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Abstract

The development of a parallel three-dimensional (3-D) adaptive mesh refinement (PAMR) scheme for an unstructured tetrahedral mesh using
dynamic domain decomposition on a memory-distributed machine is presented in detail. A memory-saving cell-based data structure is designed
such that the resulting mesh information can be readily utilized in both node- or cell-based numerical methods. The general procedures include
isotropic refinement from one parent cell into eight child cells and then followed by anisotropic refinement which effectively removes hanging
nodes. A simple but effective mesh-quality control mechanism is employed to preserve the mesh quality. The resulting parallel performance of
this PAMR is found to scale approximately as N1.5 for Nproc � 32. Two test cases, including a particle method (parallel DSMC solver for rarefied
gas dynamics) and an equation-based method (parallel Poisson–Boltzmann equation solver for electrostatic field), are used to demonstrate the
generality of the PAMR module. It is argued that this PAMR scheme can be applied in any numerical method if the unstructured tetrahedral mesh
is adopted.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Unstructured grid topology has recently attracted tremen-
dous attention in several disciplines. Examples of which in-
clude computational fluid dynamics (CFD) [1,2], computational
molecular gas dynamics [3], computational structural mechan-
ics [4, and references cited therein], computational density
functional theory in quantum mechanics [5, and references
cited therein], computational electromagnetics [6, and refer-
ences cited therein], among other disciplines. The advantages of
using an unstructured mesh over a structured one include higher
flexibility in handling boundaries with complicated geometry,
and the possibility of adaptively refining the mesh and effi-
cient parallel computing using the graph-partitioning technique
for large-scale problems. The disadvantages include indirect
addressing to memory for accessing grid data and a possibly
longer simulation time as compared to solvers using a struc-
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tured mesh for the same number of nodes. However, the fast de-
veloping high-speed computer technology outpaces these dis-
advantages nowadays. This explains the rapid progress in de-
veloping the unstructured-mesh solvers within several research
fields in the past decade.

Detailed reviews of algorithms for adaptive refinement of tri-
angular and tetrahedral meshes in serial processing are skipped
here for brevity since we are interested in developing a paral-
lel adaptive mesh refinement (PAMR). Thorough reviews could
be found in, for example, [7] and references cited therein. Fur-
thermore, the combination of the parallel physical solver and
the parallel adaptive mesh refinement (PAMR) using a three-
dimensional unstructured mesh may represent the most power-
ful technique for numerically solving physical problems. The
parallel implementation of a physical solver (equation or par-
ticle) is conceptually easy, although the practice is rather gen-
erally involved. The development of a PAMR is relatively pop-
ular in the past, but most studies only concentrated on a two-
dimensional unstructured mesh, e.g., [8]. Nevertheless, PAMR
in a three-dimensional unstructured mesh is required to increase
numerical accuracy and reduce the number of grid points (thus,
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memory) for a large-scale parallel 3-D physical simulation. Un-
fortunately, studies done on 3-D PAMR are very rare [9–11]
mainly because of its complicated logic and the data struc-
tures required to track the grid points that are added or removed
during the refining process. There are several ways to classify
PAMR methods, and some of them are reviewed in the follow-
ing.

First, from the viewpoint of practical implementation on
computers, PAMR can be generally categorized into two types:
vectorized shared memory and distributed memory. In the
shared memory type [12], the hardware for parallel implemen-
tation is generally very expensive, and the coding is compa-
rably easy, like using OpenMP [13], for instance. Memory
access is direct and fast, which makes communication cost
among processors minimal. Moreover, load balancing among
processors is expected to be good, while memory contention
may occur which possibly slows down the speed. However,
some particle methods, such as direct simulation Monte Carlo
(DSMC) [14], are not suitable for this kind of vectorized paral-
lel implementation because of too many logical decisions in-
volved in the actual code. In contrast, the hardware is more
affordable for the distributed memory type [9–11] than the
shared memory type, while the coding is rather involved using
MPI [15], for instance. Global data access is gained through
network communication, which often becomes the bottleneck
for better parallel performance if a large number of proces-
sors is used. However, this becomes increasingly unimportant
because of the rapid increase in the speed of network commu-
nication, and the dramatic reduction of costs in the past decade.
Deciding on what type of parallel machine to implement greatly
impacts the fundamental algorithm design as well as the practi-
cal implementation of the PAMR.

Second, from the viewpoint of the AMR algorithm itself,
there are generally two kinds of mesh refinement: h-refinement
and mesh regeneration. Mesh regeneration AMR [16] regener-
ates mesh from a mesh generator based on the distribution of
error estimator obtained from the previous coarse mesh. For a
large-scale 3-D computation, there exist two problems. First,
the process often takes too much time, and second, the interpo-
lation of previous solutions onto the new mesh is rather ineffi-
cient, which may slow down the convergence for the simulation
on the new mesh. However, the data structure is relatively sim-
ple as compared to the h-refinement AMR. The h-refinement
AMR [9–11] adds grid points onto cell edges based on the error
estimator obtained from the previous coarse mesh. It is gen-
erally much faster than the mesh regeneration type, and the
interpolation onto the new mesh from the previous solution
is straightforward, which may speed up the convergence for
the computation on the new mesh. Often, the resulting “edge-
based” data structure is very complicated and memory demand-
ing, especially for the 3-D PAMR on the memory-distributed
type of machine. Nevertheless, this type of AMR also has an-
other advantage in that its data structure may be readily mod-
ified for mesh de-refinement, which may become important
for a time-dependent simulation. Additionally, the h-refinement
AMR possesses high spatial locality, which makes possible the
parallel implementation on a memory-distributed machine us-
ing domain decomposition.

Third, from the viewpoint of the unstructured mesh solver
itself, two types of mesh data are required: the finite element
type of connectivity (or connectivity) and cell-based connec-
tivity (or cell neighbor-identifying information). The equation
solver often needs the former, while the latter is required by
some particle method for particle tracking, such as DSMC [14]
and PIC [17] for solving the Boltzmann equation with neutral
and charged species, respectively. However, the past develop-
ment of the AMR scheme only produced the finite element
type of connectivity. Related cell neighbor-identifying infor-
mation can of course be obtained by post-processing serially
(not in parallel) the node-based connectivity, while it may be-
come time-consuming if the resulting mesh size is large. Thus,
an ideal PAMR scheme may be expected to directly generate
both these two sets of data.

Previously, we developed an AMR module using the h-refi-
nement scheme for an unstructured tetrahedral mesh [18] and
applied it to simulate rarefied gas dynamics incorporation with
a parallelized DSMC code. However, there are some potential
problems with the further application of the module. First, it
is a serial version which cannot be utilized for large-scale prob-
lems due to memory constraints. Second, due to some strategies
used for mesh-quality control (will be introduced in Section 2),
the number of final refined cells often becomes too large to han-
dle for a realistic problem. Third, the mesh-refining process is
not automatic since the user has to stop the running application
program and refine the mesh by manually running the AMR
module. In this paper, we intend to simultaneously solve these
three problems.

Therefore, in the current study, a cell-based PAMR scheme
for the three-dimensional unstructured tetrahedral mesh with
a better mesh-quality control is proposed and tested. The pa-
per begins with detailed descriptions of the PAMR scheme.
The results of parallel performance are then presented, which
are followed by the application of the PAMR to both particle-
based (DSMC) and equation-based (Poisson–Boltzmann equa-
tion) codes. Finally, important conclusions of the current study
are summarized at the end of this paper.

2. Parallel adaptive mesh refinement scheme

In this section, three major parts are described, including the
basic algorithm for mesh refinement, the parallel implementa-
tion of mesh refinement, and the coupling of PAMR with other
numerical schemes. In each part, a general description and re-
lated specific algorithms are respectively provided.

2.1. Basic algorithm for mesh refinement

2.1.1. General procedures
Considering the complexity of involved logic and data struc-

ture, we are only interested in refining the unstructured tetra-
hedral mesh. The general idea of refining the mesh in the cur-
rent study is to simply “isotropically” refine the parent cells
that require refinement into eight child cells. These child cells
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Fig. 1. Schematic diagram showing the procedures of removing hanging nodes for unstructured tetrahedral mesh.
from isotropic refinement are classified as “isotropic cells”. In
contrast, those cells other than the isotropic cells are then clas-
sified as “anisotropic cells”. The important steps in refining
cells can be summarized as follows. (1) Add a node on the cell
edges of “isotropic” and “anisotropic” cells. (2) Refine cells that
have added node(s) on the edge(s), and (3) update connectivity
and cell neighbor-identifying information. Following the pro-
cedures in Fig. 1, the hanging nodes in the anisotropic cell that
are adjacent to the isotropic cells are then removed by dividing
it into two, four, or eight child cells while considering the cell-
quality control mechanism which is introduced next. Note that
this process of removing hanging nodes (Fig. 1) also applies to
those cells after cell-quality control in all levels of refinement.
Mesh refinement along this line is conceptually simple, while
the practical implementation is rather involved. The details of
the steps outlined above will be described later in the section
that introduces the parallel implementation of mesh refinement.

2.1.2. Cell neighboring connectivity
In general, the AMR scheme [9–11] often applies the edge-

based data structure in storing and searching connectivity-
related data. With this edge-based data structure, the cells con-
taining a common refined edge can be easily identified, which is
necessary in the AMR scheme. However, the edge-based data
structure is relatively memory demanding. For example, up to
∼7N edges can result from a tetrahedral mesh with N nodes,
while only ∼6N cells are formed. With this edge-based data
structure, ∼10 times of the number of edges are often required
since up to ∼10 or more cells share a single edge in a typi-
cal tetrahedral mesh, while only four times of the number of
the cells are required (four faces in a cell) if the cell-based data
structure is employed. Thus, the overall memory saved in this
regard can be up to 2–3 times if the cell-based data structure is
utilized. This justifies the use of the cell neighbor-identifying
array in the present study.

Since we do not utilize the edge-based data structure, how to
quickly search the cells sharing a common edge becomes very
important in the refinement procedure. The basic concept of the
cell-based data structure is based on the fact that only two faces
share a common edge in a cell, which can be used to efficiently
sort the sharing faces. Fig. 2(a) shows a typical example of the
common edge shared by the adjacent cells. Edge A-B is shared
by Cell A-B-1-2, A-B-2-3, A-B-3-4, A-B-4-5, and A-B-5-1. For
brevity, the procedure of sorting the faces sharing the common
Edge A-B is used as an example to demonstrate the general
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Fig. 2. Example of the common edge shared by the adjacent cells.
ideas of face sorting using cell-based data structure and is sum-
marized as follows:

1. Define Cell A-B-1-2 as the initial searching cell.
2. Search the neighboring cells (A-B-2-3 and A-B-5-1) which

share the common edge (Edge A-B) according to the cell
neighboring-identifying array and finite element connectiv-
ity.

3. Select one of these two neighboring cells (e.g., Cell
A-B-2-3 through Cell Interface A-B-2 shown in Fig. 2(b))
as the current searching cell.

4. Mark Edge A-B as a refined edge with local edge number-
ing in Cell A-B-2-3.

5. Search the next neighboring cell (Cell A-B-3-4 through
Cell Interface A-B-3) which shares the common edge
(Edge A-B) with Cell A-B-2-3 according to the cell
neighboring-identifying array and finite element connec-
tivity.
6. Assign the next neighboring cell as the current searching
cell.

7. Repeat the similar process in Procedures 4–5 until the next
neighboring cell is the same as the initial searching cell de-
fined in Procedure 1. For example, as shown in Fig. 2(c),
the neighboring cell of face i′ of Cell A-B-1-5 (the same as
the face j ′ of Cell A-B-1-2) is the Cell A-B-1-2, which is
the defined initial searching cell.

8. For cases in which this cell-by-cell searching process
meets the physical face boundary or IPB (Interior Proces-
sor Boundary), the other neighboring cell (e.g., A-B-5-1
through Cell Interface A-B-1) of the initial searching cell
(Cell A-B-1-2) will be selected as the current search-
ing cell. The algorithm will repeat the similar process
in Procedures 4–5 until another physical face boundary
or IPB is found in the process of identifying the cell
group.
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2.1.3. Cell-quality control
In the process of adaptive mesh refinement, a refined mesh

which has a larger aspect ratio often appears in the final mesh
distribution, especially in the “anisotropic” cells. Most mesh-
smoothing schemes tend to change the structure of a given
mesh to achieve the “smoothing effect” (a better aspect ratio)
by rearranging the position of the nodes in the mesh. Changes
made by a smoothing scheme, however, could possibly modify
the desired distribution of mesh density produced by the AMR
procedure. Additionally, the cost of performing a global mesh
smoothing could be high. Alternatively and in a simpler way, it
is possible to prevent or slow down the degradation of cell qual-
ity during a repeated adaptive refinement process. The present
cell-quality control scheme classifies the cells based on how
they will be refined. This allows us to avoid creating cells with
large aspect ratios during the refinement. After identifying those
cells, we can then refine them with a better refining strategy.

The basic idea of the proposed mesh-refining scheme is to
simply prevent the further deterioration of cell quality while
refining the cells that originate from previously “anisotrop-
ic” cells. The proposed procedures of the cell-quality control
scheme are shown schematically in Fig. 3 along with the cor-
responding procedures without cell-quality control. The logic
looks quite complicated at first glance; however, it is conceptu-
ally simple in reality. A general rule of thumb is to identify if
the hanging nodes occur at the “normal edge” or “short edge”
of the cell. Note that the “normal edge” is defined as one of
the six edges of an isotropic cell, while the “short edge” results
from the bisection of a “normal edge” in a previous level of
refinement. If at least one of the hanging nodes occurs at the
short edge, special treatment such as that in Fig. 3 is required
to prevent the further deterioration of cell quality in later mesh
refinement. Otherwise, the procedure in Fig. 1 applies directly.

In the data structure, we need to record each previously re-
fined cell with an index showing if it is an “isotropic” cell or
an “anisotropic” cell (two or four refined cells, respectively).
This can then be used for cell-quality control purposes as shown
in Figs. 3(a), 3(b). The latter figures show the correspond-
ing process of refining the cell if the parent cell originates
from an “anisotropic” cell due to two or four refined cells, re-
spectively. A previously developed cell-quality control scheme
(Fig. 3 in Ref. [18]) simply isotropically refined such a cell
into eight child cells even if it originates from an anisotropic
cell. This rule is simple in implementation; however, it often
creates too many isotropic child cells, which tremendously in-
creases the computational load of the solver. For example, in
the present implementation as shown in Fig. 4, the original
hanging node “8” is directly removed by adding two additional
nodes (A and B) to form four child cells, instead of two child
cells (1-4-8-7 and 5-4-8-7) from the parent cell 1-5-7-4. The
present proposed cell-quality control scheme produces refined
cells with a better aspect ratio as compared to the “isotropic”
refinement presented previously [18]. Tests verifying the supe-
riority of this new cell-quality control scheme will be shown in
a later section.
2.1.4. Surface cell refinement
If the boundary surface of the computational domain is not

planar, it is not sufficient to place the added nodes directly on
the edge (called “boundary edge” hereafter) of the parent-cell
face that belongs to the boundary. Should the refined nodes be
placed directly on the boundary edges, this may result in the
rough piecewise representation of the original boundary sur-
face. What must be done is to move the position of the added
nodes onto the real boundary contour surface. In the present
implementation, it is assumed that the boundary surface can be
represented in a parametric format (a second order polynomial)
in several segments specified by the user. Special cell neigh-
bor identifiers are assigned to these curved boundary cells to
distinguish them from straight boundary cells within the com-
putational domain. Whenever the boundary cell which requires
refinement is identified as a curved boundary cell, the corre-
sponding parametric function representing the true surface con-
tour is called in to locate the correct node positions along the
parametric surface. A typical example of refining the curved
boundary surface will be shown in a later section.

2.2. Parallel implementation of mesh refinement

2.2.1. General procedures
Fig. 5 shows the proposed overall procedure for parallel

mesh refinement. Basically, the procedures are similar to those
presented earlier for serial mesh refinement. However, the de-
tailed procedures and related data structure presented in Fig. 5
are much more complicated than those in the serial mesh refine-
ment because of the parallel processing with domain decompo-
sition. Each spatial subdomain belongs to a specific processor in
practice. The algorithm is implemented in the SPMD paradigm
(master-slave style) on a memory-distributed parallel machine
using MPI as the data communication protocol. The overall pro-
cedure, as shown in Fig. 5, can be summarized as follows:

1. Preprocess the input data at the host processor. The detailed
preprocessing tasks are explained in detail as follows:
1a. Initialize MPI.
1b. Synchronize all processors.
1c. Read the grid data, the solution distribution from the

previous mesh, and the refinement criteria in the host
processor. The grid data include the nodal coordinates
and the connectivity between nodes and cells. If it is
beyond level-0 refinement, then the cell-neighboring
identifying array is also read. Solution distribution and
refinement criteria are used to determine the proper do-
main decomposition using the graph-partitioning tech-
nique [19] while considering the weighting distribution
at graph vertices. For example, the weight of “8” is as-
signed at the cell center (graph vertex) if the cell will
be refined “isotropically”; otherwise, the weight of “1”
is assigned at the cell center. This will relieve the load-
unbalancing problem often encountered in the PAMR
scheme.

1d. Convert the connectivity data into neighbor-identifying
array in the host processor. Note that Step 1d is con-
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Fig. 3. Schematic diagram showing the procedures of cell-quality control during mesh refinement for unstructured tetrahedral mesh.
ducted only at the level-0 mesh refinement since at
further levels, the neighbor-identifying array is avail-
able from a previous level of refinement and is read in
Step 1c. The neighbor-identifying array, whose value
is the global cell number, defines what the neighbor-
ing cells are across the faces of each cell. It is then
used to quickly identify the common edge which is de-
fined by two unique global node numbers. Note that
this common edge is shared by many neighboring cells
in a 3-D tetrahedral mesh. With this information, there
is no need to define the edge-based array, which is of-
ten done in other PAMR studies [9–11]. In addition,
it is necessary to have this neighbor-identifying ar-
ray for cell-by-cell particle tracing in a particle-based
method, such as the DSMC [18] and the PIC [20] meth-
ods.
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Fig. 4. A typical example for better cell-quality control during refinement.
1e. Distribute the necessary information to all proces-
sors. Once each processor receives the information,
a node-mapping array that defines the conversion of
the local to the global node number is defined for
all local nodes in each processor. To save memory,
the local node and cell numbers range from “one” to
the maximum number of nodes and cells in the lo-
cal processor, respectively. A similar cell-mapping ar-
ray is also defined in this step. The abovementioned
node- and cell-mapping arrays are built mainly to ac-
cess the grid data in each processor. From Step 2
and thereon, the procedures become the same for all
processors, while the host processor is also used for
final data gathering and outputting to files as shown
next. Whenever the global data structure needs to be
modified, communication among processors becomes
inevitable.

2. Index those cells, in which refinement is necessary, based
on the refinement criteria. The refinement criteria are de-
cided by the type of numerical solvers that can be either of
equation or particle type.

3. Check if further mesh refinement is necessary, and if it is,
proceed to the next step. If it is not, proceed to Step 9.

4. Add new nodes into those cells that required refinement
(Module I in Fig. 5). These cells may include those which
are flagged to be refined “isotropically” and those next to
the isotropic cells (“anisotropic”). The details of the imple-
mentation as shown schematically in Fig. 6 are described
as follows:
4a. Add new nodes onto all the edges of the isotropic cells.
4b. Add new nodes into the anisotropic cells, which may

require further refinement, as decided in the following
steps, in order to remove the hanging nodes created ear-
lier. Note that the node number for each newly added
node in Step 4a and Step 4b is assigned increasingly
starting from the original maximum local node number
in each processor.
4c. Communicate the hanging node data to the corre-
sponding neighboring processor if the hanging nodes
are located at IPB. For each processor, if the hang-
ing node data are received from other processors at this
stage, return to Step 4b to update the node-related data
(local numbering, local connectivity, and coordinates).
If no hanging node data are received at this stage, pro-
ceed to the next step.

4d. Remove the hanging nodes following the procedures
shown in Fig. 1. Return to Step 4b if further node addi-
tion is necessary in this step. Proceed to the next step if
no further node addition is required.

5. Unify the global node and cell numberings due to the new
added nodes among all processors (Module II in Fig. 5).
Note that the global and local node numberings for all orig-
inal nodes before refinement are kept the same after the
refinement. The procedure for this step is explained in de-
tail as follows:
5a. Add up the number of newly added nodes in each

processor, excluding those located at IPBs.
5b. Gather these numbers from all other processors, add

them up to obtain the updated total number of nodes,
and distribute it to all other processors. Note that this
updated total number of nodes includes old and new
nodes, but excludes the newly added nodes at IPBs.
These newly added nodes at IPBs require further treat-
ment in a later step.

5c. Build up the updated node- and corresponding cell-
mapping arrays for those newly added nodes in the
interior part of each subdomain based on the results
in Step 5b.

5d. Communicate the data of newly added nodes at IPBs
among all processors.

5e. Build up the node-mapping array for the received new
nodes at IPBs in each processor.
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Fig. 5. Proposed algorithm of parallel mesh refinement for unstructured mesh refinement.
6. Build up new connectivity data for all cells due to the newly
added nodes (Module III in Fig. 5).

7. Build up the new cell neighbor-identifying array based on
the newly obtained connectivity data from Step 6 (Mod-
ule IV in Fig. 5). The procedure for this step is explained in
detail as follows:
7a. Reset the cell neighbor-identifying array.
7b. Build up the cell neighbor-identifying arrays for all

cells based on the new connectivity data, excluding the
data associated with the faces lying on the IPBs that
require the updated information of the global cell num-
ber, which has not communicated at this stage.
7c. Record all the cell neighbor-identifying arrays that are
not rebuilt in Step 7b.

7d. Broadcast all the recorded data in Step 7c to all
processors.

7e. Build up the cell neighbor-identifying arrays on the
IPBs considering the overall connectivity data struc-
ture.

8. Decide if it reaches the preset maximum number of refine-
ment levels. If it does, proceed to the next step; otherwise,
return to Step 3.

9. Synchronize all processors.
10. The host processor gathers all the data and outputs them.
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Fig. 6. Proposed algorithm for adding nodes in the cells that require refinement.
In the practical application of coupling the PAMR with other
parallel numerical solvers in Step 3, the maximum number of
refinement levels is set to “one” since the control of whether
further refinement is necessary is instead decided upon outside
the PAMR, as can be seen in the next section.

2.3. Coupling of PAMR with other parallel numerical solvers

The PAMR scheme presented in the previous section can be
easily coupled with any parallel numerical solver that utilizes
a 3-D unstructured tetrahedral mesh and MPI for data com-
munication protocol. One can readily wrap up the PAMR as
a library and insert it into the source code of any parallel nu-
merical solver one intends to use. However, there exist some
possible problems which may occur due to memory conflicts
between the inserted library and the numerical solver itself, and
which could reduce the problem size one can handle in practice.
Instead, a simple coupling procedure as shown schematically
in Fig. 7, which is written in a shell script language standard
on all Unix-like systems is prepared to link the PAMR and
any parallel numerical solver. In the sketch, Nmax represents
the maximum number of refinement levels preset by the user.
The satisfaction of the refinement criteria can be identified by
simply checking the status of the index of refinement in each
cell obtained from the numerical solver. The choice of refine-
ment criteria depends upon what type of numerical solver is
used, and the physical problem it is concerned with. For ex-
ample, in a particle method such as DSMC, the cell size has
to be smaller than the local mean free path that is a func-
tion of temperature, number density, and type of species under
consideration. Before entering the PAMR module, the mesh is
repartitioned based on a new distribution of the weight factors
of cells, in which those cells flagged for refinement and are
based on problem-dependent mesh-refining criteria, are set as
eight, while the others are kept as unity. With this repartition,
the workload among processors is approximately balanced dur-
ing the mesh-refining process. Finally, the adaptively refined
mesh is read into the numerical solver for a better solution. The
abovementioned procedures are repeated until either the level
of refinement exceeds the preset maximum level, or no further
mesh refinement is required. One of the immediate advantages
of this is that the source codes can be kept intact without any
changes. Indeed, it is especially justified if only a steady state of
the physical problem is sought, in which normally, only several
times of mesh refinement is enough to have a fairly satisfying
resolution of the solution. Thus, the total I/O time in switching
between two codes, in proportion to the number of couplings,
can be reduced to a minimum in practical applications.

3. Results and discussions

The completed PAMR code is tested on a PC-cluster sys-
tem which is termed as “Cahaba” at the University of Al-
abama, Birmingham (http://www.eng.uab.edu/me/etlab/cluster.
htm#resources). This system is configured in a master–slave
network architecture with the following features: 64 dual-
processor nodes, 2.4-GHz Xeons for each processor, 2-GB
RAM at least for each node, and GB-Ethernet for networking.
This PAMR code is expected to have high portability across
various parallel machines if they are memory distributed and
if they use MPI as the communication protocol. The corre-
sponding parallel performance of PAMR on this machine, and
its applications to the parallel direct simulation Monte Carlo
method (particle method) and the parallel Poisson–Boltzmann

http://www.eng.uab.edu/me/etlab/cluster.htm
http://www.eng.uab.edu/me/etlab/cluster.htm
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Fig. 7. Proposed algorithm for coupling the PAMR with any parallel numerical solver.
Table 1
Flow conditions for 70◦ blunt body hypersonic flow with attack angle of 10◦
(Kn∞ = 0.0108) in SR3 wind tunnel

Ma∞ Kn∞ Re∞ T ∞ (K) V ∞ (m/s)

20 0.0108 4,116 13.6 1,502

equation solver (equation-based method) are discussed in the
following.

3.1. Parallel performance of PAMR

The parallel performance of the PAMR is studied using
a refined mesh generated during the process of AMR (after
3 AMRs) for a hypersonic nitrogen flow past a 70◦ blunt cone
using the DSMC method. The flow conditions are summarized
in Table 1. Before the fourth PAMR, the original mesh (level-3)
has 1,070,194 tetrahedral cells and 187,649 nodes (Fig. 8(a)),
while after the fourth PAMR, the amount increases to 2,701,178
cells and 468,944 nodes (Fig. 8(b)). A test using this fairly large
size of mesh lies mainly on the fact that the current PAMR is
designed to handle a large mesh size.

Resulting timings (in seconds) for different components of
the PAMR using different numbers of processors (up to 64),
respectively, are listed in Table 2. It is clearly shown that the
timing for the preprocessing module increases slightly with the
increasing number of processors, although the increase seems
to level off as the processor number �32. This mild increase
can be attributed to the initial data distribution from the host
processor to the increasing number of slave processors. The ad-
vantages of the parallel implementation of mesh refinement can
be clearly seen from modules I, II, and IV, of which the timings
reduce dramatically with the increasing number of processors.
For example, as the number of processors increases from 2 to
32, the timing for module I, II, and IV reduces to approxi-
mately 61.4, 95.9, and 9.3 times, respectively, while it increases
to 2.4 times for module III. The corresponding overall com-
putational time decreases 29.7 times (from 1103 s to 37.1 s).
Nevertheless, the timing levels off as the number of processors
increases up to 64 due to the increase of communication among
processors. In addition, the total computational time decreases
even more to 62 times (from 1090.5 s to 17.6 s) if the pre-
processing time is excluded. From our experience, reading the
grid data (Step 1c) takes most of the time in the preprocessing
module. Thus, the preprocessing time can be greatly reduced
if the parallel processing of Step 1c is implemented, although
we have not done so in the present study. The resulting in-
crease of computational speed, excluding the preprocessing, is
approximately scaled as N1.5 for Nproc � 32 which is surpris-
ingly good. This high speedup is obviously due to the dramatic
decrease of the time spent in Module II, which is the most
time-consuming part of the mesh-refining algorithm. The rea-
sons for this rapid decrease of processing time in Module II
(Steps 5a–5e) include a possible cache miss of the superscalar
machine due to the large problem size and a highly localized
algorithm in renumbering the added nodes, except in Steps 5b
and 5d which require moderate communication among proces-
sors.

3.2. Cell-quality control scheme

The proposed cell-quality control mechanism (Fig. 3) is
tested by simulating a supersonic argon gas flow past a sphere
(Kn∞ = 0.1035) using the DSMC method. Only 1/16 of the
whole domain is taken for simulation because of the axial
symmetry in this problem. Fig. 9(a) shows a typical mesh dis-
tribution without cell-quality control, while Fig. 9(b) shows the
mesh distribution with the present cell-quality control scheme
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(a)

(b)

Fig. 8. Surface mesh distribution of a hypersonic flow over 70◦ blunt body with angle of attack 10◦ . (a) Original (level-3) mesh; (b) level-4 refined mesh.
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(a)

(b)

Fig. 9. Surface mesh distribution for a supersonic flow past a sphere (M∞ = 4.2, Kn∞ = 0.103, argon gas). (a) With cell quality control, (b) without cell quality
control.

Table 2
Timing (seconds) of PAMR module for different processor numbers (Cahaba)

Processor No. 2 4 8 16 32 64

Preprocessing 12.5 13.5 14.4 15.4 19.5 18.2
I 92.1 24.8 6.2 2.0 1.5 2.4
II 977.9 267.4 68.5 23.2 10.2 9.9
III 0.9 1.8 2.0 3.3 3.8 6.9
IV 19.5 9.7 5.4 2.9 2.1 2.4
Total time 1103.0 317.2 96.5 46.7 37.1 39.8

I. Add nodes on cell edges. II. Renumber added nodes. III. Update connectivity data. IV. Build neighbor identifier array.
Mesh refinement test for a hypersonic flow over 70◦ blunt cone: Original mesh: 1,070,194 cells and 187,649 nodes. Level-1 refined mesh: 2,701,178 cells and
468,944 nodes.
using the same initial mesh. It is clear that the present cell-
quality control scheme can effectively reduce the deterioration
of the cell quality in the region of “anisotropic” cells. In addi-
tion, the number of cells after PAMR with cell-quality control
is slightly larger than that after PAMR without cell-quality con-
trol.

3.3. Numerical examples

In the following, two numerical examples coupling with
the PAMR, including the DSMC method and the Poisson–
Boltzmann equation solver, are presented in turn. The under-
lying physics behind the two numerical examples is not dis-
cussed in detail since in the present study, we are only inter-
ested in demonstrating the possible applications of the pro-
posed PAMR.

3.3.1. Parallel direct simulation Monte Carlo method
The particle method, which is a direct simulation Monte

Carlo (DSMC) method developed by Bird [14], is a standard
tool for solving the Boltzmann equation with neutral rarefied
gas species. The important steps of the DSMC method include
the following: particle moving to a new configuration space,
particle sorting into the cell, particle collision to find out the
new position in velocity space, and then finally, particle sam-
pling to obtain the macroscopic properties. The details can be
found in the study of Bird [14] and are not repeated here for the
sake of brevity.
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Table 3
Evolution of simulation conditions at different refinement levels using PAMR for 70◦ blunt body hypersonic (α = 10◦ , Kn∞ = 0.0108)

Level Cell No. Particle No. Sampling time
steps

Reference
time step (sec)

Transient time
steps

0 15,190 ∼270,000 18,000 1.88E−07 4000
1 43,624 ∼560,000 18,000 1.55E−07 4000
2 229,040 ∼5,880,000 18,000 6.02E−08 4000
3 1,070,194 ∼11,100,000 18,000 2.41E−08 8000
4 2,700,319 ∼18,100,000 17,000 1.98E−08 10,000
The previously developed parallel direct simulation Monte
Carlo (PDSC) in our group [18,21] is coupled with the present
PAMR to simulate the flow field of a hypersonic argon gas flow
past a 70◦ blunt cone (M∞ = 20, angle of attack α = 10◦, free-
stream Knudsen number Kn∞ = 0.0108, constant wall tem-
perature of blunt cone Tw = 300 K) in the SR3 wind tunnel
[22–25], as shown in Fig. 10. The important features of PDSC
include parallel implementation using dynamic domain decom-
position, a spatially variable time step, a conservative weighting
scheme for treating flows with trace species, among others.
The detailed dimensions of the blunt cone can be found in
[21–24], while the other important flow conditions are briefly
summarized in Table 1, as mentioned in the previous section.
A semi-cylindrical region enclosing the blunt cone is used as the
computational domain considering the symmetry of the phys-
ical problem. In addition, a free-stream parameter βfr = 1.05
[18,26] which is a threshold value of the ratio of local number
density to free-stream value, below which a mesh is not re-
fined, is used to reduce the number of cells in the free stream. In
the present simulation, both the variable time-step scheme [18]
and dynamic domain decomposition [21] are used to reduce the
computational time.

The evolution of simulation conditions at different levels of
refinement are summarized in Table 3. The number of cells in-
creases from ∼15,000 to ∼2.7 millions (level 4, Fig. 8(b)),
while the number of particles increases from ∼270,000 (ini-
tial) to 18.1 millions (level 4). The reference time-step size
decreases from 1.88E−07 seconds (initial) to 1.98E−08 sec-
onds (level 4), while the total number of sampling time steps is
kept at the same value of 18,000. Note that the reference time
step spatially represents the smallest time step, which often oc-
curs near the stagnation region with the highest density and
the smallest cell size. With roughly ∼5–10 particles per cell
in most of the regions, this sample size should be good enough
to obtain the macroscopic quantities with acceptable statistical
uncertainties. In addition, the number of transient time steps in
the DSMC computation using the level-4 mesh is extended to
10,000 to ensure that the sampling starts without any transient
effect. To reduce the transient time of the simulation at each
level of mesh, the solution obtained from the previous level of
mesh can be interpolated into the new mesh, although we did
not do so in the present study.

Figs. 11–13 respectively illustrate the distribution of nor-
malized density, total temperature, and Mach number in the
symmetric plane using a level-4 refined mesh. It is clear that a
rather strong bow shock is formed around the blunt cone. Note
that in Fig. 11, the streamlines of the flow field are also plotted
Fig. 10. Sketch of a hypersonic flow over 70◦ blunt body with angle
of attack (Nitrogen gas, Ma = 20, T∞ = 13.6 K, Tw = 300 K, α = 10◦ ,
Kn∞ = 0.0108).

Table 4
Aerodynamics coefficients with different refinement level mesh for 70◦ blunt
body hypersonic flow with attack angle of 10◦ (Kn∞ = 0.0108)

Level CD CL Cm

0 1.667 (12.92%) −0.141 (21.93%) −0.057 (5.63%)

1 1.621 (9.85%) −0.154 (14.47%) −0.058 (7.45%)

2 1.582 (7.16%) −0.166 (7.69%) −0.056 (4.59%)

3 1.552 (5.14%) −0.174 (3.17%) −0.057 (5.23%)

4 1.543 (4.58%) −0.182 (0.28%) −0.055 (0.98%)

Exp. data 1.476 −0.18 −0.054

Value in the parenthesis represents the deviation of simulation with experimen-
tal data.

along with the normalized density distribution. Fig. 11 shows
that the density increases rapidly across the shock, especially
in the region near the nose of the cone (n/n∞ > 18), while a
highly rarefied wake region is formed (n/n∞ < 0.1) behind the
cone body with a strong recirculation. The resulting maximum
density ratio in the flow field is very large (nmax/nmin > 180),
which necessitates the use of PAMR. Fig. 12 shows that the
total temperature increases up to 76 times of the free-stream
value after the bow shock in front of the nose area. In all the
regions after the shock, the temperatures are much greater than
the free-stream value. Fig. 13 shows that a subsonic flow re-
gion is formed around the cone surface due to the nearly normal
shock, while the other regions are all supersonic, except in the
wake region.

The evolution of the computed aerodynamic coefficients, in-
cluding CD (drag), CL (lift), and Cm (moment), at different
levels of mesh refinement along with the experimental data
are summarized in Table 4. The results using the level-4 mesh
clearly show that CD, CL, and Cm agree with the experimental
data by 4.58%, 0.28%, and 0.98%, respectively. The deviation
of the computed CD from the experiment seems quite large;
however, it is within the experimental uncertainties [24]. Nev-
ertheless, the use of the PAMR does systematically improve the
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Fig. 11. Normalized density distribution of a hypersonic flow over 70◦ blunt
body with angle of attack 10◦ with level-4 refined mesh.

Fig. 12. Normalized total temperature distribution of a hypersonic flow over
70◦ blunt body with angle of attack 10◦ with level-4 refined mesh.

solution accuracy of DSMC. Furthermore, Fig. 14 shows the
occurrence of heat transfer along a specified surface line using
the initial mesh and level-4 mesh. S is the distance along a spe-
cific path on 70◦ blunt body surface while Rn is the nose radius
of the blunt cone. In general, both results show similar tends.
Due to the impact of hypersonic flow molecules, an intensely
heated region around the nose of the blunt cone is formed. Heat
transfer decreases steeply after the shoulders of the blunt cone,
and then increases to a relatively low value as compared to that
of the nose region. However, the result of using the initial mesh
Fig. 13. Ma number of a hypersonic flow over 70◦ blunt body with angle of
attack 10◦ with level-4 refined mesh.

Fig. 14. Heat transfer rate along the specific path S on 70◦ blunt body surface
with different meshes. (Rn: the nose radius of blunt body).

overpredicates (2–3 times) the experimental heat flex around
the nose region, while the results using the level-4 mesh agree
excellently with the experimental data [22,25].

3.3.2. Parallel Poisson–Boltzmann equation solver
The Poisson–Boltzmann equation plays an important role

in describing many physical phenomena, including like-charge
particle interaction [27,28], particle–membrane interaction
[28,29], and electrokinetic flow [30], to name a few. Thus,
its accurate numerical modeling can provide important infor-
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mation on effective interaction among the charged surfaces.
One of the most important things in modeling these phenom-
ena is to accurately resolve the electrical double layer near a
charged surface that is often very thin. In the following, we
will briefly describe the parallel Poisson–Boltzmann equation
with the finite-element discretization and simulation results by
coupling this solver with the current PAMR. The details of
the implementation of the parallel Poisson–Boltzmann equa-
tion solver could most likely be found elsewhere in the near
future.

Consider any fluid consisting of two types of ions with
equal, opposite charges (Z = Z+ = Z−) and equal concentra-
tion (n = n+ = n−), and then the corresponding dimensionless
three-dimensional Poisson’s equation for electrostatic potential
Ψ (x, y, z), assuming Boltzmann relation at equilibrium, can be
written as

(1)
∂2ψ̄

∂x̄2
+ ∂2ψ̄

∂ȳ2
+ ∂2ψ̄

∂z̄2
= sinh(ψ̄)

where

x̄ = x

κ2
, ȳ = y

κ2
, z̄ = z

κ2
, ψ̄ = zeψ

kbT
,

κ2 = 2n0Z
2e2/εε0kbT ,

with ε and ε0 as the permittivity ratio and vacuum permittivity,
respectively. Note that κ2 is the so-called Debye–Huckel para-
meter, and its inverse represents the characteristic length of the
electrical double layer.

By applying the Galerkin finite-element method to Eq. (1)
in a typical tetrahedral element with a linear shape function to
form an element equation, and by subsequently assembling all
the element equations throughout the computational domain,
the system matrix equation becomes

(2)[K]{U} = {
F(U)

}
where [K] is the coefficient matrix resulting from the Laplacian
operator using Gaussian quadrature in the volume integration,
{U} is the solution vector, and {F(U)} is the nonlinear load-
ing vector resulting from the integration of the source term of
Eq. (1) in the FE formulation. This nonlinear algebraic system
equation is further treated using the Newton scheme, and it be-
comes

(3)[K]{Uk+1} = {
F

(
Uk

)} + [J ]k({Uk+1} − {
Uk

})
where [J ]k = F ′(Uk) is the n by n Jacobian matrix, with n as
the number of the total nodes. Note that the variable with super-
script k and k + 1 represents the variable value at previous and
current iterative steps, respectively. In addition, it can be eas-
ily shown that the only nonzero terms in the Jacobian matrix
are the diagonal entries if we integrate the nonlinear term of
Eq. (1) in the Galerkin FE formulation with the nodal quadra-
ture, rather than the Gaussian quadrature. With this integration
scheme, Eq. (3) becomes

(4)[K]{Uk+1} = {
F

(
Uk

)} + [Λ]k({Uk+1} − {
Uk

})
Fig. 15. Sketch of two identical charged spheres near a charged flat plate.

Fig. 16. Computational domain of two identical charged spheres near a charged
flat plate.

where [Λ]k is the Jacobian matrix containing only nonzero di-
agonal terms λk

i with the subscript i representing the ith diago-
nal term. Eq. (4) can be further rearranged as

(5)[A]{Uk+1} = {
B

(
Uk

)}
where

(6)[A] = [K] − [Λ]k,
(7)

{
B

(
Uk

)} = {
F

(
Uk

)} − [Λ]k{Uk
}
.

Then at each iterative step, Eq. (5) is solved using the con-
jugate gradient method with nonzero entries stored in a com-
pressed sparse row (CSR) format that is computationally ef-
ficient both in terms of storage and matrix operations [31].
The Poisson–Boltzmann equation solver is further parallelized
using a subdomain-by-subdomain method similar to our previ-
ous work [31] in which the domain decomposition method was
used.

The completed code is then coupled with the present PAMR
to compute the interaction force between two like-charge
spheres near a planar surface with the same charge, which
has the same experimental configuration as that of Larsen and
Grier [32]. This is shown in Fig. 15. In the simulation, r = 4.5,
h = 2.5, and a = 0.325. Due to the symmetry of the problem,
only 1/4 of the full physical domain is used as the compu-
tational domain, as illustrated in Fig. 16. The potentials at the
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Table 5
Force of interaction with different refinement level mesh in the simulation
of two identical charged spheres near a charged flat plate (h = 2.5, r = 4.5,
a = 0.325)

Level Number of nodes Number of elements Force of interaction (N )

0 17,058 83,588 −8.433E−15
1 52,549 275,534 −4.645E−15
2 131,067 698,093 −1.343E−15
3 161,345 872,534 −9.842E−16
4 177,269 963,419 −7.739E−16
5 184,564 1,019,692 −6.178E−16
6 184,611 1,020,243 −5.491E−16

charged sphere surface and outer boundaries are respectively set
as ψb = 3.0 and ψs = 5.0, while the Neumann boundary condi-
tions are used throughout the symmetric planes. Ten processors
are used in the present simulation.

In this simulation, an a posteriori error estimator of the type
proposed by Zienkiewicz and Zhu [33], and implemented by
Dyshlovenko [27] for axisymmetric Poisson–Boltzmann equa-
tion is used to estimate the solution error during the mesh-
refining process. A postprocessed recovered “exact” solution of
the electric field can be obtained from various gradient recov-
ery schemes which are applied to the FE solution of the electric
field. The FE solution of the electric field is then compared
with this “exact” solution of electric field. Similar to Ref. [26],
a very simple gradient recovery scheme, which is based on av-
eraging the cell values instead of the nodal values as used in
Ref. [26] of the FE solution of electric field, is employed. This
is attributed to the fact that electric fields at the nodes are dis-
continuous since we only utilize the linear shape function in the
current study, rather than the quadratic shape function as used
in Ref. [26]. A prescribed global relative error εpre of 0.0003 is
used to control the level of accuracy. The absolute error in each
element is then compared with a current average absolute error,
which is based on this εpre, to decide if refinement is required.
Note this current average absolute error δm is defined as

δm =
[
εpre‖Ê‖2

N

]
,

where ‖Ê‖2 is the integral of the square of FE electric fields
over all elements and N is the number of elements in the
computational domain. In addition, the method of calculat-
ing interaction force using the potential distribution on the
sphere surfaces is described in detail elsewhere such as in
Dyshlovenko [27], and is skipped here for brevity.

The evolution of the total number of nodes and elements, and
the interaction force between the two spheres at different lev-
els of mesh refinement are summarized in Table 5. The number
of nodes increases from 17,058 (initial, Fig. 17(a)) to 184,611
(level-6, Fig. 17(b)), while the resulting force of interaction be-
tween the two spheres converges to −5.491E−16, which agrees
reasonably well with the experimental data, −8.735E−16,
within the experimental uncertainties [32]. To our best knowl-
edge, we believe that we are the first to accurately predict the
interaction force under such configuration using the Poisson–
Boltzmann equation solver. Note that the original experimental
(a)

(b)

Fig. 17. Surface mesh distribution in the simulation of two identical charged
spheres near a charged flat plate. (a) Initial mesh; (b) level-6 refined mesh.

data measured by Ref. [31] is presented in interparticle poten-
tial energy. We derive the force by first fitting the curve and
obtaining its derivative as the interparticle force. It is also clear
that most of the refined mesh is clustered in the electrical dou-
ble layer near the sphere surface and the planar surface as
expected. The parametric study of varying the simulation pa-
rameters (such as the distance between the two spheres, the
distance between the sphere and the planar surface, etc.) is
not pursued in the present study. Research in this direction is
currently in progress and will be reported in the very near fu-
ture.

From the two numerical examples shown above by applying
the PAMR to both parallelized particle-based and equation-
based solvers, it is shown that the numerical accuracy can be
systematically improved without resorting to repeated manual
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meshing. This is especially important when we apply the solver
to a realistic large-scale 3-D problem with a complicated geom-
etry.

4. Conclusions

In the present study, a parallel adaptive mesh refinement
scheme with improved simple cell-quality control for a large-
scale unstructured tetrahedral mesh was proposed and pre-
sented in detail. A cell-based data structure was designed such
that the resulting refined mesh information can be readily uti-
lized in both node- or cell-based numerical methods. It was
shown from the study of PAMR parallel performance that the
parallel speedup scales approximately with N1.5 for Nproc � 32
if the number of cells is in the order of millions. Two numerical
examples, including a particle-based method (parallel DSMC
solver for rarefied gas dynamics) and an equation-based method
(parallel Poisson–Boltzmann equation solver for electrostatic
field), were used to demonstrate the generality of the present
PAMR module.
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