

Available online at www.sciencedirect.com

Tetrahedron Letters

Tetrahedron Letters 47 (2006) 8383-8386

Capping the upper and lower rims of calix[4]arenes by aryl dinitrile oxide reactions

Ya-Jiun Shiao,^a Pei-Chen Chiang,^a Annamalai Senthilvelan,^a Ming-Tsung Tsai,^a Gene-Hsiang Lee^b and Wen-Sheng Chung^{a,*}

^aDepartment of Applied Chemistry, National Chiao-Tung University, Hsinchu 30050, Taiwan, ROC ^bInstrumentation Center, National Taiwan University, Taipei 106, Taiwan, ROC

> Received 23 June 2006; revised 14 September 2006; accepted 15 September 2006 Available online 5 October 2006

Abstract—1,3-Dipolar cycloadditions of upper- and lower-rim diallylcalix[4]arenes (1 and 3) with aryl dinitrile oxides provide a unique and efficient way of capping the calix[4]arenes. When dinitrile oxides reacted with 5-allylcalix[4]arene 7, they underwent a 1,3-dipolar cycloaddition on one side and an electrophilic substitution on the other side, which led to a novel type of asymmetric calix[4]arenes (9 and 12). © 2006 Elsevier Ltd. All rights reserved.

Modification on the upper or lower rims of calix[4]arenes enhances the accommodative ability of these molecules, and allows the inclusion of larger guest molecules.^{1–3} We have been interested in the design of new chromogenic⁴ and fluorogenic chemosensors. In the latter theme, we have developed a method of attaching aryl

isoxazoline or isoxazole units onto the upper or lower rims of calix[4]arenes by 1,3-dipolar cycloadditions.⁵

Restriction of the conformational mobility of calix[4]arenes by upper-rim bridges has been shown to highly enhance its affinity towards neutral guests.⁶ Judging from molecular modelling, we envisaged it highly likely that a double 1,3-dipolar cycloaddition could be operated on the bis-allylcalix[4]arenes, and thus, may form a cap on the upper or lower rims of the macrocycles. Our synthetic strategy for novel capping on calix[4]arenes involves double cycloadditions between bis-dipoles (aryl dinitrile oxides) and bis-dipolarophiles (5,17-diallyl- or 25,27-diallyloxycalix[4]arenes). Although double cycloaddition methodologies have been exploited in the syntheses of crown ether macrocycles,⁷ silamacrocycles,⁸ and bis-calix[4]arenes,⁹ most of them resulted in 2+2 macrocyclizations. As described below, our work is quite unique because most of the systems studied here exhibited 1+1 macrocyclizations.

The 1,3-dipolar cycloaddition reaction of isophthaldinitrile oxide⁸ with 25,27-diallyloxycalix[4]arene 1^{1a} in methanol was studied first using a method reported previously.¹⁰ After refluxing for 24 h, the reaction underwent a 1+1 double cycloaddition to give 2 (in 27%), which has an aryl-1,3-diisoxazoline cap on the lower rim of calix[4]arene (Scheme 1). To our disappointment, the reaction of terephthaldinitrile oxide⁸ with lower rim diallyloxycalix[4]arene 1 under similar reaction condition gave only an inseparable complex mixture.

The structure of **2** was confirmed spectroscopically, and it was further determined by an X-ray crystallography analysis (see Supplementary data).^{11,12}

The 1,3-dipolar cycloaddition reaction of 5,17-diallylcalix[4]arene **3** with isophthaldinitrile oxide was studied

Scheme 1. Capping of lower rim diallyloxycalix[4]arene 1.

Keywords: 1,3-Dipolar cycloaddition; Isoxazolines; Electrophilic substitution; Asymmetric calix[4]arenes.

^{*} Corresponding author. Tel.: +886 3 5131517; fax: +886 3 5723764; e-mail: wschung@cc.nctu.edu.tw

^{0040-4039/\$ -} see front matter © 2006 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2006.09.070

next. The reaction after 24 h of reflux in methanol gave a 1+1 cycloadduct **4** in 29% yield. Whereas reaction of **3** with terephthaldinitrile oxide gave 1+1 upper rim capped calix[4]arene diastereomers **5** and **6** in ca. 2:1 ratio (Scheme 2).^{11,12}

The structures of cycloadducts **4**–**6** were confirmed spectroscopically. Furthermore, the structures of the two upper-rim capped products **4** and **5** were confirmed by X-ray crystallography analysis (Fig. 1).¹²

After successfully capping the lower and upper rim diallylcalix[4]arenes 1 and 3 by double 1,3-dipolar cyclo-

Scheme 2. Capping of upper rim diallylcalix[4]arene 3.

Figure 1. Single crystal X-ray structures of 4 and 5.

additions, we extended this methodology for upper and lower rim mono allyl calix[4]arenes 7 and 8,^{1a} with a hope to synthesize 'clamshell' type calix[4]arene dimers.¹³

The reaction of terephthaldinitrile oxide with 5-allylcalix[4]arene 7 in ethanol did not give the expected 2+1 'clamshell' bis-calix[4]arene adduct 10. Instead, we obtained 18% yield of an interesting asymmetric capped calix[4]arene 9, which contained both an isoxazoline and an oxime moiety (Scheme 3).

It is noteworthy that host **9** becomes asymmetric from the reaction of two symmetrical reagents. The ¹H NMR of **9** reveals that all the four methylene bridges and the four phenolic groups are in different chemical environments (see Supplementary data). The structure of **9** was further confirmed by an X-ray crystallography analysis (Fig. 2).

Compound **9** might have arisen from two concurrent reactions: (1) 1,3-dipolar cycloaddition of one nitrile oxide with upper rim allyl group, and (2) an electrophilic substitution of another nitrile oxide on the *para*-position of distal phenol group. Scheme 4 provides a possible pathway for the formation of **9** through a zwitterionic

Scheme 3. The reaction of terephthaldinitrile oxide with 5-allylcalix-[4]arene 7.

Figure 2. Single crystal X-ray structure of 9.12

Scheme 4. Possible mechanism for the formation of 9.

intermediate **11**. Although, oxime formation has been reported by the reactions of nitrile oxides with aromatic compounds,¹⁴ indoles,¹⁵ uracil,¹⁶ styrene and indenes,¹⁷ and a similar zwitterionic intermediate was proposed by others,¹⁷ however, it has never been formed in such a stereo fashion.

Due to the novel observation, we wish to know the scope and generality of this reaction type; therefore; the cycloaddition reaction of 5-allylcalix[4]arene 7 was extended to heteroaryl dinitrile oxide. The reaction of thiophene-2,5-dinitrile oxide with 7 gave not only the isoxazoline-oxime compound 12 (in 24%), but also the expected bis-calix[4]arene 13 in 22% yield (Scheme 5).¹⁸ Compound 12 exists as an inseparable mixture of *E* and *Z* isomers based on ¹H NMR spectra.¹⁸

The reaction of lower rim 25-allyloxycalix[4]arene 8^{1a} with terephthaldinitrile oxide in THF gave bis-calix[4]arene 14 in 22% yield via a 2+1 cycloaddition (Scheme 6).

In summary, we have described here a convenient and efficient method for capping the upper and lower rim of calix[4]arenes by double 1,3-dipolar macrocycloadditions. Unexpected asymmetric isoxazoline-oxime compounds were observed in the cycloaddition reactions of aryl dinitrile oxides with 5-allylcalix[4]arene. Further

Scheme 5. The reaction of thiophene-2,5-dinitrile oxide with 5-allylcalix[4]arene 7.

Scheme 6. The reaction of 8 with terephthaldinitrile oxide.

investigations on the optimization of reaction conditions to control the cycloaddition fashion and the ring opening reactions of calix[4]arene-isoxazolines to multifunctional calix[4]arenes are in progress in our laboratory.

Acknowledgements

We thank the National Science Council (NSC) and MOE ATU Program of Ministry of Education, Taiwan, ROC, for financial support.

Supplementary data

Supplementary data associated with this article can be found in the online version at doi:10.1016/j.tetlet. 2006.09.070.

References and notes

- (a) Gutsche, C. D. In Calixarenes Monographs in Supramolecular Chemistry; Stoddart, J. F., Ed.; The Royal Society of Chemistry: Cambridge, 1989; Vol. 1, pp 127– 148; (b) Calixarenes A Versatile Class of Macrocyclic Compounds; Vicens, J., Bömer, V., Eds.; Kluwer: Dordrecht, 1991; (c) Gutsche, C. D. In Calixarenes Revisited Monographs in Supramolecular Chemistry; Stoddart, J. F., Ed.; The Royal Society of Chemistry: Cambridge, 1998; Vol. 6, pp 79–145.
- 2. Pochini, A.; Ungaro, R. In *Comprehensive Supramolecular Chemistry*; Pergamon: Oxford, 1996; Vol. 2, pp 103–149.
- Shinkai, S. Adv. Supramolecular Chem. 1993, 3, 97; Tetrahedron 1993, 49, 8933.
- 4. Kao, T.-L.; Wang, C.-C.; Pan, Y.-T.; Yen, J.-Y.; Shu, C.-M.; Lee, G.-H.; Peng, S.-M.; Chung, W.-S. J. Org. Chem. 2005, 70, 2912.
- Part of this work was presented previously; see Proceed Inter. Symp. Supramol. Chem., Notre Dame, USA, July 25–30, 2004; Poster-1-31.
- Arduini, A.; McGregor, W. M.; Pochini, A.; Secchi, A.; Ugozzoli, F.; Ungaro, R. J. Org. Chem. 1996, 61, 6881.
- Kim, B. H.; Jeong, E. J.; Jung, W. H. J. Am. Chem. Soc. 1995, 117, 6390.
- Kim, B. H.; Jeong, E. J.; Hwang, G. T.; Venkatesan, N. Synthesis 2001, 14, 2191.
- 9. Hwang, G. T.; Kim, B. H. Tetrahedron Lett. 2000, 41, 10055.

- Shu, C.-M.; Lin, W.-L.; Lee, G.-H.; Peng, S.-M.; Chung, W.-S. J. Chin. Chem. Soc. 2000, 47, 173.
- 11. General procedures for the synthesis of capped calix[4]arenes 2, 4-6: To a well stirred solution of calix[4]arene 1 or 3 (1 mol equiv) and substituted aryl dihydroximoyl chloride (1.2 mol equiv) in methanol (100 mL, 4 mM), excess triethylamine (10 equiv) was slowly added. The reaction mixture was stirred at reflux for 24 h. The solvent was removed under reduced pressure; the residue obtained was purified over silica gel column to give the respective cycloadducts 2, 4–6. The major difference in ${}^{1}H$ NMR between 5 and 6 is on the chemical shift of their hydroxy protons: which is δ 9.95 for **5** but is 9.74 for **6**. Spectral data for 2: $R_f = 0.2$ (EA/Hexane = 1/2); ¹H NMR (300 MHz, CDCl₃): δ 8.15 (s, 1H), 7.58 (dd, J = 7.5 Hz and 1.3, 2H), 7.41 (t, J = 7.5 Hz, 1H), 7.10-7.03 (m, 4H), 6.79-6.67 (m, 3H), 6.47-6.37 (m, 5H), 5.08-5.04 (m, 2H), 4.88 (s, 1H), 4.43 and 3.32 (ABq, J = 14.2 Hz, 4H), 4.36 (s, 1H), 4.11 and 3.32 (ABq, J = 13.7 Hz, 4H), 4.02–3.93 (m, 4H), 3.83–3.61 (m, 4H); ¹³C NMR (75 MHz, CDCl₃): δ 157.0 (Cq), 152.9 (Cq), 152.8 (Cq), 152.7 (Cq), 133.3 (Cq), 131.7 (Cq), 130.4 (Cq), 129.8 (Cq), 129.1 (Cq), 129.0 (CH), 128.9 (CH), 128.9 (CH), 128.0 (CH), 127.9 (CH), 127.5 (CH), 124.4 (CH), 119.4 (CH), 118.8 (CH), 78.8 (CH), 78.1 (CH₂), 37.3
- (CH₂), 30.4 (CH₂), 29.9 (CH₂); FAB-MS m/z: 666 (M+H⁺, 68); HR FAB-MS m/z: Calcd for C₄₂H₃₆N₂O₆ 664.2573, found 664.2577. 12. Crystal structure data for **2**: $C_{44}H_{43}N_2O_8$, M = 727.80, monoclinic, a = 11.0874(5) Å, $\alpha = 90^{\circ}_{\circ}$, b = 11.8544(6) Å, $\beta = 96.216(2)^\circ$, c = 28.6896 (13) Å, $\gamma = 90^\circ$, V =3748.6(3) Å³, T = 150(1) K, space group $P2_1/c$, Z = 4, $\mu = 0.089 \text{ mm}^{-1}$, 29,164 reflections collected (R1 = 0.0708, wR2 = 0.1680), 6597 independent reflections (R(int) = 0.0605, R1 = 0.0999, wR2 = 0.1861). Crystal structure data for 4: $C_{44}H_{37}Cl_3N_2O_7$, M = 812.11, monoa = 11.9873(4) Å, b = 35.0966(16) Å, clinic, c =8.9562(5) Å, $\alpha = 90^{\circ}$, $\beta = 97.735(2)^{\circ}$, $\gamma = 90^{\circ}$, V = 3733.7(3) Å³, T = 150(1) K, space group $P2_1/c$, Z = 4, $\mu = 0.303 \text{ mm}^{-1}$, 34,966 reflections collected (R1 = 0.0738, wR2 = 0.1688), 8585 independent reflections

(*R*(int) = 0.0719, *R*1 = 0.1163, *wR*2 = 0.1948). Crystal structure data for **5**: C_{42.50}H₃₈N₂O_{6.50}, *M* = 680.75, tetragonal, a = 9.6341(4)Å, $\alpha = 90^{\circ}$, b = 9.6341(4)Å, $\beta = 90^{\circ}$, c = 35.9266(14)Å, $\gamma = 90^{\circ}$, *V* = 3334.6(2) Å³, *T* = 150(1) K, space group *P*4₁2₁2, *Z* = 4, $\mu = 0.092$ mm⁻¹, 22,260 reflections collected (*R*1 = 0.0741, *wR*2 = 0.1687), 2948 independent reflections (*R*(int) = 0.0913, *R*1 = 0.0810, *wR*2 = 0.1728).

Crystal structure data for **9**: $C_{40,50}H_{40}N_2O_{7.50}$, M = 674.74, monoclinic, a = 35.5191(3) Å, $\alpha = 90^\circ$, b = 9.6250(1) Å, $\beta = 91.2989(4)^\circ$, c = 19.8381(2) Å, $\gamma = 90^\circ$, V = 6780.34(11) Å³, T = 150(1) K, space group C2/c, Z = 8, $\mu = 0.091$ mm⁻¹, 55,371 reflections collected (R1 = 0.0696, wR2 = 0.2036), 7786 independent reflections (R(int) = 0.0626, R1 = 0.0977, wR2 = 0.2351).

Crystallographic data for the four structures in this letter have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication. Their CCDC numbers are **2** (CCDC 611611), **4** (CCDC 611612), **5** (CCDC 611613), and **9** (CCDC 611614), respectively. Copies of the data can be obtained, free of charge, on application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK. Fax: +44-1223-336033, e-mail: data_request@ ccdc.cam.ac.uk.

- 13. For the synthesis of clamshell dimers of cyclodextrins, see: Breslow, R.; Chung, S. J. Am. Chem. Soc. **1990**, 112, 9659.
- 14. Kim, J. N.; Ryu, E. K. Tetrahedron Lett. 1993, 34, 3567.
- Caramella, P.; Corsico, A. D.; Corsaro, A.; Del Monte, D.; Albini, F. M. *Tetrahedron* **1982**, *38*, 173.
- 16. Kim, J. N.; Ryu, E. K. J. Org. Chem. 1992, 57, 1088.
- 17. Tanaka, K.; Masuda, H.; Mitsuhashi, K. Bull. Chem. Soc. Jpn. 1985, 58, 2061.
- 18. Procedures for the synthesis of calix[4]arenes 12 and 13: Triethylamine (10 equiv) was slowly added to a mixture of 5-allylcalix[4]arene 7 (1 mol equiv) and 2,5-thiophene dihydroximoyl chloride (0.5 mol equiv) in EtOH (50 mL). After reflux for 24 h followed by chromatographic separation, the reaction gave 12 and 13 in 24% and 22% yield, respectively. Spectral data for 12: $R_{\rm f} = 0.5$ $(EA/hexane/CHCl_3 = 1/1/1);$ ¹H NMR (300 MHz, CDCl₃): δ 9.31 (br s, 8H), 8.01 (br s, 1H), 7.28–6.63 (m, 24H), 5.00-4.92 (m, 2H), 4.30-4.15 (m, 8H), 3.55-3.42 (m, 8H), 3.28-3.13 (m, 2H), 2.56-2.41 (m, 2H), 2.24-2.15 (m, 1H), 2.04–1.95 (m, 1H), 1.72–1.52 (m, 2H); ¹³C NMR (75 MHz, CDCl₃): δ 151.0 (Cq), 149.9 (Cq), 149.7 (Cq), 148.6 (Cq), 148.4 (Cq), 146.3 (Cq), 143.7 (Cq), 134.4 (Cq), 133.8 (Cq), 133.3 (Cq), 131.6 (Cq), 131.3 (Cq), 131.1 (Cq), 131.0 (Cq), 130.6 (Cq), 130.0 (Cq), 129.8 (Cq), 129.2 (Cq), 129.1 (Cq), 128.9 (CH), 128.9 (Cq), 128.8 (Cq), 128.8 (CH), 128.5 (CH), 128.4 (CH), 128.3 (CH), 128.2 (CH), 128.2 (CH), 128.1 (CH), 128.1 (Cq), 127.6 (Cq), 127.6 (Cq), 127.3 (Cq), 127.3 (Cq), 126.2 (CH), 125.9 (CH), 123.8 (CH), 121.9 (CH), 121.6 (CH), 80.5 (CH), 80.2 (CH), 41.9 (CH₂), 41.8 (CH₂), 37.6 (CH₂), 37.4 (CH₂), 31.7 (CH₂), 31.3 (CH₂), 31.2 (CH₂), 31.1 (CH₂), 31.0 (CH₂), 30.9 (CH₂), 30.8 (CH₂), 30.7 (CH₂); FAB-MS *m*/*z*: 631 (M+H⁺, 14), 613 (M⁺-OH, 14), 460 (100); HR FAB-MS m/z: Calcd for $[M+H^+]$ C₃₇H₃₁N₂O₆S 631.1903, found 631,1898. Spectral data for 13: $R_f = 0.73$ (EA/hexane/CHCl₃ = 1/1/ 1); ¹H NMR (300 MHz, CDCl₃): δ 10.19 (s, 8H), 7.07–7.05 (m, 14H), 6.93 (s, 4H), 6.76-6.70 (m, 6H), 4.94-4.82 (m, 2H), 4.24 (br s, 8H), 3.52 (br s, 8H), 3.27–3.18 (m, 2H), 3.00–2.87 (m, 4H), 2.70–2.63 (m, 2H); ¹³C NMR (75 MHz, CDCl₃): *δ* 151.9 (Cq), 148.8 (Cq), 148.7 (Cq), 147.6 (Cq),

134.3 (Cq), 130.2 (Cq), 129.8 (CH), 129.0 (CH), 128.9 (2CH), 128.5 (Cq), 128.2 (2Cq), 128.1 (Cq), 128.0 (CH), 122.3 (CH), 122.2 (CH), 82.6 (CH), 39.9 (CH₂), 39.8 (CH₂), 31.7 (CH₂); FAB-MS m/z: 1095 (M+H⁺, 17), 614 (14), 460 (100); HR FAB-MS m/z: Calcd for C₆₈H₅₈N₂O₁₀S 1094.3812, found 1094.3822.