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Abstract

In this study the numerical method is employed to examine the flow in pumps with spiral grooves. A methodology suitable for the use

of unstructured grids is developed. In order to have the greatest feasibility, the governing equations are formulated in such a manner that

the grids are allowed to rotate with the rotor. Different from common practices, pressures are specified on the inlet and the outlet

boundaries. Therefore, special treatments are required to calculate the mass flow rate and the inlet and outlet velocities. The

methodology developed here is assessed via comparison with existing measurements and good agreement is obtained. Examination of

pump parameters reveals that in order to obtain maximum flow rate, both the spiral angle and the groove height need to be carefully

determined. The force balance over the entire flow channel shows that for a fixed pressure rise across the pump, the pressure difference

between side walls is proportional to tangent of the spiral angle and the groove width, but inversely proportional to the groove height and

the rotor length. These relationships can roughly be seen in the calculated results.

r 2005 Published by Elsevier Ltd.
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1. Introduction

Molecular pumps, such as the Gaede, Holweck, and
Siegbahn types, feature flow grooves mounted on a
rotational cylinder or disc. By replacing the reference
frame on the rotor, the grooves become stationary with a
moving upper wall. When molecules collide with the
moving wall, the velocity of the wall is imposed on the
molecules. Thus, the molecules have a higher probability to
go in the direction from the inlet to the outlet. From a
continuum point of view, momentum is transferred to the
gas by diffusion in the near wall region. The shear stress is
balanced by an adverse pressure gradient, resulting in
increase of pressure along the channels.

In the Holweck and Siegbahn pumps the direction of the
moving wall is inclined to the flow channels. As illustrated
in Fig. 1, the moving velocity can be divided into two
orthogonal components, one along the channel and the
other in the transverse direction crossing the channel. As a
consequence, pressure builds up not only along the
ee front matter r 2005 Published by Elsevier Ltd.
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channel, but also across the space between the two side
walls. The pressure rise Dpx between the inlet and the outlet
is related to the pressure difference Dpw between the side
walls:

DpxWH ¼ DpwL0H cos a� F x, (1)

where L0 ¼ L= sin a. The above equation, which ignores the
clearance gap and the difference of the momentum fluxes
between the inflow and the outflow, represents the force
balance over the channel in the axial direction. The
equation expresses that the pressure rise in the pump
depends on the side-wall pressure difference Dpw and the
geometric parameters: pump length L, groove width W ,
groove height H and spiral angle a .
As seen from the above equation, the pressure rise is

increased as the spiral angle decreases. However, it was
shown [1,2] that when the angle decreases, the side-wall
pressure difference is reduced due to the reduction of both
the transverse component of the wall velocity and the
transverse width between the side walls. As for the channel
height, the increase of this height leads to increase of
momentum transfer to the flow from the moving wall
because the average velocity in the channel becomes lower
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Fig. 1. Illustration of force balance over a flow channel. L: channel length

in the x-direction, H: channel height, W : channel width, a: spiral angle,
Vw: top wall speed, pi : inlet pressure, po: outlet pressure, ps: suction side

pressure, pp: pressure side pressure.
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Fig. 2. Illustration of the flow channel for computations.

Y.-Y. Tsui, S.-P. Jung / Vacuum 81 (2006) 401–410402
provided that the mass flow rate remains constant. A
negative impact on the pumping performance is that
reversed flow may appear [1,2]. The increase of the channel
width also has pros and cons. With a large value of width
the transverse pressure gradient will have more space to
build up [1,2]. But, seen from the equation, the pressure rise
is inversely proportional to the width. Based upon these
considerations, it can be concluded that these parameters
need to be optimized to achieve the best performance.

In the above discussion it is assumed that the mass flow
rate through the pump is known beforehand, and it is the
pressure rise between the inlet and the outlet being sought.
Another kind of problem encountered is that with the
pressure rise given, the mass flow rate needs to be
determined. Unlike the former problem, there is no explicit
expression to relate the mass flow rate with the side-wall
pressure difference and the geometric parameters.

In this study a computational method is employed to
investigate the flow in the spiral grooves of a vacuum pump
under specified pressure conditions. Because the mass flux
is not known a priori, special treatments are required to
calculate the velocities from the pressure conditions at the
inlet and outlet boundaries. Different from our previous
studies [1–3], in which structured grids with curvilinear
coordinates were adopted, a methodology suitable to
unstructured meshes is developed.

2. Mathematical method

There are a number of grooves placed on the rotor of the
pump. Since these grooves are arranged in the periodic
manner, only one flow groove is considered in the
calculation. A schematic sketch of the computational
channel is shown in Fig. 2. The channel is divided into
two parts: the groove region and the clearance region. The
groove rotates with the rotor while the clearance between
the housing and the rotor remains stationary. In order to
cope with this situation the mass and momentum equations
are cast into the Lagrangian–Eulerian form:

r � ½rð~V � ~V gÞ� ¼ 0, (2)

r � ½rð~V � ~V gÞ � ~V � ¼ r � ðmr � ~V Þ þ~q. (3)

Here ~V g is the grid velocity. The grid velocity is set to zero
in the clearance region and the rotational velocity is
assigned to ~Vg in the groove region (see Fig. 2). It is noted
that the flows in both regions are assumed to be steady and
there is no relative motion between the two regions despite
the grid velocity imposed upon the groove region. Due to
the periodic arrangement of the grooves, periodic condi-
tions are prescribed on the two sides of the clearance
region. Namely, mass and momentum into and out of the
two periodic boundaries must be consistent. In addition,
the pressures on these boundaries must be identical.
The pumping flow is assumed to be isothermal. Therefore,

the energy equation is not required in calculations. However,
there exists a large variation in density in the pumping
process. The equation of state has to be considered:

p ¼ rRT . (4)

2.1. Discretization of the transport equations

After the domain is partitioned into a number of
arbitrary polyhedrons, difference transport equations can
be obtained by integrating the differential equation (3)
overreach of the polyhedral cells:X

f

ðrð~V � ~V gÞ �~sÞf ~V f

¼
X

f

ðmðr � ~V Þ �~sÞf þ~qDn, ð5Þ
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where the subscripts f denote the values through the face
f ;~sf is the surface vector of the face, and the summations
are over all the faces of the P-cell under consideration (see
Fig. 3).

The approximation for the face value in the convection
flux is crucial to computational accuracy. The scheme
adopted here is the one mixing the upwind difference and a
second-order difference:

~V f ¼ ~V UD þ gðr � ~V ÞUD
�~d, (6)

where the superscripts UD denote the node in the upwind
direction of the face under consideration, ~d is the distance
vector directed from the upwind node to the centroid of the
face, and g is a value ranging between 0 and 1.

There are a number of formulations for the diffusion flux
[4–8]. It has been shown by Tsui [9] that the one employed
in the following is virtually equivalent to these expressions,
but it is much easier to implement, regardless of two-
dimensional or three-dimensional problems. It was first
proposed by Jasak [10] to separate the diffusion flux into
the following two parts:

ðmðr � ~V Þ �~sÞf ¼ mf ðr �
~V f Þ �

~d

þ mf ðr �
~Vf Þ � ð~sf �

~dÞ. ð7Þ

In this equation ~d is defined as

~d ¼
s2f

~dPC �~sf

~dPC , (8)

where dPC is the vector connecting the point P and its
neighboring point C (see Fig. 2). The diffusion flux is then
approximated by

ðmr � ~V �~sÞf ¼
mf s2f

~dPC �~sf

ð~VC � ~VPÞ

þ mfr �
~Vf � ð~sf �

~dÞ. ð9Þ

The second term on the right-hand side is referred to as the
cross-derivative of the diffusion, which arises in non-
orthogonal grids. The overbar means that this gradient is
p

f

C

Sf

�PC

Fig. 3. A typical control volume and its surrounding cells.
obtained via interpolation from the velocity gradients on
the two points P and C adjacent to the considered face.
Using the above treatments, the following discrete

momentum equation is obtained:

~VP ¼ ~HðV CÞ �DPrp, (10)

where

~HðVCÞ ¼
1

AP

X
C

AC
~VC þ ~Q

" #
, (11a)

DP ¼
Dn
AP

. (11b)

The subscripts C designate the neighboring nodes of the
node P under consideration and the summation is over all
these nodes. The source term ~Q contains all sources other
than the pressure gradient, including the cross-diffusion
term seen in Eq. (9). The pressure gradient is approximated
as

rp ¼
1

Dn

X
f

pf~sf , (12)

where pf is the pressure on the face f and is obtained by
linear interpolation from the two nodes at the two sides of
the face.

2.2. Calculation of face velocity and mass flow rate

In the mesh system the velocity and the pressure are
stored at cell centers. The velocity, or the mass flow rate, on
each face is required for mass conservation in the cell and
for calculation of the convection flux shown in Eq. (5). It is
well known that a simple interpolation of velocity from the
two nearby nodes will lead to solutions with inherent
checkboard oscillations. To circumvent this, a method
similar to that of Rhie and Chow [11] is used:

~Vf ¼ ~V f � ðDfrpf �Dfrpf Þ, (13)

where the face values with overbars on the right-hand side
are obtained via interpolation from the two adjacent nodal
values and Df is obtained by averaging over the two cells.
The mass flow rate across the face is then approximated by

_mf ¼ rf ð
~Vf � ~V gÞ �~sf

� AP
C ½ðpC � pPÞ � rpf �

~dPC �, ð14Þ

where A
p
C is defined by

A
p
C ¼ rf Df

s2f
~dPC �~sf

. (15)

2.3. Pressure-correction equation

The velocity, denoted as ~V�; obtained from solving the
momentum transport equation (10), does not, in general,
obey the mass conservation law. In the SIMPLE algorithm,
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a pressure-correction equation can be derived by forcing a
corrected velocity ~V�� to satisfy the continuity constraint.
Following Patankar [12], the velocity correction is assumed
to be linearly related to the pressure correction:

~V��f � ~V�f ¼ �Dfrp0f . (16)

The correction of the mass flux is then give by

_m��f � _m�f ¼ � rf Dfrp0f �~sf

¼ � rf Dfrp0f �
~d � rf Dfrp0f � ð~sf �

~dÞ

¼ A
p
Cðp
00

P � p0
0

CÞ � rf Dfrp0f � ð~sf �
~dÞ. ð17Þ

Let _m�� on all faces surrounding the cell under considera-
tion satisfy the continuity requirement. A pressure-correc-
tion equation is obtained:

APp0P ¼
X

C

ACp0C þ Sp1 þ Sp2, (18)

where

Sp1 ¼ �
X

f

m�f , (19a)

Sp2 ¼
X

f

rf Dfrp0f � ð~sf �
~dÞ. (19b)

In Eq. (18) the superscripts p appearing in the coefficients
are omitted. It is noted that the Sp1 represents the mass
imbalance in the cell and the second term, arising from the
irregular mesh, represents the cross-derivative as seen in the
diffusion flux given in Eq. (9). During iteration to obtain
solution, the Sp2 term can be ignored provided that the
iterative procedure converges. However, as the mesh
becomes extremely ‘‘skew’’, inclusion of the cross-deriva-
tive term could help to stabilize the iterative procedure
or accelerate the convergence rate. To account for
the Sp2 term, a successive correction procedure can be
employed [9].

2.4. Pressure considerations at the boundary

In this study, static pressures are imposed on the inlet
and outflow boundaries. The mass flux through the inlet
can be calculated in a manner similar to Eq. (14) for the
face flux (see Fig. 4).

_min ¼ rbð
~Vin � ~VgÞ �~sb � rbDP

�
s2b

~dPb �~sb

½ðpb � pPÞ � rpb �
~dPb�. ð20Þ

The intake velocity ~Vin and the pressure gradient at the
boundary rpb can be estimated through extrapolation
from interior nodes. To estimate ~Vin, zero gradients are
assumed. As for calculation of rpb, a linear extrapolation
approach is used. It is noted that this linear extrapolation
uses two interior points adjacent to the boundary in the
structured grid system. However, with unstructured grids,
the extrapolation is not nearly as straightforward because
the next nearest neighbor point is not easy to identify.
Instead, the following relation is used to calculate the
boundary value:

fb ¼ fP þ rfP �
~dPb, (21)

where f stands for the pressure gradient rp. The gradient
of f at point P can be expressed as

rfp ¼
1

Dn

X
f

ff~sf ¼
1

Dn
fb~sb þ

X
fab

ff~sf

" #
. (22)

Here, the summation in the brackets is taken over all the
surrounding faces except for the boundary one. Substitut-
ing this expression into Eq. (21) leads to

fb ¼
fP þ ð1=DnÞ

P
fab ff~sf �

~dPb

1� ð1=DnÞ~sb �
~dPb

. (23)

It is noted that the above method is also used to calculate
pressure on all the boundaries.
After the pressure-correction Eq. (18) is solved for the

pressure correction p0 , the intake mass flux is adjusted in
the following way:

_m��in ¼ _m�in � rbDP

s2b
~dPb �~sb

ðp0b � p0PÞ, (24)

where p0b is obtained using the same extrapolation
procedure given in Eq. (23).
Although the velocity at the outflow boundary can be

treated in the same manner described above, it is not
necessary to do so because the overall mass flow rate has
been determined at the inlet. Therefore, a simple extra-
polation method, say, zero velocity gradient, can be done.
In order to ensure overall mass conservation as well as to
accelerate convergence, a global adjustment of the out-
going velocity is carried out after each iteration such that
the total mass flow rates at both inlet and outlet are
identical.
It must be pointed out that the pressure on the plane of

either the inlet or the outlet boundary is not uniformly
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Fig. 5. A schematic drawing of the pump. D: rotor diameter, L: rotor

length, C: clearance, a: spiral angle, W: groove width, H: groove height, O:
rational speed.
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distributed in the present calculation. The pressure values
at the computational nodes on the boundary planes are
first obtained using the extrapolation given by Eq. (23).
These pressures are then adjusted in such a way that the
overall average pressure on the plane is equal to the
imposed pressure. In this way the pressures on the
boundaries are floating, which is beneficial to convergence
and is physically more correct. Another point that needs to
be clarified is that a reference node is selected on the
outflow boundary plane. After solving the pressure-
correction equation, the p0 at this node is set to zero
and the pressure corrections for all other nodes are
changed accordingly. Hence, the pressure level is close to
the specified pressure without much change after each
iteration.

3. Results and discussion

To validate the above method, the flow in a benchmark
pump is calculated. Computed results are compared to the
available experimental data and the flow structure is
illustrated. The method is then applied to a pump to
investigate the effects of pump parameters.

3.1. Validation of the method

A schematic sketch of a typical pump is shown in Fig. 5.
The validation case is a pump with six grooves. The rotor
rotates at 18 000 rpm. The geometric parameters are
given as: axial length of the pump L ¼ 115mm, outer
diameter of the rotor D ¼ 137mm, groove height
H ¼ 4:06mm, groove width W ¼ 52:5mm, clearance gap
C ¼ 0:65mm, and spiral angle a ¼ 15�. Measurements
required for validation of the predictions were reported
in Ref. [13].

In the following tests the pressure level in the pump
is within the limits of 0.1 and 1 torr (13.3 and 133 Pa).
At this level the Knudsen number (defined as the ratio of
the mean free path of the gas to the height of the channel)
roughly lies in the range between 0.1 and 1, which
corresponds to the slip flow regime. Hence, a slip
velocity V 0 imposed on all the solid walls in the
calculation, given as

V 0 ¼ V w þ l
dV

dy

� �
w

, (25)

where Vw is the velocity of the solid wall itself, ðdV=dyÞw
the velocity gradient of the flow at the wall, and l the mean
free path of the gas.

In the first series of tests the pressure at outlet is specified
at 1 torr (133 Pa), whereas that at the inlet is fixed at a
number of values less than the outlet pressure (0.5, 0.7, and
0.9 torr). The resulting mass flow rates, in terms of sccm,
are presented in Fig. 6. Comparison with experiments
indicates that both agree well with each other. Additional
data to validate the computational method can be found in
Fig. 7. In this second series of tests the same pressures (0.1,
0.3, and 1 torr) are specified at the inlet and the outlet
boundaries. This corresponds to the maximum flow rate
condition.
The calculated velocities at inlet and outlet planes using

the moving grid method described in the last section are
presented in Figs. 8a and 9 for the case with 0.5 torr at inlet
and 1 torr at outlet. The secondary flow illustrated in
Fig. 8a behaves like a Couette flow driven by the rotating
rotor. It is more common to place the frame of reference on
the rotor and, thus, the flow is driven by the housing wall
rotating in the opposite direction. With this moving top
wall and using an analogous procedure to that presented
above, but with ~Vg ¼ 0, the resulting flow is shown in
Fig. 8b. Results from these two calculations agree well in
view of the difference of the reference frames. The axial
velocity is illustrated in contour plots shown in Fig. 9. In
comparing to the inlet flow, the velocity at the outlet face
becomes more uniformly distributed. It is observed that
reversed flow prevails in the clearance gap throughout the
channel, which can be ascribed to the adverse pressure
gradient imposed on the pump. The pressure distribution
at the two open boundaries is shown in Fig. 10. As stated in
the last section, the pressure over these boundaries is not
fixed; spatial variation is allowed in the present method. As
seen from the figure, with a peak pressure located near the
left wall of the groove, the pressure gradually decreases in
both the groove and the clearance. The wall with high
pressure on the left of the groove is termed the pressure
side, whereas the wall with low pressure on the right the
suction side. Although the pressure distribution is non-
uniform, the average pressures over the planes are fixed at
the given values of 0.5 and 1 torr, respectively, for the inlet
and the outlet boundaries.
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Fig. 6. Comparison of flow rate with experiments for the cases with outlet
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3.2. Parametric tests

In these tests the following parameters are used as a test
case: axial length L ¼ 40mm, outer diameter of the rotor
D ¼ 50mm, groove height H ¼ 1mm, groove width
W ¼ 16:2mm, clearance gap C ¼ 0:2mm, spiral angle
a ¼ 14:28�, and angular speed O ¼ 18 000 rpm. The pres-
sures of 9835 and 10 130 Pa are specified at the inlet and the
outlet boundaries, respectively. According to Sawada et al.
[14], the flow at this pressure level is in the laminar regime.
In the following, the pump configuration is modified to
examine its effects on the flow rate. The parameters
considered in the modification are the groove height,
groove width, clearance gap, spiral angle, and angular
speed.
(a) Tests of spiral angle: The calculated flow rates

corresponding to four spiral angles are shown in Table 1.
The flow rate increases as the spiral angle decreases from
18:28� to 10:28�, followed by a decrease for the angle being
further reduced to 8:28�. The change of the spiral angle has
two contrasting effects on the flow. As illustrated in Fig. 1,
by situating the reference frame on the rotating shaft, the
flow channel can be regarded as stationary, but with a
moving top wall. When the spiral angle decreases, the wall
velocity component, in the direction along the channel,
increases. This results in greater inlet velocity and, thus,
larger flow rate. The decrease of the angle also leads to a
decrease in the opposing pressure gradient because the
pressure rise through the channel is fixed and the channel
length becomes longer. It can be seen from Fig. 11 that
owing to the larger flow velocity and smaller opposing
pressure gradient, the reversed flow in the groove is much
weaker for a ¼ 8:28� when compared with a ¼ 18:28�.
However, it should be noticed that the normal width of the
channel groove decreases with the spiral angle. This has the
effect of hampering the gas flow. It needs to be mentioned
here that for the sake of better illustration, the height of the
channel in Fig. 11 and the following figures is magnified by
a factor of 2.5.
(b) Tests of groove height: It is expected that the flow rate

increases with the groove height due to the enlarged cross-
sectional area, which is demonstrated in Table 2 when the
height is changed from 0.4 to 0.6mm. But, the flow
becomes prone to separation since the momentum trans-
port from the moving wall by the shear stress becomes less
effective. As seen in Fig. 12 for the height of 1.4mm, a
strong flow separation takes place in the main part of
the channel and, thus, the flow rate becomes negative in
Table 2.
(c) Tests of groove width: The width of the groove is

inversely proportional to the number of grooves. The
number of grooves used for tests are 4, 5, and 6. In spite of
the differences in the groove numbers, the total area of the
grooves remains the same. The flow rates shown in Table 3
are for the entire pump, not for a single flow channel.
According to this table, the flow rate increases as the
number of grooves is reduced because of enlarged space in
the grooves.
(d) Tests of clearance gap: It has been seen in the above

figures that reversed flow always prevails in the clearance
region. It is clear in Fig. 13 that without the clearance gap,
there is no flow separation at all and, as given in Table 4,
the flow rate is extremely high. When the gap is increased,
the reversed flow is strengthened and the flow rate is greatly
reduced. The worst happens at the gap of 0.3mm, for
which the reversed flow covers a large part of the channel
(Fig. 13) and the flow rate becomes negative (Table 4).
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Fig. 8. Secondary velocity vectors on the inlet ðx=L ¼ 0Þ and outlet ðx=L ¼ 1Þ planes: (a) moving-grid calculation; (b) moving-wall calculation.
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Table 1

Flow rates and side-wall pressure differences for various spiral angles

Spiral angle a 8.283 10.283 14.283 18.283

Flow rate (sccm) 281.7 373.5 343.5 48

Dpw (Pa) 18.8 23.3 32.6 41.8
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Fig. 11. Axial velocity contours at x=L ¼ 0:4 for different spiral angles:

(a) a ¼ 8:28�, (b) a ¼ 18:28�.

Table 2

Flow rates and side-wall pressure differences for various groove heights

Groove height H (mm) 0.4 0.6 1.0 1.4

Flow rate (sccm) 193.4 407.9 343.5 �362.6

Dpw (Pa) 37.4 34.9 32.6 31.3
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(e) Tests of rotational speed: As shown in Table 5, the
flow rate increases with the rotational speed of the pump.
This is just what we expect because more momentum is
transferred to the gas when the speed increases. At the two
low speeds the flow rate is negative since reversed flow
dominates in the channel, which is evident in Fig. 14. The
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Fig. 12. Axial velocity contours at x=L ¼ 0:4 for different groove heights:

(a) H ¼ 0:6mm, (b) H ¼ 1:44mm.

Table 3

Flow rates and side-wall pressure differences for various groove numbers

No. of grooves 4 5 6

Flow rate (sccm) 389.4 343.5 295.6

Dpw (Pa) 40.7 32.6 27.1
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Fig. 13. Axial velocity contours at x=L ¼ 0:4 for different clearances: (a)

C ¼ 0mm, (b) C ¼ 0:3mm.

Table 4

Flow rates and side-wall pressure differences for various clearance gaps

Clearance gap C (mm) 0.0 0.1 0.2 0.3

Flow rate (sccm) 4685.0 1311.5 343.5 �908.1

Dpw (Pa) 42 33.6 32.6 31.8

Table 5

Flow rates for various rotational speeds

Rotational speed O (rpm) 6000 12 000 18 000 24 000

Flow rate (sccm) �1190.7 �495.0 343.5 1244.5

1

1

2

2

3

3

3

4

4 4
4

5

5

4

5

56

6

5
6

6

6
7

11
2

23

3
3

3

4

3

4

4

4

5

56

7

Level
u:

1
-4 -3 -2 -1 -0.5 0 0.5 (m/s)

2 3 4 5 6 7

Level
u:

1
-4 -2 -0.2 0 2 4 6 (m/s)

2 3 4 5 6 7

(a)

(b)

Fig. 14. Axial velocity contours at x=L ¼ 0:4 for different rotational

speeds: (a) 12 000 rpm, (b) 24 000 rpm.
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cause of the reversed flow is ascribed to the fact that the
momentum transferred form the moving wall is too low to
overcome the attendant adverse pressure gradient.

3.3. Effects of geometrical parameters on the side-wall

pressure difference

The force balance equation (1) can be rewritten as

Dpw ¼
tan a

L
WDpx �

F x

H

� �
. (26)
By assuming a constant pressure rise and a constant
frictional force, the following correlations can be seen:

Dpw / tan a;W ;
1

H
;
1

L

� �
. (27)

Although the frictional force does depend upon the
geometrical parameters, the correlations above can serve
as an indication of how the side-wall pressure difference
changes with these parameters. Such correlations are
particularly valid under non-viscous flow conditions where
the viscosity can be ignored. Then Dpw is independent of
the groove height, H.
With the increase of the spiral angle, both the width

normal to the channel and the normal velocity component
of the moving wall are increased. This helps the transverse
pressure gradient to develop, which is evident in Table 1.
The pressure forces exerted on both the inlet and the

outlet boundaries and on the side walls are directly
proportional to the groove height. However, the depen-
dence of the frictional force on the groove height is much
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weaker. In order to have a balance between these forces, as
given in Eq. (1), the side-wall pressure difference is
inversely proportional to the groove height, as shown in
Table 2.

When the width of the groove is increased, there is more
room for the pressure gradient to develop. As a conse-
quence, Dpw increases with the width, which can be seen in
Table 3.

For fixed inlet and outlet pressures, the pressure gradient
along the channel becomes smaller as the channel length
increases. To balance this pressure gradient the transverse
pressure gradient is also decreased. Hence, Dpw is inversely
proportionally to the length.

The effect of clearance cannot be shown in the force
balance equation. However, it can be imagined that with
the clearance gap, there will be gas leaking from the
pressure side to the suction side through the gap, which will
result in reduction of the pressure difference between the
two sides. This is clearly shown in Table 4.

4. Conclusions

A methodology has been developed to deal with the flow
in grooved pumps with fixed boundary pressures. The
formulation is based on a moving grid concept and
unstructured meshes are incorporated in the method. An
approximation to the momentum equation is employed for
calculating the intake velocity, or the intake flow rate,
while the outgoing velocity is obtained via an extrapolation
procedure. In the present method the pressure is not
uniformly distributed over the open boundaries. It is the
overall average pressure fixed at the specified value. With
this method, good agreement, in terms of mass flow rate, is
obtained, when compared with measurements. However,
the experimental data available are limited to the situation
with positive mass flow rate through the pump. It was
shown in our calculations that reversed flow prevails in the
clearance gap. In some cases with large groove heights or
clearances, or with low rotational speeds, the reversed flow
overwhelms the flow field, resulting in negative flow rate.
Therefore, extensive experimental work is definitely needed
to provide further justification for the present numerical
procedure. Tests on pump parameters show the following
findings:
(1)
 In general, the reduction of the spiral angle
brings about higher flow rate because of the increased
velocity component in the channel direction and
the decreased adverse pressure gradient. But, on
the other hand, the reduced transverse space will
hinder the flow.
(2)
 The increase of groove height leads to larger cross-
sectional area and, thus, greater flow rate. However, the
negative impact is that the flow tends to separate and
the flow is limited.
(3)
 The flow rate is increased with the groove width when
the number of grooves is reduced.
(4)
 It was confirmed in the calculations that the pressure
difference between the side walls is increased with the
spiral angle and the groove width, and decreased with
the groove height and the clearance gap.
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Appendix
Notation
AP
 main coefficient in discretized equations

AC
 coefficient connecting node C in discretized

equations

~d
 a vector in the direction of ~dPC
C
 clearance gap

D
 rotor diameter or pressure coefficient in

discretized equations

Fx
 frictional force in the axial direction

H
 groove height

L
 rotor length

L0
 channel length

_m
 mass flow rate
p; p0
 pressure and pressure correction

pi; po
 pressures at the inlet and the outlet

pp; ps
 pressures at the pressure side and the suction

side

~q
 source term of the momentum equation

~Q
 source term of the discretized momentum

equation

sf ;~sf
 surface area and surface vector
Sp1;Sp2
 two source terms in the pressure-correction
equation (18)
~V
 velocity vector
~Vg

grid velocity
V0
 flow velocity on the wall

Vw
 wall velocity

W
 groove width

a
 spiral angle

~d
 a distance vector directed from a nodal point

upstream of a face to the centroid of the face

~dPC
a distance vector directed from a point P to a
neighbor point C
~dPb

a distance vector directed from a point P to a
boundary point b
Dn
 volume of the cell under consideration

Dpw
 pressure difference between side walls ðpp � psÞ
Dpx
 pressure difference between inlet and outlet
(po � pi)
g
 a weighting value

l
 mean free path
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m
 viscosity

r
 density

O
 rotational speed of the pump

Subscripts
b
 a point on the boundary

C
 a point next to the main point P
f
 the interface between cells P and C
in
 inlet value

P
 main point
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