Operations Research Letters 19 (1996) 65-69

operations
research
letters

On minimal cost-reliability ratio spanning trees and related
problems'

Yung-Cheng Chang?, Lih-Hsing Hsu >*

2 Institute of Computer Science and Information Engineering, National Chiao Tung University, Hsinchu, Taiwan 30050, ROC
Y Department of Computer and Information Science, National Chiao Tung University, Hsinchu, Taiwan 30050, ROC

Received 1 July 1994; revised 1 October 1995

Abstract

The minimal cost-reliability ratio spanning tree problem is to find a spanning tree such that the cost-reliability ratio is
minimized. This problem can also be treated as a specific version of a more generalized problem discussed by Hassin and
Tamir. By Hassin and Tamir’s approach, the minimal cost-reliability ratio spanning tree problem can be solved in O(g*)
where g is the number of edges in the graph. In this paper, we reduce the complexity of the algorithm proposed by Hassin
and Tamir to O(¢*). Furthermore using our approach, related algorithms proposed by Hassin and Tamir can also be improved

by a factor of O(q).

Keywords: Combinatorial algorithms; Complexity; Spanning trees

1. Introduction and notation

The minimal cost-reliability ratio spanning tree
problem, or MCRRST problem for abbreviation, was
first discussed by Chandrasekaran et al. [2, 3]. A
non-polynomial algorithm for the MCRRST prob-
lem was proposed in [3]. Then a polynomial but not
strongly polynomial algorithm was introduced by
Chandrasekaran and Tamir in [4]. Their algorithm
is based on the fact presented in [4] that a query of
the form “Is a® > ¢??” can be solved in time which
is polynomial in the binary encoding of the numbers

* Corresponding author. Fax: 886-35-721490. E-mail: lhhsu@cc.
nctu.edu.tw.

! This work was supported in part by the National Science
Council of the Republic of China under contract NSC83-0208-
M009-034.

a,b,c, and d. Later, Hassin and Tamir [5] developed a
different, unified approach that yields a strongly poly-
nomial algorithm for classes of optimal spanning tree
problems which include the MCRRST problem. By
Hassin and Tamir’s approach, the MCRRST problem
can be solved in O(g*) where g is the number of edges
in the graph. In this paper, we reduce the complex-
ity of the algorithm proposed by Hassin and Tamir to
o(g).

Now we formally introduce the MCRRST problem.
Most of the graph definitions used in this paper are
standard (see, e.g., [1]). Let G = (V,E) be a graph.
We associate with each edge e; € E an ordered pair of
rational numbers (a;, b;), namely a non-negative cost
a; and a positive probability ;. For a spanning tree
T, the cost of T, ¢(T), is defined as 3_, . a; and the
reliability of T, r(T), is defined as [], . b;. Natu-
rally the cost-reliability ratio of T, w(T'), is defined

0167-6377/96/$15.00 Copyright © 1996 Elsevier Science B.V. All rights reserved

PIIS0167-6377(96)00014-4

66 Y.-C. Chang, L.-H. Hsul Operations Research Letters 19 (1996) 65-69

as ¢(T)/r(T). The MCRRST problem is to find a
spanning tree T in G such that w(T) < w(T") for ev-
ery spanning tree 7’ in G. The MCRRST problem is a
specific version of the following generalized problem
discussed in Hassin and Tamir [5]. Let G = (V,E)
be a graph. In each edge ¢; € E is associated with
an ordered pair of rational numbers (q;,b;). For a
subset £ of E, we define A(E') = Ze,eE’ a; and
B(E') = Ze,-GE’ b;. Let g be a real-valued function
defined in R?. The problem is to find a spanning tree
T which maximizes g(A(T),B(T)) over all spanning
trees T of G. In [5], various g(A(T),B(T)), such
as He,GTbi/ Ze,ET ai, (ZEIGT ai)z + (Ze,ET bi)z’
Soeer @it leer bior [l er ai+ 11, cr biare stud-
ied. In the MCRRST problem, we need to find a span-
ning tree 7' that minimizes Y _, ., ai/[], < bi- This
is equivalent to finding a spanning tree 7 that maxi-
mizes [, .; bi/ >, 7 ai- Since the log function is
strictly increasing, it is also equivalent to finding a T
that maximizes), ., log b; —log (3_, ¢). Thus,
the MCRRST problem can be modeled in terms of
maximizing g(A(T), B (T)) =B'(T) — log A(T) with
B'(T) =Y, 7 log b; and can be solved in O(g*)
using Hassin and Tamir’s algorithm. We propose
a modification of their approach which can reduce
the time complexity to solve the MCRRST problem
to O(¢>) and moreover, improve related algorithms
reported in [5] by a factor of O(g).

2. Previous work

To make this paper self-contained, we first outline
the basic strategy of Hassin and Tamir’s approach.
Let g be a real-valued strictly convex function de-
fined in R2. Without loss of generality, we assume that
(ai,b;) # (a;, b)) if e; # e;. Let the value of a span-
ning T, g(T'), be defined as g(A(T), B(T)). A spanning
tree T* in G is called an optimum spanning tree (with
respect to g) if g(T*) = g(T’) for all spanning trees
T’ in G. We call a spanning tree T a local optimal
spanning tree if there is no pair of elements e;,e; € E,
such that e,€T, e;¢ T, and "' =T — {e;} + {e;} is
a spanning tree which yields a larger value than T
does. Hassin and Tamir divided the (4, B) plane into
a number of cells and showed that each cell produces
at most one local optimal spanning tree. The optimum
spanning tree 7* is one of these local optimal span-

ning trees. T* will be contributed by the unique cell
containing (A(T*), B(T*)).

More precisely, let (4, B) be a point in R?. Define
a directed graph D, 3(G) with the vertex set being
the edge set E of G. Let e;,¢; be distinct elements in
E. {ei,e;] is an arc in D4 p if and only if g(4 — a; +
a;,B—b; 4+ b;) > g(4,B). An equivalence relation in
R? can be defined by (4,B) ~ (C,D) if and only if
D4 8(G) = D¢, p(G). We use W to denote the set of
equivalence classes induced by “~”. For any c€ W,
we use D, to denote the directed graph D4 3(G) with
(4,B)€ec.

Let E(D,) be the arc set of D.. Let T} and T; be
two distinct spanning trees of G. We say that 75 is a
D.-improvement of T if there exist ¢;€T; and e; £7)
such that [e;,e;]€ E(D.) and T, = T\ — {e;} + {e;}.
i.e.,, T, is obtained from T| by a single edge swap.
A spanning tree T of G is D.-optimal if there exists
no spanning tree 7’ of G which is a D.-improvement
of T. In [5], the following theorem is presented.

Theorem 1. There is at most one D.-optimal span-
ning tree of G for every (4,B) in R%.

We use T, to denote the D, -optimal spanning tree if
itexists. Let I'(D.)(e;) be the set {e; | [e;, ¢;]1 € E(D.)}
fore; € E. Also, let X, be the set {e; | the two endpoints
of ¢; in G are on different connected components of
the graph H=(V, I'(D.)(¢;))}. The following theorem
is also from [5].

Theorem 2. If the D.-optimal spanning tree T,
exists, then the edge set of T, is exactly X..

This theorem states that a necessary condition for
the existence of the D -optimal spanning tree is that X,
forms a spanning tree of G. If X forms a spanning tree,
it is a candidate solution. It is suggested in [5] that we
do not have to verify that the candidate solution is D, -
optimal. To reduce the computational complexity, it
will suffice simply to find the candidate solution. The
optimum spanning tree is a candidate solution that has
maximum value. The following algorithm proposed
in [5], Algorithm 1, finds X, and then tests whether it
forms a candidate solution in a D,.

Algorithm 1
Step 1. Compute I'(D,)(e,) for all e, € E.

Y.-C. Chang, L.-H. Hsul Operations Research Letters 19 (1996) 65-69 67

Step 2. Set X, = 0.

Step 3. For each e, € E, do the following:

If the two endpoints of e, are disconnected in H =
(V,T(D:)e:)), set X. = X, U {e,}.

Step 4. If X, does not form a spanning tree, stop
and conclude that the D, has no solution. Otherwise,
X, forms the candidate solution.

Obviously, Step 1 in Algorithm 1 takes O(g?) time.
Step 3 needs q tests to see if the endpoints of e, are
not connected in H = (¥, I'(D.)(e,)). Each test takes
O(q) time. Hence, Step 3 takes O(g?) time. Step 4 is
completed in O(p) time. Hence, the complexity of the
Algorithm 1 is O(g?).

We can also describe the set W as follows: Let
e, ¢, €E, e; # e;. Define the function g;;(4, B) by
gii(A,B)=g(Ad—a; +a;,B—b;+b;) — g(A, B). Since
g is strictly convex, every topological component in-
duced on R? by the set of gij(4,B) is an equivalent
class induced by ~. Define R;; = {(4,B) |g(4 — a; +
a;,B—b;i+b;) > g(4,B)}.Let f : R? — R* be amap-
ping of R? into R*. Further, let T;;,e;,e; €E,e; # e;
be a collection of subsets in R* such that (4,B) € Ry
if and only if f(4,B)€ T}, fore;, e; €E, i # j. Sup-
pose there exists a polynomial 4;;(x1,...,x;) such that
Ty={(x1,...,x¢) | hij(x1,. .., xk) > 0}. Then the num-
ber of elements in W is bounded by the number of
topological components induced on R¥ by the set of
polynomials 4;;. If d, the maximum degree of #;;, and
k, the dimension of R, are constant and independent
of g, then it can be proved that the number of equiv-
alence classes will be a polynomial in q.

Hassin and Tamir suggest that we can pick any
point for every topological component induced by
the set of R; (or corresponding Tj;) and apply
Algorithm 1 to obtain a spanning tree as a can-
didate solution. Then the optimum spanning tree
is the candidate solution that has the maximum
value.

For the MCRRST problem, g(T) = g(A(T),B'(T))
=B'(T)~log AT), with A(T)=3_, .y ai, B'(T) =
Ze,ET lOg bi. R,’j = {(A,BI) I (B/ - log bi + IOg bj) —
log(4 — a; + a;)>B" —log A} = {(4,B’)| log 4 +
log b;>log b;+log(4 —a; +a;)} ={(4,B") | 4b; >
bi(4 —a; +a;)}. Set f(4,B')=A and

bi(aj - ai)}

T;j—:{xlx> bj——bi

Hence, (4,B') €R;; if and only if f(4,B)€ T} for
every pair of distinct edges e;, e; € E. Let

_bifa; —a))

d,’j— bj—bi N ei,ejEE,ei7éej.

Let W ={c]|c is a positive interval induced by the set
of 0 and d;, or a set containing a positive d;;}. Then,
any ¢ € W is either the set of a positive d;; for some
i and j or the open (positive) interval defined by two
consecutive points in the set of 0 and the sorted se-
quence of positive {d;;}. Assume there are s elements
in W. For each c € W, we pick any point #(¢) € c as the
representative of c. Let § = {r(c1),7(c2),...,¥(cs)},
with r(c;) < r(c;) if i < j. The following algorithm
proposed in [5], Algorithm 2, solves the MCRRST
problem.

Algorithm 2

Step 1. Compute and sort the positive num-
bers {d;;} and obtain the sorted sequence of S,
{r(c1),r(c2),...,r(cs)}

Step 2. Construct D,, for each ¢; € W as follows:

Add arc [e;, ¢;] if and only if one of the following
conditions is satisfied.

(a)bj=b;and a; < a;.

(b) bj > b; and r(ck) > d[j.

(c) bj < b; and r(ck) < d,‘j.

Step 3. Use Algorithm 1 to find the candidate so-
lution X, for each D,,. Then compute the value for
each candidate solution.

Step 4. Find an optimal solution for the objective.

Step 1 takes O(g? log ¢). Step 2 needs O(g*) time
since the number of arcs in a D,., is O(g?) and there are
O(g?) elements in S. Since Algorithm 1 takes O(g%)
time, Step 3 takes O(g*) time. Obviously, Step 4 takes
0O(4?) time. Hence Algorithm 2 takes O(g*) time.

3. Our algorithm

Observe that Steps 2 and 3 of Algorithm 2 are re-
peated several times. To avoid repeated execution of
these steps, we should extract and reuse information
from what we have solved. Thus, we need the follow-
ing observation.

Without loss of generality, we assume that b; # b;
ife; # e; and each d;; is different. There are s elements

68 Y.-C. Chang, L.-H. Hsul Operations Research Letters 19 (1996) 65-69

in S where s < 2g(q — 1) + 1. Moreover, {r(cy) |k is
even} is the set of positive d;;’s. Following the rule
that constructs D, ’s in Step 2 of Algorithm 2, we have
the following theorem, Theorem 3.

Theorem 3

(1) Assume that r(cy) = d;; for some i and j.
Then, ifbj <bj, E(De,) =E(De,_,) — {[ei’ej]}'
Otherwise, E(D;,) = E(D,,_,).

(2) Assume that r(ci—.) = d; for some i and j.
Then, lf‘bj > bis E(DCk) = E(DCk—l) + {[eiyej]}‘
Otherwise, E(D,,) = E(D,,_,).

The following corollary, Corollary 1, follows from
Theorem 3.

Corollary 1. Assume that r(c;)=d; for some e; and
ej. I'(De,,, Xex)=T'(D¢, Nex)=I'(D,, _,)ex) for every
ex such that e, # e; and e, # e;.

From Corollary 1 and Step 3 in Algorithm 1, which
constructs X, for a D, we have the following corol-
lary, Corollary 2.

Corollary 2. Assume that r(c;)=d;; for some e; and

e;. We have

() X, =X, — {ene} U{ec|ex€{ese}, the
two endpoints of ey are disconnected in H=
vV, (D,)(ex))}

(2) Xy = Xoy — {enes} U {exlece{e e}, the
two endpoints of ex are disconnected in H=
(V,[(D,., X))}

We now propose the following algorithm,
Algorithm 3, for the MCRRST problem.

Algorithm 3

Step 1. Compute and sort the positive num-
bers {d;;} and obtain the sorted sequence of S,
{r(cinr(e). ... res)}.

Step 2. Set k = 1. Construct D,, as follows:

Add arc [e;, e;] if and only if one of the following
conditions is satisfied.

(a) b; =b;and a; < a;.

(b) bj > b; and V(Ck) > dij-

(C) b}' < b; and r(c;) < d,‘j.

Compute I'(D,,)(e,) for all e, € E.

Step 3. Set X, = ¢.

For each e, € E, do the following:

If the two endpoints of e, are disconnected in H =
(V, (D,)ex)), set X, = X, U {ex}.

Step 4. If k = s, go to Step 8.

Step 5. Set k =k + 1. Construct D,, with the rules
in Theorem 3.

For e; and e; where r(cy) = dy; or r(cy~y) = dyj,
compute I'(D,,)(e;) and I'(D,)(e;).

Step 6. Set X, =X, _, — {ei,e;}.

For e, = ¢; and e, = ¢;, do the following:

If the two endpoints of e, are disconnected in A =
(v, F(Dck Xex)), set Xck = Xq« U {ex}-

Step 7. Go to Step 4.

Step 8. For | < & < s, find the X, which forms the
candidate solution with the optimal objective value
then stop.

Step 1 takes O(g” log g). Step 2 needs O(g?) time.
Step 3 computes X, and takes O(¢?) time. Steps 5 and
6 can be finished in O(q) time. Since Steps 5 and 6 are
executed O(g?) times, the complexity is O(g’). Step 8
finds the X, that yields the optimal objective value in
O(q*) time. Hence, the complexity of Algorithm 3 is
0(¢*).

Algorithm 3 reuses the D, I'(D,Xe,) foralle, € E,
and X, generated from a previously computed adja-
cent equivalence class. Steps 1-3 actually do the same
thing Algorithm 2 does to D.,. Steps 5 and 6 apply
Theorem 3 and Corollaries 1 and 2 derived in this sec-
tionto compute D, I'(D,,,)e;)foralle, €E, X, ,,
from D,,, I'(D,,)(e,) for all e, € E, and X,,, respec-
tively. Compared with using Algorithm | for every c,
Algorithm 3 reduces the time complexity by O(q) for
every ¢ where k& > 1. If there are {e;,e;,en,e,} CE,
where d;; and d . coincide, Steps 5 and 6 are still ex-
ecuted O(g?) times if we use perturbation on dj;. Step
4 verifies that all ¢; are computed and finds the op-
timal candidate solution. It follows that Algorithm 3
correctly solves the MCRRST problem, just as Algo-
rithm 2 does, but with a complexity of O(g*).

The methodology of our improved algorithm for the
MCRRST problem can be used to improve the other
algorithms that apply the unified approach proposed
in [5). Applying Theorem 3 and the corollaries, we can
obtain X, for any equivalence class ¢ from X in O(q)
time, where ¢’ is an adjacent equivalence class of c.
In [5], since the set of equivalence classes is induced
on R? by the set of {g;;(4,B)}, every equivalence

Y.-C. Chang, L.-H. Hsu/ Operations Research Letters 19 (1996) 65-69 69

class has adjacent classes. Hence, the related optimal
spanning tree algorithms proposed in [5], which max-
imize g(A(T).B(T)) = (Dper a) + (Tyer b0
ZE,GT ai + He,ET b; or He,ET a; + He.-ET b;, can
also be improved by a factor of O(q) when we use
the approach in [5] and that proposed in this paper.

References

[11 J.A. Bondy and U.S.R. Murty, Graph Theory with
Applications, Elsevier, New York, 1976.

[2] R. Chandrasekaran, Minimal ratio spanning trees, Networks
7, 335-342 (1977).

[3] R. Chandrasekaran, Y.P. Aneja and K.P.K. Nair, Minimal cost
reliability ratio spanning tree, Ann. Discrete Math. 11, 53-60
(1981).

[4] R. Chandrasekaran and A. Tamir, Polynomial testing of the
query “is @® > ¢??” with application on finding a minimal
cost reliability ratio spanning tree, Discrete Appl. Math. 9,
117-123 (1984).

[S] R. Hassin and A. Tamir, Maximizing classes of two-parameter
objectives over matroids, Math. Oper. Res. 14, 362-375
(1989).

