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Abstract—1,3-Dipolar cycloadditions of upper- and lower-rim diallylcalix[4]arenes (1 and 3) with aryl dinitrile oxides provide a
unique and efficient way of capping the calix[4]arenes. When dinitrile oxides reacted with 5-allylcalix[4]arene 7, they underwent a
1,3-dipolar cycloaddition on one side and an electrophilic substitution on the other side, which led to a novel type of asymmetric
calix[4]arenes (9 and 12).
� 2006 Elsevier Ltd. All rights reserved.
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Modification on the upper or lower rims of calix[4]-
arenes enhances the accommodative ability of these
molecules, and allows the inclusion of larger guest mole-
cules.1–3 We have been interested in the design of new
chromogenic4 and fluorogenic chemosensors. In the lat-
ter theme, we have developed a method of attaching aryl
isoxazoline or isoxazole units onto the upper or lower
rims of calix[4]arenes by 1,3-dipolar cycloadditions.5

Restriction of the conformational mobility of calix[4]-
arenes by upper-rim bridges has been shown to highly
enhance its affinity towards neutral guests.6 Judging
from molecular modelling, we envisaged it highly likely
that a double 1,3-dipolar cycloaddition could be oper-
ated on the bis-allylcalix[4]arenes, and thus, may form
a cap on the upper or lower rims of the macrocycles.
Our synthetic strategy for novel capping on calix[4]-
arenes involves double cycloadditions between bis-dipoles
(aryl dinitrile oxides) and bis-dipolarophiles (5,17-di-
allyl- or 25,27-diallyloxycalix[4]arenes). Although double
cycloaddition methodologies have been exploited in
the syntheses of crown ether macrocycles,7 silamacro-
cycles,8 and bis-calix[4]arenes,9 most of them resulted in
2+2 macrocyclizations. As described below, our work is
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quite unique because most of the systems studied here
exhibited 1+1 macrocyclizations.

The 1,3-dipolar cycloaddition reaction of isophthaldi-
nitrile oxide8 with 25,27-diallyloxycalix[4]arene 11a in
methanol was studied first using a method reported pre-
viously.10 After refluxing for 24 h, the reaction under-
went a 1+1 double cycloaddition to give 2 (in 27%),
which has an aryl-1,3-diisoxazoline cap on the lower
rim of calix[4]arene (Scheme 1). To our disappointment,
the reaction of terephthaldinitrile oxide8 with lower rim
diallyloxycalix[4]arene 1 under similar reaction condi-
tion gave only an inseparable complex mixture.

The structure of 2 was confirmed spectroscopically, and
it was further determined by an X-ray crystallography
analysis (see Supplementary data).11,12

The 1,3-dipolar cycloaddition reaction of 5,17-diallyl-
calix[4]arene 3 with isophthaldinitrile oxide was studied
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Scheme 1. Capping of lower rim diallyloxycalix[4]arene 1.
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next. The reaction after 24 h of reflux in methanol gave a
1+1 cycloadduct 4 in 29% yield. Whereas reaction of 3
with terephthaldinitrile oxide gave 1+1 upper rim
capped calix[4]arene diastereomers 5 and 6 in ca. 2:1
ratio (Scheme 2).11,12

The structures of cycloadducts 4–6 were confirmed spec-
troscopically. Furthermore, the structures of the two
upper-rim capped products 4 and 5 were confirmed by
X-ray crystallography analysis (Fig. 1).12

After successfully capping the lower and upper rim
diallylcalix[4]arenes 1 and 3 by double 1,3-dipolar cyclo-
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Scheme 2. Capping of upper rim diallylcalix[4]arene 3.

Figure 1. Single crystal X-ray structures of 4 and 5.
additions, we extended this methodology for upper
and lower rim mono allyl calix[4]arenes 7 and 8,1a with
a hope to synthesize ‘clamshell’ type calix[4]arene
dimers.13

The reaction of terephthaldinitrile oxide with 5-allyl-
calix[4]arene 7 in ethanol did not give the expected
2+1 ‘clamshell’ bis-calix[4]arene adduct 10. Instead, we
obtained 18% yield of an interesting asymmetric capped
calix[4]arene 9, which contained both an isoxazoline and
an oxime moiety (Scheme 3).

It is noteworthy that host 9 becomes asymmetric from
the reaction of two symmetrical reagents. The 1H
NMR of 9 reveals that all the four methylene bridges
and the four phenolic groups are in different chemical
environments (see Supplementary data). The structure
of 9 was further confirmed by an X-ray crystallography
analysis (Fig. 2).

Compound 9 might have arisen from two concurrent
reactions: (1) 1,3-dipolar cycloaddition of one nitrile
oxide with upper rim allyl group, and (2) an electrophilic
substitution of another nitrile oxide on the para-position
of distal phenol group. Scheme 4 provides a possible
pathway for the formation of 9 through a zwitterionic
+
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Scheme 3. The reaction of terephthaldinitrile oxide with 5-allylcalix-
[4]arene 7.

Figure 2. Single crystal X-ray structure of 9.12
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Scheme 6. The reaction of 8 with terephthaldinitrile oxide.
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intermediate 11. Although, oxime formation has been
reported by the reactions of nitrile oxides with aromatic
compounds,14 indoles,15 uracil,16 styrene and indenes,17

and a similar zwitterionic intermediate was proposed by
others,17 however, it has never been formed in such a
stereo fashion.

Due to the novel observation, we wish to know the
scope and generality of this reaction type; therefore;
the cycloaddition reaction of 5-allylcalix[4]arene 7 was
extended to heteroaryl dinitrile oxide. The reaction of
thiophene-2,5-dinitrile oxide with 7 gave not only the
isoxazoline-oxime compound 12 (in 24%), but also the
expected bis-calix[4]arene 13 in 22% yield (Scheme
5).18 Compound 12 exists as an inseparable mixture of
E and Z isomers based on 1H NMR spectra.18

The reaction of lower rim 25-allyloxycalix[4]arene 81a

with terephthaldinitrile oxide in THF gave bis-calix[4]-
arene 14 in 22% yield via a 2+1 cycloaddition (Scheme
6).

In summary, we have described here a convenient and
efficient method for capping the upper and lower rim
of calix[4]arenes by double 1,3-dipolar macrocycloaddi-
tions. Unexpected asymmetric isoxazoline-oxime com-
pounds were observed in the cycloaddition reactions of
aryl dinitrile oxides with 5-allylcalix[4]arene. Further
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Scheme 5. The reaction of thiophene-2,5-dinitrile oxide with
5-allylcalix[4]arene 7.
investigations on the optimization of reaction conditions
to control the cycloaddition fashion and the ring open-
ing reactions of calix[4]arene-isoxazolines to multifunc-
tional calix[4]arenes are in progress in our laboratory.
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