
Mining Community Structures in Peer-to-Peer Environments

Ching-Hua Yu, Wen-Chih Peng,
National Chiao Tung University

Hsinchu, Taiwan, ROC
{tsinghua, wcpeng}@cs.nctu.edu.tw

Wang-Chien Lee
The Pennsylvania State University

State College, PA 16801, USA
wlee@cse.psu.edu

Abstract

Most social networks exhibit community structures, in
which nodes are tightly connected to each other within a
community but only loosely connected to nodes in other
communities. Researches on community mining have re-
ceived a lot of attention; however, most of them are based
on a centralized system model and thus not applicable to
the distributed model of P2P networks. In this paper, we
propose a distributed community mining algorithm, namely
Asynchronous Clustering and Merging scheme (ACM), for
computing environments. Due to the dynamic and dis-
tributed nature of P2P networks, The ACM scheme employs
an asynchronous strategy such that local clustering is ex-
ecuted without requiring an expensive global clustering to
be performed in a synchronous fashion. Experimental re-
sults show that ACM is able to discover community struc-
tures with high quality while outperforming the existing ap-
proaches.

Keywords:Distributed node clustering, connected graph,
peer-to-peer networks.

1. Introduction

Peer-to-peer (P2P) networks and systems have been re-
ceived well by internet users in the past few years [10] [6]
[11]. Via P2P networks, people exchange messages and
data, share resource and load, contribute software and hard-
ware to each other. While various information have been
flowing among peer nodes and their users, social interde-
pendencies (e.g., common interests, friendships, trust, and
so on) may have been established implicitly among peer
nodes. Therefore, P2P networks can be naturally treated
as social networks.

We consider a peer-to-peer social network to consist of
peer nodes and logical links which represent the above-
mentioned interdependent connections. Conveniently, a so-
cial network can be denoted as a graph G(V,E), where V
= {V1, V2, ..., Vn} is a set of vertices and E = {E1, E2, ...,

En} is a set of edges, by mapping nodes to vertex and con-
nections to edges, respectively. A cluster is a set of nodes
denoted as C = {V1, V2, ..., Vn}, while a clustering refers
to partition of a graph into a set of clusters denoted as Cl
= {C1, C2, ..., Ck}. One important property of social net-
work is community structure, defined as a clustering of a
graph, in which nodes within a cluster are connected tightly
while nodes in different clusters are connected only loosely.
Mining community structures can help discover rich infor-
mation inherent in social networks, e.g., common attributes
and characteristics of nodes within the same clusters, dif-
ferences amongst clusters, interdependent strength between
any two nodes, also prediction of potential interdependency
between nodes, topics concerned by a group of peer nodes,
etc.

This paper proposes a distributed scheme to discover the
community structure, allowing nodes in a peer-to-peer net-
work to form communities automatically. Although some
researches have been conducted on community mining or
clustering [7] [4] [3] [9], most of them are based on a cen-
tralized system model and thus not applicable to the dis-
tributed model of P2P networks. Generally, P2P networks
have the following characteristics:

1. Peer nodes do not have a global view of the network
and only connect with a few neighbors;

2. Due to interactions and join/leave of peers, P2P net-
works are highly dynamic;

3. Global flooding and synchronous mechanisms in P2P
networks are inefficient;

To overcome challenges resulted from the above char-
acteristics, we adopt an asynchronous strategy to imple-
ment a two-phase approach for mining community struc-
tures. Explicitly, in the first phase, a node will determine
whether it should become a ”cluster originator” to initi-
ate a local clustering based on connecting conditions with
its neighbors. Specifically, a spontaneous originator exam-
ination process is developed to obtain amendable origina-
tors. Thereafter, in the second phase, cluster originators
will evaluate the overlapping conditions between clusters
and determine whether the clusters should be merged or not.

2008 14th IEEE International Conference on Parallel and Distributed Systems

1521-9097/08 $25.00 © 2008 IEEE

DOI 10.1109/ICPADS.2008.93

351

Clusters may be recursively merged until a terminating cri-
terion is satisfied. In short, we present a distributed scheme,
namely Asynchronous Clustering and Merging (ACM), to
discover the community structure. Note that ACM is exe-
cuted in a pure peer-to-peer manner, without relying on any
super-peer node or other global information, and thus very
suitable for dynamic P2P environments.

G the graph of the corresponding network
V the set of vertices in the graph, corre-

sponding to the nodes in the network
E the set of edge in the graph

W (Vi, Vj) the edge weight of E(Vi, Vj)
Nbr(Vi) the set of the neighbors of Vi

Cluster(Vi) the cluster which Vi is belong to
Ci the ith cluster in a graph after clustering
Cl the set of clusters in a graph after cluster-

ing, a clustering of the graph
Degree(Vi) the number of edges connected to Vi

Vo the initial cluster originator

Table 1. The descriptions of notations

2 Preliminaries

In the following, we first review a closely related work,
discuss the quality measurement of clustering, and then for-
mulate our problem. To facilitate the presentation of this
paper, some notations are summarized in Table 1.

2.1 Node Clustering

Mining P2P community structures is similar to cluster-
ing peer nodes in P2P networks. A connectivity-based node
clustering algorithm (CDC) [5] has been proposed to parti-
tion a P2P network into several clusters such that nodes in
the same cluster are similar and nodes belonging to different
clusters are dissimilar.

The CDC scheme is basically a randomized method.
With different originators selected, the clustering results
may be different. Although there are some conditions to
check for good originators, these conditions have some
problems themselves. One example can be found in Fig.
1(a). Because V1 has the highest TwoHopProb in the net-
work, with the restriction of vicinity check, V1 could be-
come the only originator in the CDC scheme, and results
in a worse clustering as showed in Fig. 1(a). Besides, be-
cause the CDC scheme requires the whole network to syn-
chronously perform a clustering, it is challenging to work
in a pure peer-to-peer environment efficiently.

2.2 Clustering Quality

We use the following measure to evaluate the cluster-
ing quality of a community structure. Given a P2P network

(a) (b)

1

2

34

8

9 10 11 12

13

5
6

7

1

2

34

8

9 10 11 12

13

5
6

7

C1

C1C2

C3 C4

Figure 1. An example of community struc-
tures in P2P networks.

modelled as a graph G(V, E), and a community structure as
a clustering Cl of G, the number of nodes neighboring Vi

that are out of Cluster(Vi) is expressed by out(Vi), and the
number of nodes in Cluster(Vi) that are not neighbors of
Vi is expressed by in(Vi). Similar to [8] [5], the coverage
measurement is defined as follows:

Cov(G,Cl, Vi) = 1 − out(Vi)+in(Vi)
‖Nbr(Vi)∪Cluster(Vi)‖

The quantity falls in [0..1], where the value 1 can be
achieved only if Nbr(Vi) and Cluster(Vi) are the same.

In light of the definition of the coverage measurement,
the average coverage measurement for a graph G is formu-
lated as follows:

avgCov(G,Cl) =
∑

Vi∈V Cov(G,Cl,Vi)

‖V ‖ ,
which is defined as the quality of clustering Cl in G.

We take the graph G(V,E) in Fig.1 for example. In
Fig.1(a), Cl1 = {C1}. Since none of Nbr(Vi) outside
C1, out(Vi) = 0,∀Vi ∈ V . Because each node of
C1 is connected to V1, in(V1) = 0. For each Vi, i =
2, ..., 13, there are 9 nodes leaving unconnected in C1.
As a result, in(Vi) = 9. Therefore, Cov(G,Cl1, V1) =
1 − 0+0

13 , and Cov(Vi) = 1 − 0+9
13 , i = 2, ..., 13.

Hence avgCov(G,Cl1) = 0.361. In Fig.1(b), we get
Cov(G,Cl2, V1) = 4

13 , Cov(G,Cl2, Vi) = 1, i =
2, 3, 4, and Cov(G,Cl2, Vj) = 3

4 , j = 5, ..., 13. Hence
avgCov(G,Cl2) = 0.774.

It can be seen that avgCov(G,Cl2) is much higher than
avgCov(G,Cl1). So Cl2 is regarded as a better clustering.

2.3 Problem of Mining Community Struc-
tures

Given a P2P social network which is highly distributed
and dynamic, we are attacking the challenging problem of
discovering community structures in such a network. By
denoting the social network as a graph G(V , E), where the
set of vertices V represents the set of nodes, and the set of
edges E is the set of connections, a community structure is
defined as a clustering Cl, where avgCov(G,Cl) should be
as high as possible. Therefore, the edges inside a cluster are
dense, and edges between clusters are loose. By mapping

352

each cluster to a community, the interactions inside a com-
munity are strong, and the interactions between communi-
ties are weak. Due to the dynamic and distributed charac-
teristics of P2P environments, we aim at developing a new
distributed asynchronous algorithm to discover community
structures without assuming any global information.

3 Algorithm ACM: Asynchronous Cluster-
ing and Merging

In this section, we propose our scheme Asynchronous
Clustering and Merging (ACM) to extract community struc-
tures in P2P networks. The ACM scheme consists of two
phases: the clustering phase and the merging phase. In the
clustering phase, each node should first check whether itself
should be an originator or not. Such a procedure is called
spontaneous originator examination (SOE). Once each peer
performs SOE, the set of originators will be determined.
Then, a Markov process starting from the originators will
disseminate the reach probabilities among peers. Peers in
the network accumulate the reach probabilities from the
originators. Finally, local clustering is performed. In the
clustering phase, we could have rough clustering results. In
the merging phase, these rough clusters will be merged ac-
cording to the merging criteria that will be described later.

3.1 The Local Clustering Phase

In the clustering phase, we select originators and then
perform local clustering subsequently.

3.1.1 Determining Originators

A good cluster should have intensive interactions among
peer nodes within the cluster, and the only information in
each peer initially is the peer’s local connectivity. Thus, a
good originator should be those nodes with a larger num-
ber of edges. Thus, originators could be roughly selected
according to the local connectivity of each peer node. Prac-
tically, each peer could decide whether it should be a can-
didate originator (referred to as quasi-originator) or not.
Having strong mutual relations with many peers in a cluster
is a necessary criterion to become originators. In a simple
graph G, we let a node V to be a quasi-originator if the
number of the node’s edge reaches a predefined threshold,
QuasiSOEThreshold. Notice that the threshold also restricts
the minimum size of a cluster, where the size of a cluster is
defined by the number of nodes included; no cluster with
nodes less than QuasiSOEThreshold+1 could be formed.
Therefore, if a group of nodes have enough relations, at
least one of them would become a quasi-originator. The
next step of a quasi-originator is to probe one-hop neigh-
bors, so as to decide whether it could become an originator

Algorithm 1 SOE Check: Executed by Vo to check to be an
Originator

1: if The number of edges of Vo ≥ QuasiSOEThreshold
then

2: Vo has enough connective coverage nearby
3: Vo becomes a Quasi-Originator. Send SOEcheckMsg

to the neighbors
4: Create an SOEcheckMsg
5: SOEcheckMsg.OID = Vo

6: SOEcheckMsg.list = {Vo, Nbr(Vo)}
7: for each node Vi ∈Nbr(Vo) do
8: Send SOEcheckMsg to Vi

9: end for
10: end if
11: Wait for SOEreplyMsg
12: While Vo receive SOEreplyMsg,

avgRatio =
∑

∀Vi∈Nbr(Vo) SOEreplyMsg(Vi).Ratio

|Nbr(Vo)|
13: if avgRatio ≥ SOEThreshold then
14: Vo becomes an Originator and initialize a local clus-

tering process.
15: end if

or not. At the beginning, the quasi-originator sends its con-
nected list (i.e. a list of its connected nodes) to the neighbor
nodes. While receiving the message, the neighbor nodes
compare the list with their own connected list and send back
the overlapping ratio, where the overlapping ratio is defined
as |Nbr(Vo)∩Nbr(Vi)|

|Nbr(Vi)| ,∀Vi ∈ Nbr(Vo). The quasi-originator
averages the overlapping ratio of its neighbors. If the av-
erage ratio reaches a threshold, SOEThreshold, the quasi-
originator becomes an originator and then performs a local
clustering process. The average ratio here is an approximate
coverage measurement of the cluster centered by the orig-
inator within one hop, to ensure the lower-bound coverage
of the cluster. Thus, the threshold also limits the minimum
coverage of cluster; i.e., clusters with low coverage could
not be formed.

Msg.OID the originator ID
Msg.list the list of the originator’s neighbors
Msg.Ratio the overlapping ratio returned to the orig-

inator
avgRatio the average of the returned overlapping

ratios counted by the originator
Msg(Vi) the message comes directly from Vi

Table 2. The notations in SOE algorithm.

Obviously SOE is deterministic and can work asyn-
chronously without special supervising peer. Additionally,
the algorithm dispatches the computation to each peer, fully
utilizing the distributed, load sharing feature of P2P envi-
ronment.

353

(c)

Local
Clustering

(b)

Originator
Examination

(d)

Merging

0

1

23

4

5

6

7 8
9

10
11

12

13

Spontaneously
Originating Final

0

1

23

4

5

6

7 8

9

10
11

12

134
1

4
1

4
1

4
1

4
1

4
1

4
1

4
1

4
1

4
1

4
1

4
1

4
1

4
1

4
1

4
1

4
1

4
1

4
1

(a)

0

1

23

4

5

6

7 8
9

10
11

12

13
0

1

23

4

5

6

7 8
9

10
11

12

13

Figure 2. Illustration of SOE processes.

Algorithm 2 SOE Reply: Executed by Vi receiving
SOEcheckMsg

1: {Calculate the overlapping ratio of the neighborhood
between SOEcheckMsg.OID and Vi}

2: Create a new message SOEreplyMsg
3: SOEreplyMsg.Ratio = |SOEcheckMsg.list∩Nbr(Vi)|

|Nbr(Vi)|
4: Send SOEreplyMsg back to SOEcheckMsg.OID

In Fig. 2, we take the same example in [5] to see how
ACM processes. At First, node V2, V3, V4, V6, V7, V8,
V10, V13 which has greater degree number would become
quasi-originators and proceed with one-hop probes (Fig.
2a). After the examination, only V3, V6, V7, V8, V10, V13

have enough local coverage to become the cluster origina-
tors (Fig. 2b).

To illustrate how to compute the overlapping ratio,
consider an example V6 in Fig. 2a. Assume V6 has
become a quasi-originator. V6 would send Nbr(V6) ∪
V6 = {V5, V6, V7, V8, V9} to V5, V6, V7, V8, V9. After
a while, V6 would receive the returned messages with
value Msg(V5).Ratio = 1

3 , Msg(V7).Ratio = 3
4 ,

Msg(V8).Ratio = 3
4 , Msg(V9).Ratio = 1. Hence V6

gets avgRatio = 0.708.

ClusterTable: maintain several sets of (OID, Weight)
OID The ID of the originators which the node has

received the cluster message from.
Weight The message weight which the node accumu-

lated from the originator OID.
Variable
MainCluster The ID of the originator which the node accu-

mulated the most message weight from.

Table 3. Data maintained by each peer node
MemberList: maintain the member list
MID The ID of the cluster members.
GuestTable: maintain several sets of (GID, Weight)
GID The ID of the cluster guests
Weight The accumulated weight the guest GID ob-

tained from this originator.

Table 4. Additional data of each originator

3.1.2 Local Clustering

With limited information, we allow more originators in P2P
and then perform the local clustering procedure.

Once originators are determined, originators issue local
clustering individually. Peers accumulate the reach proba-
bilities of originators disseminated as the message weights.
While the accumulated weight of some originator reaches a
predefined minimum threshold, ClusterThreshold, the node
would apply to join the cluster. Thus, each peer should
maintain a Cluster Table (showed in Table 3) to record the
accumulated weight from each originator. Furthermore, we
define two levels for joining a cluster. The first level is that
if the accumulated message weight from some originator
over a threshold in a node, the node would apply to join
the cluster to be a ”cluster guest.” A node could be many
clusters’ guest. The second level is that among the clusters
of which the node satisfies the condition to be a guest, the
node chooses only one, from which the maximum weight
the node accumulates, representing the most related one, to
join as a ”cluster member.” It can be understood that a ”clus-
ter member” is also a ”cluster guest”. In addition, while a
node joins the cluster as a cluster guest, it would tell the
originator additional information - the accumulated mes-
sage weight which the node receives from the originator.
Thus, each originator should maintain a guest table (showed
in Table 4) that contains the ID list and the weight. We
need to distinguish ”cluster member” from ”cluster guest”
because there are no intersection between member sets of
different clusters.

As illustrated in Fig. 2b and 2c, after Spontaneous Orig-
inator Examination, only V3, V6, V7, V8, V10, V13 are qual-
ified to be cluster originators and to issue the local cluster-
ing, disseminate the reach probability to execute Markov
process. Due to the dense connectivity among {V0, V1, V2,
V3, V4}, they could accumulate reach probability from orig-
inator V3 higher and faster than from the other originators.
Finally {V0, V1, V2, V3, V4} form a local cluster. Similar
processes happen in {V6, V7, V8, V9} and {V10, V11, V12,
V13}. In this case, V3, V6, and V7 generate equivalent clus-
ters, and V10 and V13 also do. The question how to accu-
rately identify and merge equivalent or similar clusters in a

354

Algorithm 3 Join Process of Local Clustering: Executed by
node Vi receiving Clustering Messge Msg

1: Calculate the proceeding reach probability and pass it
to neighbors as message weights. (Similar to CDC)

2: Accumulate he received weight to ClusterTable.
3: if ClusterTable.Weight(Msg.OID)

< ClusterThreshold then
4: Remain the state.
5: else
6: Join Msg.OID as a guest.
7: if ClusterTable.Weight(Msg.OID)

> ClusterTable(MainCluster) then
8: Quit MainCluster (but still a cluster guest)
9: Join Msg.OID as a cluster member.

10: MainCluster = Cluster(Msg.OID)
11: end if
12: end if

(a) (b)

Figure 3. Resolvability of two local clusters

distributed environment is managed in the merging phase.

3.2 The Merging Phase

The merging examination depends on the definition of
the overlapping. Fig. 3(a) is showed a sketch of resolvabil-
ity. If two circles do not cover each other’s center, we call
them resolvable. We draw the circle for local clustering with
the cluster originator as the center and the threshold of reach
probability as the radius. We let the originator covered by
the other originator, meaning in the scope of its local clus-
tering and being a guest, to issue a merging check. Only one
cluster covers the other is sufficient for the merging con-
dition, as showed in Fig. 3(b) because two clusters with
different sizes may often cause only one to cover the other;
especially in the situation of contiguous merging, there may
be some larger clusters and some smaller ones.

In order to perform the merging process, a cluster orig-
inator should maintain two pieces of data. One is Mem-
berList which maintains the cluster members’ ID when they
join or leave. The other is GuestTable which maintains the
cluster guests’ ID and their accumulated cluster weight with
respective to the cluster. The data structure is showed in Ta-
ble 4.With the help of these additional data, we can define the
overlapping in the merging phase now. The method uses a
distributed inner product of vectors. Let us see a GuestTable
as a vector based on the inner product space composed by

Algorithm 4 Merging Check: Executed by Originator Vo

1: After finishing the local clustering
{Calculate the scale of my own clustering}

2: ScaleOfCluster =∑
∀Vi∈GuestTable GuestTable.Weight(Vi)2

{Check if Vo is in the range of other clusterings}
3: for each node Vp in ClusterWeightTable do
4: if ClusterWeight(Vp) ≥ ClusterThreshold then
5: {Vo is Vp’s guest. Execute merging check.}
6: Create a MergeCheckMsg
7: MergeCheckMsg.OID = Vo

8: MergeCheckMsg.ClusterScale = ScaleOfCluster
9: MergeCheckMsg.GuestTable = GuestTable

10: Send MergeCheckMsg to Vp

11: end if
12: end for

mapping each node to one dimension. The nodes not in
a GuestTable are thought as weight 0. Therefore, without
knowing all nodes in the network, we can still perform vec-
tor computations on the basis of the whole network.

First, we can obtain the scale of a cluster by the inner
product of the cluster’s GuestTable as

ScaleOfCluster = ‖GuestTable.Weight‖2

=
∑

Vi

GuestTable.Weight(Vi)2

Second, we can obtain the overlapping scale by the inner
product of the GuestTables of the two clusters, which is the
projection from one cluster to the other and vice versa as
Projection(Cm, Cn)
=

∑
∀Vi

(Cm.GuestTable.Weight(Vi))

×(Cn.GuestTable.Weight(Vi))
Third, for a cluster Ci, we define its intersection ratio

with another cluster Cj as

ProjectRatio(Cm, Cn) =
Projection(Cm, Cn)
ScaleOfCluster(Cm)

,

which is the normalized intersection scale. We use
ProjectRatio as the overlapping measurement in the
merging phase.

The merging processes as follows. During local cluster-
ing, the event that one originator reaches the condition to be
the other’s cluster guest would detonate the merging check
between them in the next phase. After local clustering, the
originator sends the GuestTable and the cluster-self’s scale
to the other cluster for merging check. The cluster receiv-
ing the merging check message calculates the ProjectRa-
tio to determine whether the coverage between two clusters
reaches the MergeThreshold. We take the originator with

355

the highest ScaleOfCluster as the major cluster head and
also retain the original clustering information in each other
originator, as a minor cluster head, thus form a hierarchical
structure. However the exact information deployment de-
pends upon the requirement of practical P2P applications.

Algorithm 5 Merging Reply: Executed by Originator Vp

receiving MergeCheckMsg

1: {Calculate the inner product between GuestTable and
MergeCheckMsg.GuestTable as follows}

2: IntersectWeight = 0
3: for each node Vi in GuestTable do
4: for each node Vj in the MergeCheckMsg.GuestTable

do
5: if Vi = Vj then
6: Projection = Projection +

GuestTable.Weight(Vi) ×
MergeCheckMsg.GuestTable.Weight(Vj)

7: end if
8: end for
9: end for

10: {Calculate the Projective Ratio between GuestTable
and MergeCheckMsg.GuestTable as follows}

11: ProjectRatio = Projection
ScaleOfCluster

12: if ProjectRatio ≥ MergeThreshold then
13: Cluster(Vp) and Cluster(MergeCheckMsg.OID)

should be the same cluster
14: if MergeCheckMsg.ClusterScale > ScaleOfCluster

then
15: Join MergeCheckMsg.OID with the whole cluster
16: else
17: Ask MergeCheckMsg.OID with

Cluster(MergeCheckMsg.OID) to join my cluster
18: end if
19: end if

As illustrated in Fig. 2c and 2d, after local cluster-
ing, the clusters leaded by V6, V7, and V8 would cover
each other. Then, the merging process would calculate the
ProjectRatio, and there are finally three clusters leaded by
V3, V6, and V10 derived. Node V5 would remain an outlier
or be a member of the cluster leaded by V10 according to
the threshold defined in the local clustering algorithm, but
each situation is good in this graph.

4 PERFORMANCE EVALUATION

In this section, we implement a simulator and conduct
experiments to evaluate the performance of ACM. The sim-
ulation model is presented in Section 4.1 and Section 4.2
presents the experimental results.

4.1 Simulation Model

The simulation implemented consists of two parts: the
generation of P2P network topology and the implementa-
tion of clustering schemes. For the network topology gen-
eration, the ground truth of clustering results should be de-
termined. We first set the number of nodes in the network
and the size of clusters. Same as in [1] [2], we utilize Zipf-
distribution for some parameters used for the network topol-
ogy generation. Table 5 shows the notations and the settings
for these parameters. Specifically, Zipf-of-Cluster-Size de-
termines the variation in size of clusters. The network topol-
ogy is composed by clusters of largely varied sizes when
Zipf-of-Cluster-Size is set to a high value. Besides, for each
peer, Zipf-of-node-degree determines the edge connectiv-
ity among other peers. After generating the distribution,
the network topology is further modified by loss edge ra-
tio which stands for the loss information, and irregular edge
ratio for the misleading information.

We use the average coverage (avgCov) introduced in
Section 2 to evaluate the quality of communities. An in-
flation parameter in the MCL scheme can control the clus-
tering granularity. The algorithm would lead to fewer and
larger clusters with a lower value of the parameter, and
vice versa. So we set the value from 1.5 to 5 to generate
the various clustering results and select the best one from
them. In the CDC scheme, two parameters, Vicinity and
TwoHopThreshold, can control the number of originators,
and hence also effect the clustering granularity. We test
and select the best values of these parameters in the CDC
scheme for each network topology. In addition, as the orig-
inator selection in the CDC scheme is random, we perform
the CDC scheme with different random seeds 10 times for
10 various networks which are generated by the identical
topology parameters. Then average the results of these 100
runs in each experiment.

Parameter Value, default
N Number of nodes in the network 8 – 4096, 512
M Size of clusters 4 – 64, 32
α1 Zipf-of-Cluster-Size 0 – 2, 0.2
α2 Zipf-of-Node-Degree 0 – 2, 0.5
γ1 Loss edge ratio 0% – 100%, 10%
γ2 Irregular edge ratio 0% – 100%, 20%

Table 5. Parameters of network topology gen-
eration.

4.2 Experimental Results

4.2.1 Scalability

We first investigate the scalability by varying the number of
peers. The parameters are set to default values as showed

356

in Table 5. Note that the default Zipf-of-Cluster-Size is set
to a low value, with which the generated network topolo-
gies should yield a cluster structure with roughly the same
cluster sizes.

Fig. 4(a) shows the stability of all three schemes un-
der this setup. Since the network topology is very similar
except for the number of nodes, the quality of clustering
results are good with the number of nodes varied. We ob-
serve that ACM performs as good as the centralized MCL
scheme and outperforms CDC scheme, although we have
optimized the configurable parameters for cluster size in the
CDC scheme. It indicates that the CDC scheme could not
obtain good originator sets every time, and get lower qual-
ity. The result reflects the problem of originator determina-
tion discussed in Section 2. With a good design of ACM
in selecting originators, local clustering and merging, ACM
performs better than CDC.

(a)

(b)

Figure 4. (a)Effect of Network Size and
(b)Effect of Cluster Size

4.2.2 The Size of Clusters

Next, we investigate the impact of the size of clusters gener-
ated in the network topology. Without global information,
clustering for large size of clusters could become challeng-
ing in distributed environments. The size of cluster varies
from 4 to 64 while other parameters are set to default val-
ues. As seen in Fig. 4(b), the clustering quality of CDC
decreases with the size of clusters. The reason is that with
a larger cluster size, the number of clusters will be smaller.
Therefore, the selection of originator has a great impact on
the cluster results. In addition, the originator number in the

CDC scheme is controlled with a random waiting method
through routing, which would get harder while the cluster
size gets larger. The experiment indicates that CDC suffers
from the selection of originators.

On the other hands, the ACM scheme has almost con-
stant clustering quality while the size of clusters increases as
well as the centralized MCL scheme, which does not have
problems of routing and originator selection. The experi-
ment validates the excellent design of the ACM scheme for
the distributed environment.

(a)

(b)

Figure 5. (a)Effect of variation in Cluster-Size
and (b)Effect of Variation in Node Degree

4.2.3 Variation in Cluster Size

In P2P applications, communities may have varied sizes.
Thus, in this experiment, we further examine the impact
of the variation in cluster size. As showed in Fig. 5(a),
the ACM scheme performs well while the clustering qual-
ity of the CDC deteriorates as the variation in cluster sizes
increases. The result indicates that the CDC scheme is de-
signed only for uniform cluster size. As cluster sizes varies,
CDC cannot derive a good cluster quality. In Fig. 5(a),
the ACM scheme even performs better than the centralized
MCL scheme as the variation in cluster sizes increases. No-
tice that the MCL scheme also manages the whole network
topology with the same clustering granularity. The experi-
ment demonstrates the adaptability of the ACM scheme for
varied network topology.

357

(a)

(b)

Figure 6. (a)Number of Initial Originators and
(b)Number of Final Clusters

Since SOE depends on the node degree and local cover-
age, the more variation in node degree, the less nodes could
be qualified as originators. As can be seen in Fig. 6(a) that
the originator number decreases as Zipf-of-Node-Degree
increases. Most P2P interactions have Zipf-distribution.
Even if there are many originators in a uniformly distributed
network, and hence many duplicate clusters, the ACM
scheme still reduces the number of clusters after merging
phase to gain better avgCov than the CDC scheme as the
result in Fig. 5(b).

In Fig. 6(b), the ACM scheme and the MCL scheme
has similar high clustering quality. Their similar numbers
of clusters stand for good clusterings. Although we have
adjusted the parameters in the CDC scheme to optimize the
cluster number, it still suffers from the random factor and
routing process, thus does not always derive good clustering
quality.

5 Conclusion

In this paper, we developed a new scheme ACM –
Asynchronous Node Clustering and Merging to discover
the community structure of social networks in the peer-to-
peer environment. Note that the scheme does not require
any specific supervised node. By exploiting the Sponta-
neous Originator Examination mechanism (SOE), commu-
nity structures are formed automatically. Due to the adopted
asynchronous mechanisms, the clustering processes do not
need to be performed throughout the whole network syn-

chronously, but executed by peer nodes as needed. Experi-
ment results show the quality of community structures ob-
tained by the ACM scheme better than other schemes under
various topology settings. The experiments also indicate
that ACM forms good community structures in networks
with high variation in cluster size feature. Due to the asyn-
chronous feature, the ACM scheme is well performed in dis-
tributed, dynamic environments. New strategies and mech-
anisms for dynamic maintenance will be studied in the fu-
ture. Moreover, we plan to conduct a thorough performance
evaluation to study the ACM scheme.

6 Acknowledgements

This work was supported in part by the National Science
Council, Project No. NSC 95-2211-E-009-61-MY3 and
NSC 97-2623-7-036-001-D, Taiwan, Republic of China.

References

[1] M. Li, W. Lee, and A. Sivasubramaniam. ”Semantic Small
World: An Overlay Network for Peer-to-Peer Search”. In
12th ICNP, pages 228– 238, Oct. 2004.

[2] A. Löser, S. Staab, and C. Tempich. ”Semantic Social Over-
lay Networks”. IEEE JSAC, 19(10):5–14, Jan. 2005.

[3] G. Palla, I. Derenyi, I. Farkas, and T. Vicsek. ”Uncover-
ing the Overlapping Community Structure of Complex Net-
works in Nature and Society”. Nature, 435(7043):814–818,
Jun. 2005.

[4] P. Pons and M. Latapy. ”Computing Communities in Large
Networks Using Random Walks”. In 20th ISCIS, pages 284–
293, 2005.

[5] L. Ramaswamy, B. Gedik, and L. Liu. ”A Distributed
Approach to Node Clustering in Decentralized Peer-to-Peer
Networks”. IEEE TPDS, 16(9):896–915, Sep. 2005.

[6] M.-T. Sun, C.-T. King, W.-H. Sun, and C.-P. Chang.
”Attribute-Based Overlay Network for Non-DHT Structured
Peer-to-Peer Lookup”. In 36th ICPP, page 62, 2007.

[7] S. van Dongen. A New Cluster Algorithm for Graphs.
Centrum voor Wiskunde en Informatica (CWI), INS-R9814,
ISSN 1386-3681, 1998.

[8] S. van Dongen. ”Performance Criteria for Graph Clustering
and Markov Cluster Experiments”. technical report, Natl Re-
search Inst. for Math. and Computer Science in the Nether-
lands, Amsterdam, 2000.

[9] B. Yang, W. K. Cheung, and J. Liu. ”Community Mining
from Signed Social Networks”. IEEE TKDE, 19(10):1333 –
1348, Oct. 2007.

[10] X. Yang, Y. Zhu, and Y. Hu. ”A Large-Scale and Decen-
tralized Infrastructure for Content-Based Publish/Subscribe
Services”. In 36th ICPP, page 61, 2007.

[11] J. Zhang and J. Wu. ”XYZ: A Scalable, Partially Centralized
Lookup Service for Large-Scale Peer-to-Peer Systems”. In
12th ICPADS, 2006.

358

