J̄1. Since ᾱ1 = 2M B̄1 + 2m1 > 2M B̄1, no
connecting job can start its execution at time 0. Recall that the net contribution of each basic job is equal to 1 and at
most two jobs can be simultaneously processed. As a consequence, job J̄1 cannot start before time m1.

Assume the proposition is valid for some i ≥ 1. Then, the amount of resources available at time
∑i

j=1 m j + i

does not exceed 2M B̄1 +
∑i

j=1 2m j +
∑i

j=1(2M B̄ j+1 − 2M B̄ j − 2m j) = 2M B̄i+1. All connecting jobs J̄ j with

j ≥ i + 1 have ᾱ j ≥ 2M B̄i+1 + 2mi+1. It follows that job Ji+1 cannot start before time
∑i

j=1 m j + i + mi+1 =∑i+1
j=1 m j + (i + 1) − 1. The induction proof is therefore complete.

We now show the if-and-only-if relation between the NMTS problem and the RPD+

2 problem.
IF: Suppose that in the NMTS problem, there is a partition of the 2n integers into n disjoint sets, A1, A2, . . . , An ,

each of which consists of exactly two elements such that
∑

e j ∈Ai
e j = Bi , 1 ≤ i ≤ n. We group the basic jobs in pairs

in accordance with their indices in the solution to the NMTS problem. The equality
∑

{ j :e j ∈Ai }
α j = 2M Bi , 1 ≤ i ≤

n, readily follows. Let m0 = 0. We schedule connecting job J̄i at time
∑i

j=1 m j + i − 1 for all 1 ≤ i ≤ k − 1, and

A.V. Kononov, B.M.T. Lin / Discrete Optimization 3 (2006) 366–381 371

Fig. 1. Configuration of an optimal schedule of the proof for Theorem 1.

arrange the pairs of basic jobs with total resource requirement 2M B̄i , 1 ≤ i ≤ k in the integral time slots within the
interval [

∑i−1
j=0 m j + i − 1,

∑i
j=1 m j + i − 1) in arbitrary order. Refer to Fig. 1 for the configuration. It is easy to

check that this schedule is feasible and has a makespan equal to n + k − 1.
ONLY IF: Suppose there is a schedule σ with all jobs completed at time n + k − 1. As aforementioned, in σ all

basic jobs must be scheduled in pairs. We number the pairs of basic jobs from 1 to n as they appear in schedule σ . Let
B ′

i be a sum of two integers, whose indices correspond to the indices of basic jobs of pair i . If B ′

i = Bi for all i then
we have the desired partition of the NMTS problem. Otherwise, Eq. (4) implies that there exists index i that satisfyies
B ′

i > Bi . Let Bi = B̄l . Then, i must be smaller than or equal to
∑l

j=1 m j . Proposition 1 implies that at most l − 1

connecting jobs can be finished at time
∑l

j=1 m j + l −1. It further implies that basic jobs from pair i start at or before

time t ≤
∑l

j=1 m j + l − 2. The amount of resources available at time t is

Ωt (σ) ≤ Ω0 + 2
i∑

j=1

δ j +

l−1∑
j=1

δ̄i

≤ 2M B̄1 + 2
l∑

j=1

m j +

l−1∑
j=1

(2M B̄ j+1 − 2M B̄ j − 2m j)

= 2M B̄l + 2ml < 2M B̄l + 2M ≤ 2M B̄ ′

i .

The last inequality follows from the inequality B ′

i > Bi and the integrality of B ′

i and Bi . The proof of the theorem
follows from contradiction to the assumption that there exists index i such that B ′

i > Bi . �

The above reduction from NMTS establishes the strong NP-hardness of the RPD+

2 problem. In the following, we
perform a transformation from RPD2 to the studied problem RP+

2 . Let us consider the decision problem of RPD2 as
defined below.

RELOCATION PROBLEM WITH TWO DEDICATEDMACHINES (RPD2)

Instance: Two parallel dedicated machines, Ω0 units of initial resources, set N of jobs, |N | = n + l, jobs J1, . . . , Jn
have to be executed by machine 1 and jobs Jn+1, . . . , Jn+l have to be executed by machine 2, 0 < l < n. Each job
Ji ∈ N has processing length 1, resource requirements αi and βi .

Question: Is there a two-machine schedule for N that meets makespan n and obeys the resource constraints Eq. (3)?
The unary NP-completeness of RPD2 follows from Theorem 1 concerning RPD+

2 . Now we show that RPD2

polynomially transforms to RP+

2 . Let I be an instance of RPD2 with n + l jobs. We keep the notation used in the
proof of Theorem 1 in the following proof. Define Ψ = Ω0 +

∑
Ji ∈N δi . We construct an instance Ī of RP+

2 as
follows. Instance Ī also consists of n + l jobs. We set Ω̄0 = Ψ + Ω0, ᾱi = Ψ + αi and β̄i = Ψ + βi for i = 1, . . . , n.
These jobs are called connecting jobs. Also we set ᾱi = αi and β̄i = βi for basic jobs Ji , i = n + 1, . . . , n + l. We

372 A.V. Kononov, B.M.T. Lin / Discrete Optimization 3 (2006) 366–381

show that the instance I of RPD2 has a schedule with OPT(I) = n if and only if the instance Ī of RP+

2 has a schedule
with OPT(Ī) = n.

First, we note that for RPD2 any feasible schedule σ(I) of instance I is also a feasible schedule of instance Ī . The
amount of resources available at any time depends on the amount of initial resources and the total contribution of the
completed jobs. The amount of initial resources is increased from Ω0 to Ω0 + Ψ , and the total contribution of all jobs
remain the same. It follows that the amount of available resources at any time increases by Ψ . Since all connecting
jobs have to be executed by machine 1, each time interval must contain at most one connecting job. Therefore, the
resource consumption will increase by at most Ψ in each unit time interval and σ(Ī) is also feasible.

Since Ψ is the upper bound on the maximum amount of resources available at any time, no two connecting jobs
can be processed in parallel. This means that the makespan of any feasible schedule is at least n. Let σ̄ (Ī) be a
feasible schedule with makespan n. It follows that in each unit time interval from 0 to n, some connecting job is
executed. Because there are only two machines, at most one basic job can be assigned to the same unit time interval
in σ̄ (Ī). Thus we can suppose that all connecting jobs are dispatched to machine 1 and all basic jobs to machine 2.
The feasibility of σ̄ (Ī) implies that for all t = 0, 1, . . . , n,

0 ≤ Ω̄t (σ̄ (Ī)) = Ψ + Ω0 +

∑
{Ji ∈N |Ci (σ̄)≤t}

(β̄i − ᾱi) −

∑
{Ji ∈N |si (σ̄)=t}

ᾱi

= Ψ + Ω0 +

∑
{Ji ∈N |Ci (σ̄)≤t}

(βi − αi) −

∑
{Ji ∈N |si (σ̄)=t}

αi − Ψ = Ωt (σ̄ (I)).

Thus we have proved that σ̄ (I) is a feasible schedule of instance I and has the same makespan n. The above discussion
is concluded with the following theorem.

Theorem 2. The RP+

2 problem is NP-hard in the strong sense.

4. Non-approximability

In this section, we consider the relocation problem with an unbounded number of parallel identical machines (RP∞)
and present a negative result concerning its approximability.

Theorem 3. Unless P = NP, there is no ρ-asymptotic approximation algorithm for the RP∞ problem for any ρ < 4
3 ,

even if αi ≤ βi and pi = 1 for all i .

Proof. We consider an instance I of the Partition problem: Given a finite set of integers X = {e1, e2, . . . , en} with∑
ei ∈X ei = 2E , is there a subset X1 ⊆ X such that

∑
ei ∈X1

ei = E?
We define an instance I ′ of the RP∞ problem as follows. Let K > 0 be a fixed integer. We introduce n(K + 1)

basic jobs Jki with αki = (E + 1)kei and βki = (E + 1)kei +
1
n for all k = 0, 1, . . . , K and i = 1, 2, . . . , n.

Note that for convenience parameter βki does not abide by the integer constraint. The violation can be resolved by
scaling all parameters with a factor n. The jobs are grouped into K + 1 sets of n jobs with the same first index,
i.e. set Nk = {Jk1, Jk2, . . . , Jkn}. We define K connecting jobs J̄k, 1 ≤ k ≤ K , with ᾱk = E(E + 1)k−1

+ 1 and
β̄k = E(E + 1)k . The amount of initial resources is Ω0 = E .

We use the notation of schedule concatenation as follows: σ = N0 N1 N2 . . . Nl means that the jobs of set Ni are
followed by the jobs of set Ni+1 in schedule σ for all i = 0, 1, 2, . . . , l − 1. It is easy to see that in any feasible
schedule σ , the jobs are processed in the following order σ = N0{ J̄1}N1{ J̄2}N2{ J̄3}N3 . . . { J̄K }NK . Since the amount
of initial resources is equal to E , only the jobs from set N0 are available for processing at time zero. Moreover,
since the net contribution of each basic job is equal to 1

n , only the connecting job J̄1 becomes available when all
jobs from set N0 finish their processing. After finishing job J̄1, the amount of resources is equal to E(E + 1) and
we can schedule only jobs from set N1. This line of reasoning continues for the remaining jobs (Fig. 2). In schedule
σ , at the time job Ji , i = 1, . . . , K is to be processed, it will consumes all available resources. It follows that no
job can be processed in parallel with a connecting job Ji . Now consider the jobs from any set Nk , 0 ≤ k ≤ K .
They require

∑n
i=1 αki =

∑n
i=1(E + 1)kei = 2E(E + 1)k units of resources. The amount of resources available

after finishing jobs in N0{ J̄1}N1{ J̄2}N2{ J̄3}N3 . . . { J̄k} is equal to E(E + 1)k . Since δki =
1
n and all ei are integers

we can schedule the jobs of set Nk in time interval of length 2 if and only if there exists a partition of the job set

A.V. Kononov, B.M.T. Lin / Discrete Optimization 3 (2006) 366–381 373

Fig. 2. Configuration of the optimal schedule in the proof of Theorem 2.

into sets X1 and X2 such that
∑

ei ∈X1
ei =

∑
ei ∈X2

ei = E . Let OPT(I ′) be the value of an optimal schedule for
instance I ′. If there exists a subset X1 ⊆ X such that

∑
ei ∈X1

ei = E in the instance I of the Partition problem,
then the makespan OPT(I ′) = 2(K + 1) + K = 3K + 2. If I is a negative instance of the Partition problem, then
OPT(I ′) = 3(K + 1) + K = 4K + 3.

Now suppose there is a ρ-asymptotic approximation algorithm A with ρ < 4
3 for the RP∞ problem. Let ρ =

4
3 − ε

for some fixed ε ∈ (0, 1
3] and let c ≥ 0 be the fixed constant from the definition of asymptotic approximation

algorithm. Let us consider instance I ′ of the RP∞ problem as described above with fixed K =
c

3ε
. Without lost of

generality, we assume that K is integer. If instance I is an affirmative instance of the Partition problem, then algorithm
A produces a schedule with a makespan of

A(I ′) ≤ ρ × OPT(I ′) + c =

(
4
3

− ε

)
(3K + 2) + c = 4K +

8
3

− 2ε − 3K ε + c < 4K +
8
3
.

Thus, algorithm A finds the schedule with a makespan less than 4K + 3. It follows that the Partition problem can be
solved in polynomial time, a contradiction to the conjecture P 6= NP. �

5. Approximation algorithms

In this section we shall design and analyze some greedy heuristics for the relocation problem. The discussion is
based upon a relaxation form similar to the case with preemption.

In schedule σ , job Ji is said to be available at time t , t = 0, . . . , Z(σ) − 1 if αi ≤ Ωt (σ). Assume the processing
of each job could be divided into non-consecutive fragments or fractions. Fragments of a job can be processed in one
or more non-consecutive unit-time intervals. Let 0 ≤ xi t ≤ 1 be the fragment of job Ji which is processed in time
interval [t, t + 1). Then, job Ji requires αi xi t units of resources at time t and returns βi xi t units of resources at time
t + 1. If xi t > 0, then the processing time of job Ji in time interval [t, t + 1) does not depend on the value xi t and the
processing occupies the whole interval. We say that job Ji is uncompleted at time τ ≥ 1 if

∑τ−1
t=0 xi t < 1. All jobs are

uncompleted at time 0. An assignment σ of jobs to unit time intervals is a feasible schedule of the Relaxed Relocation
Problem (RRP) if the following conditions are satisfied:

1. xi t = 0 for each job Ji with αi > Ωt (σ), for all t = 0, . . . , Z(σ) − 1,
2.

∑n
i=1 αi xi t ≤ Ωt (σ) for all t = 0, . . . , Z(σ) − 1, and

3.
∑Z(σ)−1

t=0 xi t = 1, for all i = 1, . . . , n.

Note that an assignment of jobs to unit time intervals is a feasible schedule of the original problem when it satisfies
the above three conditions and xi t ∈ {0, 1}. It follows that the value of the optimal solution to the relaxed relocation
problem (RRP) is a lower bound on the value of optimal solution to the original relocation problem (RP∞).

374 A.V. Kononov, B.M.T. Lin / Discrete Optimization 3 (2006) 366–381

Let I be an instance of the relocation problem. We consider the relaxed version RRP. The skyline of schedule σ(I)
is a vector −→vσ = [Ω0(σ),Ω1(σ), . . . ,ΩZ(σ)(σ)]. Let σ and σ ′ be two feasible schedules and T ≤ min{Z(σ), Z(σ ′)}.
We say that skyline −→vσ is greater than or equal to skyline −→vσ ′ over interval [0,T], and denote by −→vσ ≺T

−→vσ ′ , if
Ωt (σ) ≥ Ωt (σ

′) for all 0 ≤ t ≤ T . Skyline −→vσ is maximum over interval [0, T] if −→vσ ≺T
−→vσ ′ for any feasible

schedule σ ′. Next, we present a greedy algorithm for RRP and discuss some related properties. Starting from time
interval [0, 1], the greedy algorithm schedules available jobs so as to maximize the total return of the scheduled jobs.
Step by step the algorithm solves the well-known Fractional Knapsack problem on the set of available jobs.

FRACTIONAL KNAPSACK

Instance: Nonnegative integers n, α1, . . . , αn , β1, . . . , βn , ȳ1, ȳ2, . . . , ȳn and V .

Task: Find numbers y1, y2, . . . , yn such that 0 ≤ yi ≤ ȳi for all i = 1, . . . , n, and
∑n

j=1 α j y j ≤ V , and
∑n

j=1 β j y j
is maximum.

The following observation suggests a simple algorithm which requires sorting the elements appropriately:

Proposition 2 ([3]). Let α1, . . . , αn , β1, . . . , βn and V be nonnegative integers with

β1

α1
≥

β2

α2
≥ · · · ≥

βn

αn

and let k = min{ j ∈ {1, . . . , n} :
∑ j

i=1 αi ȳi > V }. Then an optimal solution to the given instance of Fractional
Knapsack is defined by

y j := ȳ j , for j = 1, . . . , k − 1;

yk :=

V −

k−1∑
j=1

α j ȳ j

αk
;

y j := 0, for j = k + 1, . . . , n.

Greedy Algorithm 1.

1. Set t := 0 and V := Ω0.
Set x̄ j := 1 for j = 1, . . . , n.

2. For j := 1 to n do:
If α j ≤ V then set ȳ j := x̄ j

else set ȳ j := 0.
3. If ȳ j = 0 for all j = 1, . . . , n

then stop (No more fragment can be assigned.)
else solve the Fractional Knapsack Problem.

4. Let y j , j = 1, . . . , n be a solution to the Fractional Knapsack Problem.
Set x j t := y j , x̄ j := x̄ j − x j t for j = 1, . . . , n.
Set V := V +

∑n
j=1 x j tδ j and t := t + 1.

Go to 2.

Lemma 2. Let I be an instance of the RRP+ problem.

1. If there exists some uncompleted job when Greedy Algorithm 1 terminates, then there is no feasible schedule of
instance I for the RRP problem.

2. If there exists a feasible schedule for instance I , then Greedy Algorithm 1 provides an optimal solution σ ∗.
3. Skyline −→vσ ∗ is maximum over the interval [0, Z(σ ∗)].

Proof. Suppose that there exists nonempty set N ′ of unscheduled jobs when Greedy Algorithm 1 terminates.
Inequality αi > Ω0 +

∑
j∈N\N ′ δ j must hold for each job Ji ∈ N ′. Let there be some feasible schedule σ and

Ji ∈ N ′ be the job that starts first over all jobs from N ′. Let N ′′ be the set of jobs that have completed their
processing in schedule σ before the commencement of job Ji . Note that N ′′

⊆ N \ N ′. Then, αi ≤ Ω0 +
∑

j∈N ′′ δ j ≤

A.V. Kononov, B.M.T. Lin / Discrete Optimization 3 (2006) 366–381 375

Ω0 +
∑

j∈N\N ′ δ j < αi . The second inequality follows because all jobs have nonnegative net contributions. The
contradiction implies the validity of the first proposition.

Let yi t be any feasible solution of instance I . We show that solution yi t can be transformed into the solution xi t
produced by Greedy Algorithm 1 without increasing the makespan. Let [τ, τ + 1) be the first time interval in which
there exists some job Ji with xiτ > yiτ . Since both solutions are the same before time τ , they have the same resource
level Ωτ at time τ . It follows that the sets of available jobs are also the same. We enumerate the available jobs in the
same order as they were enumerated in Greedy Algorithm 1 and let J j be the job with the smallest index such that
x jτ > y jτ . Since

∑τ−1
t=0 x j t =

∑τ−1
t=0 y j t , there exists some time point τ ′ > τ with y jτ ′ > 0. If

∑
Ji ∈N yiταi < Ωτ ,

then we increase y jτ by

min
{
α j y jτ ′ ,Ωτ −

∑
i∈N

αi yiτ

}
α j

.

In the other case, there exists some job Jk with k ≥ j and ykτ > 0. Let α = min{α j y jτ ′ , αk ykτ }. Since all jobs have
nonnegative net contributions, Ωτ ′ must be greater than or equal to Ωτ and job Jk is available at time τ ′. We swap a α

α j
-

portion of job J j and a α
αk

-portion of job Jk . Denote by V ′
t the amount of resources at time t in the derived schedule.

Then, V ′
t = Ωt for all t ≤ τ and t > τ ′. For τ < t ≤ τ ′, we have V ′

t = Ωt + β j
α
α j

− βk
α
αk

= Ωt + α(
β j
α j

−
βk
αk

) ≥ Ωt .
It follows that all resource requirements are satisfied and the new schedule is feasible. Repeating this process, we
can finally transform the solution yi t into solution xi t without increasing the makespan. Furthermore, the amount
of resources available at each time point will not decrease. As a sequel, propositions 2 and 3 in the lemma are
established. �

Note that Greedy Algorithm 1 deals with the case where all jobs have non-negative contributions. Given instance
I of the RRP with δi ≤ 0 for all job Ji ∈ N , we let td = Z(σ ∗) − t − 1. Then, assignment yi td = xi t gives us a mirror
schedule σd of σ . Therefore, we can apply Greedy Algorithm 1 to the mirror instance Id and use the obtained solution
for constructing an optimal schedule.

Using the above results, we now consider the relaxed relocation problem with arbitrary δi . Let N+ be the set of jobs
with αi ≤ βi and N− be the set of jobs with αi > βi . The following result is a simple consequence of the feasibility
testing procedure of Kaplan and Amir [1].

Lemma 3. If there exists a feasible schedule for an instance I of problem RRP, then the exists a feasible schedule in
which the jobs of set N− start after finishing all jobs from set N+.

Let I be an instance of the RRP problem with job set N and initial amount of resources Ω0. We define two new
instances I + and I − as follows. Instance I +contains the jobs of N+and the amount of initial resources is equal to Ω0.
Instance I − contains the jobs of N− and the amount of initial resources is equal to Ω0 +

∑
Ji ∈N+ δi . The following

procedure is designed to provide solutions to the RRP problem.

Greedy Algorithm 2.

1. Apply Greedy Algorithm 1 to I +. Let σ(I +) be the schedule output by the procedure.
2. Apply Greedy Algorithm 1 to the mirror instance I −

d of instance I −. Denote the obtained schedule by σ(I −

d). Let
σ(I −) be a mirror schedule of σ(I −

d).
3. Report schedule σ(I) = σ(I +)σ (I −) for the RRP problem, where σ(I +)σ (I −) denotes schedule concatenation

by appending σ(I −) to σ(I +).

Lemma 4. Let I be an instance of the RRP problem. If there exists uncompleted jobs when Greedy Algorithm 2
terminates at Steps 1 or 2, then there exists no feasible schedule for instance I .

Proof. The lemma directly follows from Lemma 3 and the first proposition of Lemma 2. �

Let σ ∗(I) = σ ∗(I +)σ ∗(I −) be a schedule obtained by Greedy Algorithm 2 on instance I . We say that

• time slot [t, t + 1) is full if
∑

Ji ∈N αi xi t = Ωt (σ
∗),

376 A.V. Kononov, B.M.T. Lin / Discrete Optimization 3 (2006) 366–381

• time slot [t, t + 1) is vacant if
∑

Ji ∈N αi xi t < Ωt (σ
∗), and there exists job Ji ∈ N such that xi t = 1.

• time slot [t, t + 1) is dummy if
∑

Ji ∈N αi xi t < Ωt (σ
∗), and xi t < 1 for all jobs Ji ∈ N .

Now we list some simple properties of schedule σ ∗(I) which will be used to establish the proofs of performance
ratios.

Lemma 5. Let σ ∗

d (I) be a mirror schedule of σ ∗(I) and td = Z(σ ∗) − t − 1. If time slot [t, t + 1) is full in σ ∗(I),
then time slot [td , td + 1) is full in σ ∗

d (I).

Proof. Since time slot [t, t + 1) is full, we readily have that Ωtd (σ
∗

d) = Ωt+1(σ
∗) = Ωt (σ

∗) −
∑

Ji ∈N αi xi t +∑
Ji ∈N βi xi t =

∑
Ji ∈N βi xi t =

∑
Ji ∈N βi yi td . �

For notational convenience, we denote by It the time interval [t, t + 1). Also, denote by Φ+ the set of full time
slots in σ ∗(I +), Φ− the set of full time slots in σ ∗(I −), Ψ+ the set of vacant time slots in σ ∗(I +) and Ψ− the set of
vacant time slots in σ ∗(I −). Let A =

∑
Ji ∈N αi .

Lemma 6. If |Ψ+
| = 1, then

A >
∑

It ∈Φ+

Ωt (σ
∗) +

∑
It ∈Φ−

Ωt (σ
∗). (8)

If |Ψ+
| > 1 and τ1, . . . , τ|Ψ+| be the vacant time slots in σ ∗(I +), then

A >
∑

It ∈Φ+

Ωt (σ
∗) +

∑
It ∈Φ−

Ωt (σ
∗) +

|Ψ+
|−1∑

i=1

Ωτi (σ
∗). (9)

Proof. By the definition of full time slots, the total size of the jobs arranged in these full time slots exceeds the first
two terms of the right-hand-side of the inequalities (8) and (9).

If |Ψ+
| = 1, then the strict inequality in (8) follows from the fact that the vacant time slot has at least one whole

job.
If |Ψ+

| > 1, we consider two vacant time slots Iτi and Iτi+1 for i = 1, . . . , |Ψ+
| − 1. By the definition of vacant

slots, there exists job J j ∈ N with x jτi+1 = 1. Since this job does not start at time τi , we have α j > Ωτi (σ
∗).

Also, x jτi+1 = 1 implies that this job is not counted when we count the jobs in full time slots. It follows that∑|Ψ+
|

i=1

∑n
j=1 α j x jτi >

∑|Ψ+
|−1

i=1 Ωτi (σ
∗). �

Lemma 7. For any feasible schedule σ(I),

Z(σ) ≥ OPT ≥ |Φ+
| + |Ψ+

| + |Φ−
|.

Proof. Let σ ∗(I) = σ ∗(I +)σ ∗(I −) be the schedule obtained by Greedy Algorithm 2 for input instance I . Let
T = Z(σ ∗(I +)). By Lemma 2, skyline −→vσ ∗ = [Ω0(σ

∗),Ω1(σ
∗), . . . ,ΩT (σ ∗)] is maximum over interval [0, T].

Moreover, since instance I + contains only jobs with non-negative net contributions we have

Ω0(σ
∗) ≤ Ω1(σ

∗) ≤ · · · ≤ ΩT (σ ∗). (10)

Let ν1 < ν2 < · · · < ν|Φ+|+|Ψ+|−1 be the full time slots and vacant time slots except the last one in

σ ∗(I +). We consider a special vector
−→
v∗

= [Ων1(σ
∗),Ων2(σ

∗), . . . ,Ων
|Φ+|+|Ψ+|−1

(σ ∗)]. Inequality (10) implies that
Ωνt (σ

∗) ≥ Ωt (σ
∗) for any t, 0 ≤ t ≤ ν|Φ+|+|Ψ+|−1 + 1. Thus in any schedule the total amount of resources available

in the first |Φ+
| + |Ψ+

| − 1 time slots does not exceed
∑|Φ+

|+|Ψ+
|−1

t=1 Ωνt (σ
∗) =

∑
It ∈Φ+ Ωt +

∑|Ψ+
|−1

i=1 Ωτi .
Now consider the mirror instance Id . Let µ1 < µ2 < · · · < µ|Φ−| be the full time slots in σ ∗

d (I −). Let
Td = Z(σ ∗

d (I −)). From Lemma 2, we have that skyline −→vσ ∗
d

= [Ω0(σ
∗

d),Ω1(σ
∗

d), . . . ,ΩTd (σ
∗

d)] is maximum. We

determine a special mirror vector
−→
v∗

d = [Ωµ1(σ
∗

d),Ωµ2(σ
∗

d), . . . ,Ωµ
|Φ−|

(σ ∗

d)]. As a consequence, the total amount of

resources available in the last |Φ−
| time slots does not exceed

∑|Φ−
|

t=0 Ωµt (σ
∗

d) =
∑

It ∈Φ− Ωt .
Assume σ is a feasible schedule with a makespan less than |Φ+

| + |Φ−
| + |Ψ+

|. It follows that the total capacity

of all time slots in σ cannot be greater than
∑

It ∈Φ+ Ωt +
∑

It ∈Φ− Ωt +
∑|Ψ+

|−1
i=1 Ωτi . However, Lemma 6 implies

A.V. Kononov, B.M.T. Lin / Discrete Optimization 3 (2006) 366–381 377

that the total requirement of all jobs is

A >
∑

It ∈Φ+

Ωt +

∑
It ∈Φ−

Ωt +

|Ψ+
|−1∑

i=1

Ωτi .

We get a contradiction to the assumption that schedule σ is feasible. �

Following the same line of reasoning, we have the following result.

Lemma 8. For any feasible schedule σ(I),

Z(σ) ≥ OPT ≥ |Φ−
| + |Ψ−

| + |Φ+
|.

Proof. Similar to the proof of Lemma 7. �

With the above discussion about the relaxed problem RRP, we now return to the original relocation problem. Let
σ be a schedule obtained by Greedy Algorithm 2 for the relaxed version. Job Ji is called fragmented if it is executed
in at least two time slots in σ . We round all fractional values of assignment xi t to either 0 or 1.

Rounding Algorithm.

1. Apply Greedy Algorithm 2 on instance I .
2. For each fragmented job Ji do

(a) If δi ≥ 0, then set τ = min{t |xi t > 0}.
(b) If δi < 0, then set τ = max{t |xi t > 0}.
(c) Insert an empty slot at time τ .
(d) Collect all fragments of job Ji and schedule it as a whole in this time slot.

3. Eliminate all empty time slots and report the schedule.

Theorem 4. For problem RP∞, Rounding Algorithm produces a feasible schedule, if exists, and has a performance
ratio of 2.

Proof. First, we show that Rounding Algorithm can produce a feasible schedule, if exists. By virtue of Lemma 4,
Greedy Algorithm 2 constructs a feasible schedule of RRP. Adding a new empty slot does not violate the feasibility
of this schedule. Let job Ji be a job with fractional assignment and δi ≥ 0 and τ = min{t |xi t > 0}. Moving any part
of job Ji to the left of the time horizon does not decrease the resource capacity of any time slot. Thus, we need only to
check if there are sufficient resources for job Ji in the new time slot. Since xiτ > 0, job Ji is available at time τ and
αi ≤ Ωτ ≤ Ωτ+1. The last inequality follows from the fact that all jobs have positive net contributions in [τ, τ + 1).
Therefore, we can schedule job Ji in the new time slot which starts at time τ + 1. Similar reasoning for the mirror
schedule is applied to Step 2 for the jobs with negative contributions, δi < 0.

Note that the number of infeasible jobs does not exceed the number of full time slots. Furthermore, all dummy time
slots are eliminated at the end of Rounding Algorithm. Therefore, the makespan of the obtained schedule Z(σ) is no
greater than 2|Φ+

| + 2|Φ−
| + |Ψ+

| + |Ψ−
|. This fact together with the results of Lemmas 7 and 8 lead to inequality

Z(σ) ≤ 2 × OPT. The proof is complete. �

Next we proceed to the problem with a finite number of machines. Let σ be a feasible schedule of RP obtained by
Rounding Algorithm. We derive schedule σ ′ by reorganizing the sets of jobs in the intervals in which the number of
scheduled jobs exceeds the number of machines.

Splitting Algorithm.

1. Let I be an instance of RP. Apply Rounding Algorithm to I and let σ be the derived schedule.
2. Let m be the number of machines and nt be the number of jobs scheduled in interval [t, t + 1) for t =

0, . . . , Z(σ) − 1.
For all t such that nt > m do:
Set τ := d

nt
m e

378 A.V. Kononov, B.M.T. Lin / Discrete Optimization 3 (2006) 366–381

Schedule nt jobs in intervals [t, t + 1), [t + 1, t + 2), . . . , [t + τ − 1, t + τ) such that each of the first τ − 1
intervals contain m jobs.
For each job Ji with Ci (σ) ≥ t + 1 set Ci (σ) = Ci (σ) + τ .

3. Stop.

Theorem 5. Splitting Algorithm is a (3 −
2
m)-approximation algorithm for the RP problem with m identical parallel

machines.

Proof. Let σ be the schedule obtained by Splitting Algorithm. We say that time interval [t, t +1) is complete if exactly
m jobs are allocated within this interval in schedule σ , otherwise time interval [t, t + 1] is incomplete. Let h and l be
the numbers of complete and incomplete intervals correspondingly, i.e. Z(σ) = l + h.

Note that after the splitting of “overloaded” unit time intervals, we get at most one new unit time interval that has
less than m jobs. It follows that l does not exceed the length of schedule obtained by Rounding Algorithm. From
Theorem 4 we have that l ≤ 2 × OPT. On the other hand, for any instance of the relocation problem with n UET
jobs and m machines we get hm+l

m ≤ OPT. The inequality follows from the fact that each complete interval contains
exactly m jobs and each uncomplete interval contains at least one job. Combining the above facts, we thus get

Z(σ)

OPT
≤

l + h

max{
l
2 , hm+l

m }
.

In the following, we show that Z(σ)
OPT is no greater than 3 −

2
m .

Case 1: l/2 ≥ (hm + l)/m

The assumption leads to l ≥ 2(hm + l)/m. We have the following chain of derivations:

Z(σ)

OPT
≤

2(l + h)

l

= 2 +
2h

l

≤ 2 +
hm

hm + l
(because l ≥ 2(hm + l)/m)

= 3 −
l

hm + l

≤ 3 −
l

lm
2

(because lm ≥ 2(hm + l))

= 3 −
2
m

.

Case 2: l/2 < (hm + l)/m

We have the following chain of derivations:

Z(σ)

OPT
≤

l + h
hm+l

m

=
m(l + h)

hm + l

= 1 +
lm − l

hm + l

≤ 1 +
lm − l

lm
2

= 3 −
2
m

.

From the above analysis, we complete the proof. �

A.V. Kononov, B.M.T. Lin / Discrete Optimization 3 (2006) 366–381 379

Fig. 3. Schedule produced by Greedy Algorithm 2.

Fig. 4. Schedule obtained by Rounding Algorithm.

We finish our study on approximation algorithms with an instance of the relocation problem which shows that
the performance ratios of Rounding Algorithm and Splitting Algorithm are tight. Consider sets of jobs, Ni , i =

1, . . . , k(m − 2) + 1. Each of the first k(m − 2) sets contains (m + 2) jobs and the last set contains 4k jobs.

1. Each set Ni , i = 1, . . . , k(m − 2), contains
(a) Two “cheap” jobs with αi j = 1/m2 for i = 1, . . . , k(m − 2), and j = 1, 2.
(b) m − 1 “normal” jobs with αi j = 1/(2(m − 1)) for i = 1, . . . , k(m − 2) and j = 3, . . . , m + 1.
(c) One “expensive” job with αim+2 = 1/2 for i = 1, . . . , k(m − 2).

2. All jobs of the last set Nk(m−2)+1 are the same and have αi j = 1/2 − (m − 2)/(2m2) for i = k(m − 2) + 1, and
j = 1, . . . , 4k. We call these jobs as “final” jobs.

Let Ω0 = 1 and αi j = βi j for all jobs. The jobs are input in lexicographic order, i.e at first all jobs from set N1 in the
increasing order of indices, then all jobs from set N2 and so on. We do not break ties in this case. Therefore, our approx-
imation algorithm will process the jobs in accordance with the input sequence. In a certain way Greedy Algorithm 2
reports the worst schedule (Fig. 3) in this case. It is easy to check that Greedy Algorithm 2 obtains the schedule for
the relaxed relocation problem and the makespan of this schedule is equal to km. Recall that this value is a lower
bound for both of the two cases RP∞ and RP. Rounding Algorithm then gets the schedule shown in Fig. 4 of the RP∞

problem with makespan 2km −1. Further, Splitting Algorithm outputs the schedule shown in Fig. 5 of the RP problem
with makespan k(3m − 2) − 1.

380 A.V. Kononov, B.M.T. Lin / Discrete Optimization 3 (2006) 366–381

Fig. 5. Schedule obtained by Splitting Algorithm.

Fig. 6. Optimal schedule of the example instance for approximation algorithms.

The optimal schedule can be obtained in the following way (Fig. 6). We group m − 1 “normal” jobs and one
“expensive” job in one unit-time interval. The execution of all such jobs requires k(m − 2) time slots. Then, we
schedule m − 2 “cheap” jobs with two “final” jobs in some time slots. Because we have 2k(m − 2) “cheap” jobs and
4k “final” jobs, we need 2k time slots to accommodate all these jobs. Finally, we have a schedule with makespan km,
which matches the lower bound on the makespan of the instance. Choosing k as big as we want, we can show that the
performance ratios of Rounding Algorithm and Splitting Algorithm are tight.

6. Conclusion

In this paper, we have considered a variant of the relocation problem where identical parallel machines are available.
The problem was shown to be unary NP-hard even if all jobs have the same processing time and all jobs have positive
contributions. For the case with an unbounded number of machines, we have given a negative result that there is no
approximation algorithm having a performance ratio less than 4/3. On the other hand, we developed a 2-approximate
algorithm for the case with an unbounded number of machines. Based upon this algorithm, a (3−2/m)-approximation
algorithm for the case with a bounded number of machines has been proposed. An instance was given to show the
tightness of the performance ratio of our proposed algorithm.

While the generic relocation problem without temporal considerations is equivalent to the two-machine flowshop
scheduling problem, it is interesting to study other scheduling issues in the relocation problem incorporating temporal
parameters and/or constraints. As an example, the relocation problem in two-machine flowshop (instead of two parallel
machines) is of practical significance. The two machines can be interpreted as a working team for demolishing old
buildings and the second team for constructing new buildings. In a sense, the second machine of the flowshop is
designated for recycling resources and the resources of a job can be further utilized only if the recycling process of it
is completed.

A.V. Kononov, B.M.T. Lin / Discrete Optimization 3 (2006) 366–381 381

Acknowledgements

The authors are grateful to the anonymous referees for their patience in reviewing the earlier versions of this paper.
Their comments have greatly improved the presentation. Especially, we highly appreciate one of the referees who
identified several unclarified points and provided suggestions for reorganizing the structure of this paper.

The authors are partially supported by a Taiwan–Russia joint project under grant NSC-94-2416-H-009-013
(Taiwan) and RFBR RP05H01 (05-06-90606-HHCa, Russia).

References

[1] A. Amir, E.H. Kaplan, Relocation problems are hard, International Journal of Computer Mathematics 25 (1988) 101–110.
[2] J. Blazewicz, J.K. Lenstra, A.H.G. Rinnooy Kan, Scheduling subject to resource constraints: Classification and complexity, Discrete Applied

Mathematics 5 (1983) 11–24.
[3] G.B. Dantzig, Discrete variable extremum problems, Operations Research 5 (1957) 266–277.
[4] M.R. Garey, D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness, Freedman, San Francisco, California,

1979.
[5] W. Fermandez de la Vega, G.S. Lueker, Bin packing can be solved within 1 + ε in linear time, Combinatorica 1 (1981) 349–355.
[6] P.L. Hammer, Scheduling under Resource Constraints — Deterministic Models, Annals of Operations Research, 7 Scheduling under resource

constraints, J.C. Baltzer AG, Switzerland, 1986.
[7] S.M. Johnson, Optimal two- and three-stage production schedules with setup times included, Naval Research Logistics Quarterly 1 (1954)

61–67.
[8] E.H. Kaplan, Relocation models for public housing redevelopment programs, Planning and Design 13 (1986) 5–19.
[9] E.H. Kaplan, A. Amir, A fast feasibility test for relocation problems, European Journal of Operational Research 35 (1988) 201–205.

[10] E.H. Kaplan, O. Berman, Orient heights housing projects, Interfaces 18 (1988) 14–22.
[11] J.-X. Xie, Polynomial algorithms for single machine scheduling problems with financial constraints, Operations Research Letters 21 (1997)

39–42.
[12] PHRG, New Lives for Old Buildings: Revitalizing Public Housing Project, Public Housing Group, Department of Urban Studies and Planning,

MIT, Cambridge, Massachusetts, 1986.

	On relocation problems with multiple identical working crews
	Introduction
	Preliminaries
	Two machines
	Non-approximability
	Approximation algorithms
	Conclusion
	Acknowledgements
	References

