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Abstract 

The minimal cost-reliability ratio spanning tree problem is to find a spanning tree such that the cost-reliability ratio is 
minimized. This problem can also be treated as a specific version of a more generalized problem discussed by Hassin and 
Tamir. By Hassin and Tamir's approach, the minimal cost-reliability ratio spanning tree problem can be solved in O(q 4) 
where q is the number of edges in the graph. In this paper, we reduce the complexity of the algorithm proposed by Hassin 
and Tamir to O(q 3 ). Furthermore using our approach, related algorithms proposed by Hassin and Tamir can also be improved 
by a factor of O(q). 
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I. Introduction and notation 

The minimal cost-reliability ratio spanning tree 
problem, or MCRRST problem for abbreviation, was 
first discussed by Chandrasekaran et al. [2, 3]. A 
non-polynomial algorithm for the MCRRST prob- 
lem was proposed in [3]. Then a polynomial but not 
strongly polynomial  algorithm was introduced by 
Chandrasekaran and Tamir in [4]. Their algorithm 
is based on the fact presented in [4] that a query of  
the form "Is a b >>, ca? '' can be solved in time which 
is polynomial in the binary encoding of  the numbers 
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a, b, c, and d. Later, Hassin and Tamir  [5] developed a 
different, unified approach that yields a strongly poly- 
nomial algorithm for classes of  optimal spanning tree 
problems which include the MCRRST problem. By 
Hassin and Tamir ' s  approach, the MCRRST problem 
can be solved in O(q 4) where q is the number o f  edges 
in the graph. In this paper, we reduce the complex- 
ity of  the algorithm proposed by Hassin and Tamir to 
O(q 3 ). 

Now we formally introduce the MCRRST problem. 
Most o f  the graph definitions used in this paper are 
standard (see, e.g., [1]). Let G = (V ,E)  be a graph. 
We associate with each edge ei E E an ordered pair o f  
rational numbers (ai, hi), namely a non-negative cost 
ai and a positive probability bi. For a spanning tree 
T, the cost o f T ,  c(T) ,  is defined as ~ e i e r  ai and the 
reliability of  T, r(T) ,  is defined as I-Iei~T bi. Natu- 
rally the cost-reliability ratio of  T, w(T) ,  is defined 
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as c(T)/r(T).  The MCRRST problem is to find a 
spanning tree T in G such that w(T)  <<. w(T' )  for ev- 
ery spanning tree T t in G. The MCRRST problem is a 
specific version of the following generalized problem 
discussed in Hassin and Tamir [5]. Let G -- (V,E) 
be a graph. In each edge e~ E E is associated with 
an ordered pair of rational numbers (ai, bi). For a 
subset E ~ of E, we define A(U)  = ~ , ~ ,  ai and 
B(U)  = ~e,~e' hi. Let g be a real-valued function 
defined in E2. The problem is to find a spanning tree 
T which maximizes g(A(T) ,B(T))  over all spanning 
trees T of G. In [5], various g(A(T),B(T)) ,  such 

a s  l"IeiET bi/~-'~e~CT ai, (~--~,cr ai)2 -1- ( ~ e ,  CT bi)2' 
EeiEl" ai-~t- I-[eicT bi or I-Ie, E T ai'q- ~XeiET bi are stud- 
ied. In the MCRRST problem, we need to find a span- 
ning tree T that minimizes ~ r  ai/I'IeiET bi. This 
is equivalent to finding a spanning tree T that maxi- 
mizes I-Ie, cv b i / ~ , ~ r  ai. Since the log function is 
strictly increasing, it is also equivalent to finding a T 
that m a x i m i z e s  ~eiC T log bi - log (~e ,  ~ r ai ). Thus, 
the MCRRST problem can be modeled in terms of 
maximizing g(A (T), B ' (T))  = B' (T)  - log A (T) with 
B~(T) = ~-]~r log bi and can be solved in O(q 4) 
using Hassin and Tamir's algorithm. We propose 
a modification of their approach which can reduce 
the time complexity to solve the MCRRST problem 
to O(q 3) and moreover, improve related algorithms 
reported in [5] by a factor of O(q). 

2. Previous work 

To make this paper self-contained, we first outline 
the basic strategy of Hassin and Tamir's approach. 
Let g be a real-valued strictly convex function de- 
fined in E2. Without loss of generality, we assume that 
(ai, bi) ~ (aj, bj) if ei ~ ej. Let the value of a span- 
ning T, g(T), be defined as g(A(T),B(T)) .  A spanning 
tree T* in G is called an optimum spanning tree (with 
respect to g) if g(T*) >~ g(T')  for all spanning trees 
T ~ in G. We call a spanning tree T a local optimal 
spanning tree if there is no pair of elements el, ej E E, 
such that eiET, ej~: T, and T' = T - {el} + {ej}  is 
a spanning tree which yields a larger value than T 
does. Hassin and Tamir divided the (A,B) plane into 
a number of cells and showed that each cell produces 
at most one local optimal spanning tree. The optimum 
spanning tree T* is one of these local optimal span- 

ning trees. T* will be contributed by the unique cell 
containing (A(T* ), B(T* )). 

More precisely, let (A,B) be a point in E2. Define 
a directed graph DA,8(G) with the vertex set being 
the edge set E of G. Let e~, ej be distinct elements in 
E. [ei, ej] is an arc in DA,B if and only ifg(A - ai -[- 
aj,B - bi + bj) > g(A,B). An equivalence relation in 
E2 can be defined by (A,B) ~ (C,D) if and only if 
D,~,B(G) -- DC, D(G). We use W to denote the set of 
equivalence classes induced by "~" .  For any c E W, 
we use Dc to denote the directed graph DA,8(G) with 
(A, B) ~ c. 

Let E(D~) be the arc set of D~. Let Tl and T2 be 
two distinct spanning trees of  G. We say that/ '2 is a 
D~-improvement of T1 if there exist ei E TI and ej f Ti 
such that [ei, ej] EE(Dc) and T2 = TI - {ei} + {ej}, 
i.e., /'2 is obtained from T1 by a single edge swap. 
A spanning tree T of G is Dc-optimal if there exists 
no spanning tree T ~ of G which is a D~-improvement 
of T. In [5], the following theorem is presented. 

Theorem 1. There is at most one Dc-optimal span- 
ning tree of  G for every (A,B) in ~2. 

We use Tc to denote the Dc-optimal spanning tree if 
it exists. Let F ( Dc )( e i ) be the set { e j I [ e i, e j ] E E ( Dc )} 
for ei E E. Also, letXc be the set {ei[ the two endpoints 
of e~ in G are on different connected components of 
the graph H = ( V, F(D~)(ei)) }. The following theorem 
is also from [5]. 

Theorem 2. I f  the De-optimal spanning tree Te 
exists, then the edge set o f  Tc is exactly Xe. 

This theorem states that a necessary condition for 
the existence of the Dc-optimal spanning tree is that Xc 
forms a spanning tree of G. IfXc forms a spanning tree, 
it is a candidate solution. It is suggested in [5] that we 
do not have to verify that the candidate solution is Dc- 
optimal. To reduce the computational complexity, it 
will suffice simply to find the candidate solution. The 
optimum spanning tree is a candidate solution that has 
maximum value. The following algorithm proposed 
in [5], Algorithm 1, finds Xc and then tests whether it 
forms a candidate solution in a Dc. 

Algorithm 1 
Step 1. Compute F(Dc)(ex) for all ex E E. 
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Step 2. Set Xc = 0. 
Step 3. For each ex E E, do the following: 
If the two endpoints of  ex are disconnected in H = 

(V,I'(D~)(e~)), setXc = Xc t2 {ex}. 
Step 4. If Xc does not form a spanning tree, stop 

and conclude that the D~ has no solution. Otherwise, 
Xc forms the candidate solution. 

Obviously, Step 1 in Algorithm 1 takes O(q 2) time. 
Step 3 needs q tests to see if the endpoints of ex are 
not connected in H = (V, F(Dc)(ex)). Each test takes 
O(q) time. Hence, Step 3 takes O(q 2) time. Step 4 is 
completed in O(p)  time. Hence, the complexity of the 
Algorithm 1 is O(q2). 

We can also describe the set W as follows: Let 
ei, e j E E ,  ei 7 A ej. Define the function gij(A,B) by 
9ij(A, B)  = 9(,4 - ai + a j, B - bi + by) - 9(A, B ). Since 
9 is strictly convex, every topological component in- 
duced on ~2 by the set of 9ij(A,B) is an equivalent 
class induced by ,-~. Define Rij = {(A,B) [9(A - ai -+- 
a j , B - b i + b j )  > 9 ( A , B ) } . L e t f  : I~ 2 ~ I~k beamap - 
ping of ~2 into R k. Further, let Tij, ei, ej E E, ei # ej 
be a collection of  subsets in ~k such that (A ,B)  E Rij 
if  and only if  f ( A , B )  E Tij for el, ej EE,  i # j .  Sup- 
pose there exists a polynomial hij(xl . . . . .  xk) such that 
Tij = {(Xl,... ,xk) I hij(Xl . . . . .  Xk) > 0}. Then the num- 
ber of elements in W is bounded by the number of 
topological components induced on ~k by the set of 
polynomials hij. If  d, the maximum degree ofhij ,  and 
k, the dimension of ~k, are constant and independent 
of  q, then it can be proved that the number of equiv- 
alence classes will be a polynomial in q. 

Hassin and Tamir suggest that we can pick any 
point for every topological component induced by 
the set of Rij (or corresponding Tij ) and apply 
Algorithm 1 to obtain a spanning tree as a can- 
didate solution. Then the optimum spanning tree 
is the candidate solution that has the maximum 
value. 

For the MCRRST problem, 9(T)  = g(A(T),  B ' (T ) )  
= B'(T) - log A(T) ,  with A(T) = ZeiET ai, B ' (T )  = 
~-~e, ET log bi. Rij =- { (A ,B t ) [ (B  t - log bi -}- log bj) - 
log(A - ai + a j ) > B ' - l o g A }  = {(A,B')] logA + 
log bj >log bi + log (A - a i  +a j )}  = {(A,B')[Abj > 
bi(A - a i  + aj)}.  Set f ( A , B ' )  = A and 

r , j =  z l x  > bj - bi J"  

Hence, (A,B') ERij if  and only if f ( A , B ' )  E Tij for 
every pair of distinct edges ei, ej E E. Let 

bi(aj - ai) 
dij - , ei, ej EE,  ei ~ ej. 

b~ - bi 

Let W ---- {c [ c is a positive interval induced by the set 
of 0 and dij, or a set containing a positive dij}. Then, 
any c E W is either the set of a positive dij for some 
i and j or the open (positive) interval defined by two 
consecutive points in the set of 0 and the sorted se- 
quence of positive {dij}. Assume there are s elements 
in W. For each c E W, we pick any point r(c) E c as the 
representative of c. Let S = {r(cl ), r(cz) . . . . .  r(cs)}, 
with r(ci) < r(cj) if i < j .  The following algorithm 
proposed in [5], Algorithm 2, solves the MCRRST 
problem. 

Algorithm 2 
Step 1. Compute and sort the positive num- 

bers {dij} and obtain the sorted sequence of S, 
{r(cl ), r(c2) . . . . .  r(cs)}. 

Step 2. Construct Dc~ for each ck E W as follows: 
Add a r c  [ei, ej] if and only if one of the following 

conditions is satisfied. 
(a) bj = bi and aj < ai. 
(b) bj > bi and r(ck) > dij. 
(c) bj < bi and r(ck) < dij. 
Step 3. Use Algorithm 1 to find the candidate so- 

lution Xck for each Dc k. Then compute the value for 
each candidate solution. 

Step 4. Find an optimal solution for the objective. 

Step 1 takes O(q 2 log q). Step 2 needs O(q 4) time 
since the number of arcs in a Dc~ is O(q 2) and there are 
O(q 2) elements in S. Since Algorithm 1 takes O(q 2) 
time, Step 3 takes O(q 4) time. Obviously, Step 4 takes 
O(q 2) time. Hence Algorithm 2 takes O(q 4) time. 

3. Our algorithm 

Observe that Steps 2 and 3 of Algorithm 2 are re- 
peated several times. To avoid repeated execution of 
these steps, we should extract and reuse information 
from what we have solved. Thus, we need the follow- 
ing observation. 

Without loss of generality, we assume that bi # bj 
ifei y~ ej and each dij is different. There are s elements 
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in S where s <~ 2q(q - 1 ) + 1. Moreover, {r(ck) I k is 
even} is the set of positive dij's. Following the rule 
that constructs De k's in Step 2 of Algorithm 2, we have 
the following theorem, Theorem 3. 

Theorem 3 
(1) Assume that r(ck) = dij for some i and j. 

Then, i f  bj < hi, E(D~k ) = E(Dck_~ ) - {[ei, ej]}. 
Otherwise, E(Dc~ ) = E(D~k_, ). 

(2) Assume that r (ck- l )  = dij for some i and j. 
Then, i f  bj > b~, E(Dc, ) = E(Dck_, ) +  {[e~,ej]}. 
Otherwise, E(D~ ) = E(D~_, ). 

The following corollary, Corollary 1, follows from 
Theorem 3. 

Corollary 1. Assume that r(ck )=di j  for some ei and 
ej. F(Dc~ )(ex) = F(Dck )(e~ ) = F(D~,_, )(ex)for every 
ex such that e~ :fi ei and ex ~ ej. 

From Corollary 1 and Step 3 in Algorithm l, which 
constructs X~ for a De, we have the following corol- 
lary, Corollary 2. 

Corollary 2, Assume that r(ck )=di j  Jbr some ei and 
ej. We have 
(1) Xc~ = X,~_, - {ei, ej} t._) {exle~E{ei ,  ej}, the 

two endpoints o f  ex are disconnected in H =  
(v, r(D~, )(ex))}. 

(2) X¢~+, = X,., - {ei, ei} tA {ex[ex<{ei ,  ej}, the 
two endpoints of  ex are disconnected in H =  
(v, r(Dc,_, )(ex ))}. 

We now propose the following algorithm, 
Algorithm 3, for the MCRRST problem. 

Algorithm 3 
Step 1. Compute and sort the positive num- 

bers {dij} and obtain the sorted sequence of S, 
{r(cl ), r(c2) . . . . .  r(Cs)}. 

Step 2. Set k = 1. Construct De, as follows: 
Add arc [ei, ej] if and only if one of the following 

conditions is satisfied. 
(a) bj = bi and aj < ai. 
(b) b / >  bi and r(ck) > d~/. 
(c) bJ < bi and r(ek) < dij. 
Compute F(D< )(ex) for all ex C E. 
Step 3. Set X~., = qS. 

For each ex E E, do the following: 
If the two endpoints of ex are disconnected in H = 

(V,F(Dc.)(ex)),  set X~, =Xc, tO {ex}. 
Step 4. If k = s, go to Step 8. 
Step 5. Set k = k + 1. Construct Dck with the rules 

in Theorem 3. 
For ei and ej where r(ck) = dij or r (ck- l )  = dij, 

compute F(Dc~ )(ei) and F(Dck )(e j). 
Step 6. Set Xck =X~_, - {e i ,  e j } .  
For e~ = ei and ex = e j, do the following: 
If the two endpoints of ex are disconnected in H = 

(tl, r(Dc, )(ex)), set X~, = Xc~ u {ex}. 
Step 7. Go to Step 4. 
Step 8. For 1 <~ k ~< s, find the X~ k which forms the 

candidate solution with the optimal objective value 
then stop. 

Step 1 takes O(q 2 log q). Step 2 needs O(q 2) time. 
Step 3 computes Xc, and takes O(q 2) time. Steps 5 and 
6 can be finished in O(q) time. Since Steps 5 and 6 are 
executed O(q 2 ) times, the complexity is O(q 3). Step 8 
finds the Xc~ that yields the optimal objective value in 
O(q 3 ) time. Hence, the complexity of Algorithm 3 is 
O(q3). 

Algorithm 3 reuses the Dc, F(D~)(ex) for all ex E E, 
and X~ generated from a previously computed adja- 
cent equivalence class. Steps 1-3 actually do the same 
thing Algorithm 2 does to Dc,. Steps 5 and 6 apply 
Theorem 3 and Corollaries 1 and 2 derived in this sec- 
tion to compute Dc,+,, F( Dc,+, )( ex) for all ex E E, Xck~, 
from D~k, F(D~ k )(ex) for all ex E E, and Xck, respec- 
tively. Compared with using Algorithm 1 for every ek, 
Algorithm 3 reduces the time complexity by O(q) for 
every ck where k > 1. If there are {ei, ej,em, en} C_E, 
where dij and dmn coincide, Steps 5 and 6 are still ex- 
ecuted O(q 2) times if we use perturbation on dij. Step 
4 verifies that all ck are computed and finds the op- 
tirnal candidate solution. It follows that Algorithm 3 
correctly solves the MCRRST problem, just as Algo- 
rithm 2 does, but with a complexity of O(q 3). 

The methodology of our improved algorithm for the 
MCRRST problem can be used to improve the other 
algorithms that apply the unified approach proposed 
in [5]. Applying Theorem 3 and the corollaries, we can 
obtain X~ for any equivalence class e from Arc, in O(q) 
time, where c' is an adjacent equivalence class of c. 
In [5], since the set of" equivalence classes is induced 
on ~2 by the set of {gij(A,B)}, every equivalence 
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class has adjacent classes. Hence,  the related optimal 
spanning  tree algori thms proposed in [5], which max-  

imize g ( A ( T ) , B ( T ) )  = (~eiET ai) 2 + ( ~ e ~ r  bi) 2, 

Ee ,  ET ai q- 1-Ie, ET bi or HeiET cti q- I"IeiET hi, can 
also be improved by  a factor o f  O(q)  when  we use 
the approach in [5] and that proposed in this paper. 
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