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Abstract

In distributed shared memory multiprocessors, remote memory references generate processor-to-memory traffic, which may result in a
bottleneck. It is therefore important to design algorithms that minimize the number of remote memory references. We establish a lower bound
of three on remote reference time complexity for mutual exclusion algorithms in a model where processes communicate by means of a general
read-modify-write primitive that accesses at most one shared variable in one instruction. Since the general read-modify-write primitive is a
generalization of a variety of atomic primitives that have been implemented in multiprocessor systems, our lower bound holds for all mutual
exclusion algorithms that use such primitives. Furthermore, this lower bound is shown to be tight by presenting an algorithm with the matching
upper bound.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

The mutual exclusion problem is fundamental in multipro-
cessing systems for managing accesses to a single indivisible
resource. The problem is to design an algorithm guaranteeing
that at most one process at a time is permitted to access the
resource within a distinct part of code called its critical region.

In shared memory systems, since all processes communicate
through the shared memory, each competing process may test
certain shared variable(s) repeatedly while it is waiting to enter
its critical region. Such repeated testing may produce a large
amount of processor-to-memory traffic in shared memory sys-
tems, heavily degrading the system performance. This prob-
lem can be avoided in two architectural paradigms of shared
memory systems: distributed shared memory (DSM) systems,

� The tight bound contains two parts: the lower bound and the upper
bound. The former appears in the Proceedings of the International Com-
puter Symposium, Taiwan, 2004, pp. 1352–1357, [11]. The latter appears in
the Proceedings of the 19th IEEE International Conference on Distributed
Computing Systems, 1999, pp. 224–231, [18].
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in which each process has a local portion of shared memory,
and cache coherent (CC) systems, in which each process has
a local cache [23]. In DSM systems, a memory reference to a
shared variable will not cause interconnect traffic if the vari-
able is stored in the local portion of shared memory. In CC sys-
tems, whether a memory reference causes interconnect traffic
depends on the caching protocol. Generally speaking, the first
reference (be it read, write, or both) to a shared variable will
cause interconnect traffic and establish a cached copy. Subse-
quent references, however, will not cause traffic until the cached
copy of the shared variable is updated or invalidated. In gen-
eral, a memory reference is regarded as local if it does not
cause any interconnect traffic; otherwise, it is remote. Recent
work on the mutual exclusion problem has focused on the de-
sign of local-spin algorithms, which reduce the number of re-
mote memory reference (RMR) steps by busy waiting only on
locally accessible shared variables. A number of performance
studies [6,4,17,20,23,24] have shown that synchronization al-
gorithms minimizing the number of RMR steps have the best
performance.

To evaluate mutual exclusion algorithms, the conventional
time complexity, which counts all steps for one process in
the worst case, might be inappropriate. This is because in any
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algorithm in which a process enters a busy-waiting loop when
its critical region is unavailable, the worst case number of steps
taken by one waiting process is unbounded. In other words,
the conventional time complexity yields no useful information
concerning the performance of such algorithms. Since the num-
ber of RMR steps significantly reflects the performance of an
algorithm, Anderson and Yang [5] were the first to propose
the number of RMR steps as a time complexity metric. To be
more specific, the time complexity of a mutual exclusion al-
gorithm is the worst case number of RMR steps taken by any
single process to enter and exit its critical region once. One
may consider the amortized number of RMR steps instead of
the worst case number as the time complexity of an algorithm.
But, as Anderson and Yang did, we adopt the worst case num-
ber rather than the amortized one because of the following
reasons:

1. The worst case time complexity of an algorithm can be easily
analyzed by just inspecting the algorithm.

2. To achieve low amortized time complexity, an algorithm may
assign some process to service other processes. However,
such a process is not equally treated. This unfairness will be
revealed if we consider the worst case number.

Throughout the rest of the paper, time complexity means the
worst case time complexity.

In the literature, with some read-modify-write (RMW) prim-
itives in addition to atomic read and write, many mutual ex-
clusion algorithms of constant time complexity are proposed;
see Anderson et al.’s survey paper [3]. Because of these con-
stant time algorithms, the asymptotic tight bound on time com-
plexity is �(1). From a theoretical point of view, constant
time is the best an algorithm can achieve in time complexity.
Nevertheless, some researchers such as Fu and Tzeng [16,19]
continue to strive for minimizing the number of RMR steps.
We consider it worthwhile to reduce the number as much as
possible. In practice, RMRs are orders of magnitude slower
than references to the local memory. And mutual exclusion is
a basic synchronization mechanism frequently used in multi-
processing systems both at the operating system kernel level
and the users’ application level [23]. Consequently, minimiz-
ing the number of RMR steps yields considerable performance
improvement.

The primary result of this paper is a tight bound on the
number of RMR steps needed to solve the mutual exclusion
problem in DSM systems. We first present an algorithm whose
time complexity is three in DSM systems, and then prove three
is a lower bound on time complexity. This bound is therefore
tight.

Our algorithm is inspired by the mutual exclusion algorithm
proposed by Mellor-Crummey and Scott [23], also known as
the MCS lock, and the one by Fu and Tzeng [16,19]. Fu and
Tzeng tried to improve the MCS lock, whose time complexity
is four, and obtained a better algorithm in terms of amortized
time complexity. But, in Fu and Tzeng’s algorithm, some pro-
cess in its exit region (i.e., the code fragment after executing
its critical region) may take an unbounded number of RMR
steps for the purpose of scheduling other competing processes.

Thus, the worst case number of RMR steps taken by some
process is unbounded, i.e., the time complexity is unbounded.
We follow the line of their algorithm but eliminate the above
drawback.

We prove the time bound in an asynchronous DSM model
where processes communicate by means of a general RMW
primitive. The general RMW primitive atomically accesses
one shared variable, reading the value of the variable and writ-
ing back a new value according to the submitted function. Let
V be the set of all possible values for the variable. The sub-
mitted function can be any function f : V → V . Hence, the
general RMW primitive is a generalization of all atomic prim-
itives that access at most one shared variable, and therefore
our lower bound holds for any set of such primitives. In prac-
tice, almost all commonly available primitives implemented
in multiprocessor systems—such as read/write, test&set,
compare&swap, fetch&add, fetch&increment, fetch&store,
fetch-and-�—access one shared variable. Thus, the general
RMW primitive can be used to model these primitives. For
instance, a read primitive is equivalent to the general RMW
primitive with the identity function (write the same value as
that returned by the read), and a write primitive is equiva-
lent to the general RMW primitive with the constant function
that always maps to the new value (write the new value and
discard the returned value). Two more examples appear in
Section 3.1. Formally, the general RMW primitive is defined
below, where v is the shared variable and f is the submitted
function.

RMW (variable v, function f)
previous := v

v := f (v)

return previous

Related lower bounds: Several related lower bounds have
been proved in the literature. All of these bounds are asymp-
totic. Anderson and Yang [5] first initiated a series of studies
of lower bounds on time complexity. They established a trade-
off between the amount of contention, which was defined by
Dwork et al. [15], and time complexity. The amount of con-
tention of an algorithm is the maximum number of processes
that are enabled to access the same shared variable simultane-
ously. Since our aim is minimizing the number of RMR steps,
we focus on the time complexity when contention may equal
the number of all processes. Applying their result to the model
with the general RMW primitive, we have that �(logc n) RMR
steps are required in both DSM and CC systems, where c is the
amount of contention and n is the number of processes. Thus,
the lower bound on time complexity is �(1), a trivial bound,
when contention is n. Then, Cypher [13] showed a lower bound
of �(log log n/ log log log n) on time complexity in DSM and
CC systems with only atomic read and write primitives. This
result implies that there is no constant time mutual exclusion
algorithm if only read and write are available. He went on to
show that the lower bound holds even if comparison primitives
(e.g., test&set and compare&swap) are available in addition
to read and write. In a later work, Anderson and Kim [2] im-
proved Cypher’s lower bound to �(log n/ log log n). Cypher’s
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lower bound and the improved bound by Anderson and Kim
hold for read, write and comparison primitives, whereas ours
holds for all commonly available primitives that access at most
one shared variable in an instruction.

In addition, Kim and Anderson [21] provided a time com-
plexity lower bound for adaptive mutual exclusion algorithms
in which time complexity is a function of the number of con-
tending processes. They showed that for any k, there exists some
n such that, for any n-process mutual exclusion algorithm based
on read, write or comparison primitives, there exists an execu-
tion involving �(k) processes in which some process performs
�(k) RMR steps to enter and exit its critical region. The result
applies to both DSM and CC systems. In another paper [1],
Anderson and Kim showed that for any n-process mutual ex-
clusion based on non-atomic read and write, there exists an
execution involving only one process in which that process per-
forms �(log n/ log log n) RMR steps in DSM systems to en-
ter its critical region. Moreover, these RMR steps must access
�(

√
log n/ log log n) distinct remote shared variables, which

implies that the process performs �(
√

log n/ log log n) RMR
steps in CC systems to enter its critical region.

Unlike the researchers who provided related lower bounds,
we establish a lower bound only for DSM systems; the lower
bound proof herein is not applicable to CC systems. As a result,
a problem left open by the paper is what lower bounds are
obtainable for CC systems.

Contribution: We improve the tight bound of mutual exclu-
sion algorithms on time complexity from �(1) to three in DSM
systems. From the complexity-theoretic point of view, it may
not be so surprising. But, this result is of importance for al-
gorithm designers. Focus of mutual exclusion algorithms for
shared memory systems for the last 15 years has been on mini-
mizing the number of RMRs [12,16,18,19,23]. The tight bound
shows that it is impossible to obtain any better algorithm than
ours in terms of minimizing the number.

The rest of the paper is organized as follows. Section 2 pro-
vides the system model and definitions. Section 3 presents an
optimal algorithm establishing our upper bound for the mutual
exclusion problem. Section 4 proves the lower bound. Finally,
Section 5 concludes the paper.

2. System model and definitions

In this section, we first describe a model of asynchronous
DSM systems. The salient features of the model are that:

1. each process has a segment of shared memory that is local
to it, and

2. processes communicate by means of RMW primitives which
atomically access one shared variable.

We adopt the definition of a RMR step proposed by Anderson
and Yang [5], and thus use the number of RMR steps as our
time complexity metric. Next, we define an indistinguishability
relation on system states. Finally, we give a formal definition of
the mutual exclusion problem, which is similar to the definition
proposed by Burns et al. in [8].

2.1. Distributed RMW shared memory model

An algorithm in a distributed RMW shared memory sys-
tem is modelled as a triple (P, V, �), where P is a non-
empty finite set of processes, V is a non-empty finite set of
shared variables, and � is a transition relation for the entire
system.

V is the set of all shared variables every process can access.
V is partitioned into disjoint non-empty subsets Vi for each
i ∈ P . In other words, each variable belongs to a segment of
shared memory that is local to a single process. This captures
the essence of DSM systems. Vi denotes the set of all shared
variables located at process i. To a process i, a shared variable
v is remote if v /∈ Vi ; otherwise, it is local. In addition, let Iv ,
a subset of the value set of v, denote the possible initial values
of v.

Each process i ∈ P is associated with a kind of state machine
consisting of the following components:

• �i : a (possibly infinite) set of states;
• Ii : a subset of �i , indicating the initial states;
• �i : {(v, f )i | v ∈ V and f is a function mapping from

the value set of v to the same set}. Informally, �i specifies
the steps that i may execute. Each step (v, f )i is a RMW
operation that atomically reads the current value of v, say
old, and writes back f (old) to the same variable v. That is,
step (v, f )i means that process i accesses v by executing
RMW(v, f).

For a step (v, f )i ∈ �i , we say that this step of pro-
cess i accesses the shared variable v. It is an RMR step
from i if v /∈ Vi . That is, the step accesses a shared vari-
able located at some other process. An RMR step to j is
an RMR step from i �= j that accesses a shared variable
v ∈ Vj .

A system state is a tuple consisting of the state of each process
in P and the value of each shared variable in V . System states
will be denoted by s and t with subscripts and superscripts. For
a system state s, we write s(i), i ∈ P , to denote the state of
process i at s, and s(v), v ∈ V , to denote the value of shared
variable v at s. An initial system state is a system state s at
which s(i) ∈ Ii for each process i ∈ P and s(v) ∈ Iv for each
shared variable v ∈ V .

The transition relation � is a set of (s, e, s′) triples, where s
and s′ are system states, and e is a step of some process. We
assume that � satisfies the following assumptions:

Localized update: Suppose (s, (v, f )i, s
′) is a transition in

�, where (v, f )i is a step of process i.

1. Suppose (t, (v, f )i, t
′) is an arbitrary transition in �, with

the same step of i. If s(i) = t (i) and s(v) = t (v), then
s′(i) = t ′(i).
Informally, the present state of i and the present value of v

uniquely determine the state of i after i takes step (v, f )i .
2. s′(v) = f (s(v)).

The new value of v is determined by the function f and the
current value of v.
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3. s′(j) = s(j) for all j ∈ P\{i}, and
s′(u) = s(u) for all u ∈ V\{v}.
Only the state of process i and the value of variable v can
be affected.

Localized enabling: If (s, (v, f )i, s
′) ∈ �, then for any sys-

tem state t at which t (i) = s(i) holds, there exists a system
state t ′ such that (t, (v, f )i, t

′) ∈ �.
We say that a step e = (v, f )i is enabled at system state s if

there exists a system state s′ such that (s, e, s′) ∈ �. “Localized
enabling” means that whether or not a step of a process is
enabled at a system state depends only on the state of the
process. Namely, if a step of process i is enabled at system state
s, then the step is also enabled at any system state t at which
t (i) = s(i) holds.

Determinism: For any process at any system state, there is
at most one step of that process enabled.

If a step e = (v, f )i is enabled at system state s, the resulting
system state after i takes the step is unique since the new state of
i and the new value of v are uniquely determined in the model.
Therefore, we write e(s) to denote the resulting system state.

An execution fragment is a finite or infinite sequence of steps.
Several notations regarding execution fragments will be used
in the sequel. Let � and �′ be execution fragments.

• |�|: The length of � (if � is a finite fragment).
• �|i: The subsequence of � consisting of all steps of process

i in �.
• Pro(�): The set of processes that take at least one step in �.
• Var(�): The set of shared variables accessed by any step in �.
• � ◦ �′: The execution fragment obtained by concatenating �

and �′, provided that � is finite.

In addition, we say that � is a P-execution fragment if all pro-
cesses involved in � are included in P (i.e., Pro(�) ⊆ P ), where
P is a subset of P . When P = {i} we write i-execution frag-
ment instead of {i}-execution fragment.

A finite execution fragment e1e2 . . . en is executable from
a system state s if for all i, n� i�1, ei is enabled at si−1
where s0 = s and si = ei(si−1). Likewise, an infinite execution
fragment e1e2 . . . is executable from a system state s if for all
i�1, ei is enabled at si−1 where s0 = s and si = ei(si−1).
If � is a finite execution fragment executable from s, we write
�(s) to denote the system state after performing � from s. An
execution is an execution fragment that is executable from an
initial system state. A system state s is said to be reachable
if there exists a finite execution such that the resulting system
state is s.

Indistinguishability: Variants of the notion of indistinguisha-
bility are frequently used to prove impossibility results in dis-
tributed systems [22]. Here, we first define an equivalence re-
lation among system states, and then propose several ways to
manipulate execution fragments.

Let P be a subset of P and V a subset of V . System states
s and t are said to be indistinguishable to P with respect to V ,

denoted by s
P∼
V

t , if

1. s(i) = t (i) for each i ∈ P , and

2. s(v) = t (v) for each v ∈ V .

Informally, for system states s and t with s
P∼
V

t , s and t are

indistinguishable to those processes in P consulting only shared

variables in V . When P = {i}, we write s
i∼
V

t instead of s
{i}∼
V

t .

Our definition is a generalization of the indistinguishability
relation defined by Lynch [22]: when V = V , the two indistin-
guishability relations become equal. The generalized version
of indistinguishability makes it easier to define a weaker con-
dition imposed on two system states such that an execution
fragment executable from one system state is also executable
from the other. Intuitively, it is enough to consider the set of
all shared variables accessed in the execution fragment rather
than the whole set V . Furthermore, for a shared memory model
whose memory has locality, this definition is useful in charac-
terizing properties related to local shared memory, as we will
see in Lemma 2 below and Lemma 9 in Section 4.1.

Now, we present two lemmas about ways to manipulate exe-
cution fragments based on the indistinguishability relation de-
fined above. These lemmas can be easily proved by the local-
ized update and localized enabling assumptions.

Suppose that execution fragment � is executable from system

state s. Let P = Pro(�) and V = Var(�). If s
P∼
V

t , Lemma 1 says

that � is also executable from system state t. This is because
each process and each shared variable involved in � have the
same state and the same value, respectively, in s and t. By
the localized update and localized enabling assumptions, an
induction on each prefix of � can show that � is also executable
from system state t. If, in addition, � is finite, the resulting
system states �(s) and �(t) will be also indistinguishable to P

with respect to V , i.e., �(s)
P∼
V

�(t).

Lemma 1. Let s and t be system states. Suppose that � is an
execution fragment executable from s. Let P = Pro(�) and

V = Var(�). If s
P∼
V

t , then � is also executable from t. If, in

addition, � is finite, then �(s)
P∼
V

�(t).

Proof. Suppose that s
P∼
V

t , that is, each process and each shared

variable involved in � have the same state and the same value,
respectively, in s and t. According to the localized update
and localized enabling assumptions, a straightforward induc-
tion proves that for each prefix �′ of �, �′ is also executable
from t and furthermore at the resulting system states �′(s) and
�′(t), the states of all processes in P and the values of all shared
variables in V are the same. �

Lemma 2 is for system states s and t that are indistinguish-
able to a process i consulting only shared variables in Vi . In-
formally, if an execution fragment � executable from system
state s contains neither RMR steps from i nor RMR steps to i,
no communication between i and any other process can occur
in �. Lemma 2 says that �|i is also executable from all system
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states t at which s
i∼
Vi

t holds. If, in addition, � is finite, then the

resulting system states �(s) and (�|i)(t) will be also indistin-
guishable to process i with respect to Vi .

Lemma 2. Let s and t be system states and i a process. Suppose
� is an execution fragment that is executable from s and contains

neither RMR steps from i nor RMR steps to i. If s
i∼
Vi

t , then

�|i is also executable from t. If, in addition, � is finite, then

�(s)
i∼
Vi

(�|i)(t).

Proof. Since � contains neither RMR steps from i nor RMR
steps to i, i does not access any remote shared variable and
no other process accesses any shared variable located at i in �.
Thus, when � is executed from s, the state of i and the values of
all shared variables located at i depend only on �|i. Therefore,
�|i is also executable from s and if, in addition, � is finite,

�(s)
i∼
Vi

(�|i)(s).

Suppose that s
i∼
Vi

t . We show that �|i is also executable from

t. Since �|i is an i-execution fragment and i does not access any

remote shared variable in �|i (i.e., Var(�|i) ⊆ Vi), s
i∼
Vi

t implies

s
P∼
V

t where P = Pro(�|i) = {i} and V = Var(�|i). Hence, by

Lemma 1, �|i is also executable from t and if, in addition, � is

finite, (�|i)(s) i∼
Vi

(�|i)(t).

If � is finite, since �(s)
i∼
Vi

(�|i)(s) and (�|i)(s) i∼
Vi

(�|i)(t), we

have �(s)
i∼
Vi

(�|i)(t). �

When � ending with an RMR step from i satisfies the as-
sumptions on � in Lemma 2 except the last step, the fol-
lowing corollary says that �|i is also executable from t. Let
�′ be the prefix of �, just excluding the last step of �. By
Lemma 2, �′|i is also executable from t and the states of i at
�′(s) and (�′|i)(t) are the same. Thus, the RMR step from i
at the end of � is also enabled at (�′|i)(t). Namely, the execu-
tion fragment �|i (�|i = �′|i ◦ the RMR step from i) is also
executable from t. However, since the last step from i is an
RMR step, the state of i at �(s) might be different from that at
(�|i)(t).

Corollary 3. Let s and t be system states and i a process.
Suppose � is a finite execution fragment that is executable from
s, ends with an RMR step from i, and contains neither RMR

steps from i nor RMR steps to i except the last step. If s
i∼
Vi

t ,

then �|i is also executable from t.

2.2. The mutual exclusion problem

So far, we have described a DSM model for all algorithms in
general. For mutual exclusion algorithms in particular, we now

specify requirements to capture the mutual exclusion behavior
among a set of processes.

Informally, the mutual exclusion problem is to devise algo-
rithms for each process to access a designated region of code
called the critical region. A process can only occupy its critical
region while no other process is in its critical region. In order to
gain admission to the critical region, a process executes its try-
ing region code, and when a process leaves its critical region, it
executes the exit region code for synchronization purposes and
then returns to the rest of its code, called the remainder region.

For each process i, �i is partitioned into non-empty disjoint
subsets Ri , Ti , Ci and Ei . We say that a process i is in its
remainder (R) region, trying (T ) region, critical (C) region
and exit (E) region at system state s if s(i) belongs to Ri , Ti ,
Ci and Ei , respectively. In each initial system state, we assume
that each process is in its region R. In addition, we assume
that the transition relation � for a mutual exclusion algorithm
satisfies the following well-formedness conditions:

• If (s, (v, f )i, s
′) ∈ � and s(i) ∈ Ri , then s′(i) ∈ Ri ∪ Ti .

• If (s, (v, f )i, s
′) ∈ � and s(i) ∈ Ti , then s′(i) ∈ Ti ∪ Ci .

• If (s, (v, f )i, s
′) ∈ � and s(i) ∈ Ci , then s′(i) ∈ Ci ∪ Ei .

• If (s, (v, f )i, s
′) ∈ � and s(i) ∈ Ei , then s′(i) ∈ Ei ∪ Ri .

That is, each process cycles through its remainder, trying, crit-
ical and exit regions, in that order.

For all steps, we assume that a step enabled in the region R
or C never accesses a shared variable that may be accessed by
a step enabled in the region T or E. Thus, a step taken in the
region R or C will not affect the processes in their regions T
and E. Since all RMR steps of interest in this paper are those
that are taken in the regions T and E, we assume, without loss
of generality, that a process in its region R or C will not take
any RMR step.

In addition, an algorithm that solves the mutual exclusion
problem must meet the two basic conditions below.

Mutual exclusion: There is no reachable system state at which
more than one process is in the region C.

The next condition depends on an assumption about the
scheduling of processes in executions: no process “halts” any-
where except possibly in the region R. Executions with this
property are said to be admissible. Let � be an execution exe-
cutable from an initial system state s. Formally, � is admissible
from s if for every process i ∈ P that takes only finitely many
steps in �, i’s final state belongs to Ri .

Progress: Let � be an admissible execution executable from
an initial system state s and �1 be any finite prefix of �. At
system state �1(s),

• if at least one process is in the region T and no process is in
the region C, then there exists a finite prefix �2 of �, |�2| >
|�1|, such that some process enters its region C at �2(s);
• if at least one process is in the region E, then there exists

a finite prefix �2 of �, |�2| > |�1|, such that some process
enters its region R at �2(s).

This condition is necessary for the system to make any
progress at all. However, an algorithm satisfying the condition
does not guarantee that the critical region is granted fairly to
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each individual process. A situation in which some process is
denied indefinitely access to its region C (known as lockout, or
starvation) may occur. Thus, it is often desirable to have some
level of fairness of granting the region C.

An algorithm is lockout-free provided that it guarantees, as-
suming that no process stays in the region C indefinitely and
the execution is admissible, no process can be kept waiting in-
definitely either for the region C or for the region R. It is intu-
itively clear that a lockout-free algorithm is also an algorithm
satisfying the progress condition.

An algorithm is bounded-bypass if it is b-bounded-bypass
for some constant b. We say that an algorithm is b-bounded-
bypass if after a process i has performed a step in its region
T, process i cannot be bypassed more than b times by any
particular process in competing for the region C.

In the lower bound proof (see Section 4), we assume only
the two basic conditions of the mutual exclusion problem.
Thus, the lower bound proof also works when we consider
lockout-freedom and bounded bypass. Besides, our algorithm
with the matching lower bound also satisfies these two condi-
tions. Hence, the same tight bound holds for lockout-free mu-
tual exclusion and bounded-bypass mutual exclusion.

Time complexity: The time complexity of a mutual exclusion
algorithm is the worst case number of RMR steps taken by any
single process in its region T and the following region E if the
process enters and then leaves its region C, i.e., the worst case
number of RMR steps for any single process to enter and then
exit its region C once.

Then, a local-spin mutual exclusion algorithm can be for-
mally defined as follows. This definition has been used implic-
itly or explicitly in related work about local-spin algorithms [3].

Definition 1. A mutual exclusion algorithm is local-spin if its
time complexity is bounded, that is, a constant c exists such
that its time complexity is less than or equal to c.

3. A time complexity upper bound

This section presents an algorithm whose time complexity
is three. The key to minimizing the number of RMR steps is
encoding different messages into an RMR step. Additionally,
the mutual exclusion algorithm is bounded-bypass and lockout-
free.

3.1. The primitives

Besides atomic read and write, two RMW primitives are used
in our algorithm: (1) fetch&store(v, new), which atomically
writes value new to shared variable v and returns the old value;
and (2) compare&swap(v, old, new), which atomically writes
value new to shared variable v exactly if its old value equals
old, and returns the old value regardless of what happens in the
comparison.

It is not hard to show that these two RMW primitives
are special cases of the general RMW primitive. Primitive
fetch&store(v, new) is equivalent to RMW(v, f ) where f
is a constant function that always maps to value new, and

compare&swap(v, old, new) is equivalent to RMW(v, f )
where f is a function defined as follows: let x be any value in
the value set of v

f (x) =
{

new if x = old,

x otherwise.

Since all primitives used in the algorithm can be replaced by
the general RMW primitive, the algorithm is indeed an upper
bound result in our model.

3.2. The algorithm

We prove the following theorem by presenting our algorithm
shown in Fig. 3. Fig. 4 is an example to help explain how the
algorithm works. For ease of explanation, we let each process
have several private variables. These private variables are part
of the process’s state and are unaccessible to other processes.

Theorem 4. There is a mutual exclusion algorithm whose time
complexity is three.

Before presenting the algorithm, we explain how the MCS
lock [23] schedules requests to the critical region in an orderly
way using fetch&store and compare&swap. This inspires our
algorithm. As shown in Fig. 1, the MCS lock uses a fetch&store
on a lock to chain competing processes as a list. Each process
desiring to enter its critical region executes fetch&store on the
shared variable L (i.e., the lock), announcing its identity and
obtaining the identity of its predecessor if there is one (T 1).
If the returned value is nil, i.e., the requesting process is the
head of the list, then it immediately enters its critical region.
Otherwise, if it has a predecessor, it first writes a value to its
predecessor’s Next variable, notifying its predecessor to refer
back to its identity (T 3). It then starts to spin on a locally
accessible shared variable until it is awakened (T 4).

In the region E, a process i passes the permission to its suc-
cessor if there is one. If Next(i) �= ⊥, i.e., i’s successor has up-
dated Next(i), then i updates its successor’s spin variable (E8).
Otherwise, two cases are possible: (1) i has no successor, or (2)
i does have a successor, but the successor has not yet updated
Next(i). Primitive compare&swap in E2 enables i to determine
which case is true. If the returned value of compare&swap is
not i, i.e., i indeed has a successor, i waits until its successor
updates Next(i) (E3), and then wakes up its successor (E5).
Otherwise, if the returned value of compare&swap is i, i.e., i
has no successor, then compare&swap has modified L’s value
to nil, setting the system state to the starting state.

Fig. 2 illustrates a simple execution of the MCS lock. Process
3 first executes fetch&store in T 1 and gets nil from L, so it
enters its region C immediately. While process 3 is in its region
C, processes 1, 5 and 4 execute T 1 in turn. Each of processes 1,
5 and 4 updates its predecessor’s Next variable and then starts
to wait. The permission is conveyed from 3 to 1, then from 1
to 5, and then from 5 to 4. After process 4 leaves its region C,
if there is no other request, process 4 modifies L’s value to nil;
otherwise, it passes the permission to its successor.
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Fig. 1. The MCS lock.

3

1

5

4

Next(3) = 1

Next(1) = 5

Next(5) = 4

Next(4) = ⊥

4

L

Fig. 2. An execution of the MCS lock. An arrow from node p to note q
indicates that process q has updated process p’s Next variable so that p knows
the identity of its successor.

As in the MCS lock, we use a fetch&store on a lock to link
competing processes, but, as in Fu and Tzeng’s algorithm [16],
we eliminate the RMRs needed in the MCS lock to notify its
predecessor to re-direct the link for each process in a list. With
this modification, Fu and Tzeng devised a way to pass the lock
among processes. However, their way suffers from blocking in
the exit region. To eliminate this drawback, we provide a new
way to convey the lock.

We first give an informal description of the algorithm and
then describe it in more detail. In the algorithm for n processes,
each process i ∈ P = {0, . . . , n − 1} has two identities, i and

n+ i. For brevity, let ī denote n+ i. Each process uses different
identities in any two consecutive life cycles to avoid a subtle
situation. We defer the explanation of the subtlety until we have
presented the algorithm (Fig. 3).

We now explain the key idea of the algorithm. Each request-
ing process executes fetch&store on the shared variable L (i.e.,
the lock) to announce its identity and obtain its predecessor’s
identity if there is one. If the returned value is nil, the critical
region is available and the requesting process enters the criti-
cal region immediately; otherwise, it waits by repeatedly test-
ing its local-spin variable. Since each process makes a request
by executing fetch&store on the same variable L, a waiting list
will be formed if some process has been in its region C. For
instance, in Fig. 4(a), as process 3 is in its region C, all com-
peting processes (1, 5, and 4) form a waiting list.

When a process leaves its region C, it takes an RMR step to
write a value, called the permission word, to the spin variable
of some waiting process. Since the waiting process is testing its
spin variable repeatedly, the permission word in effect serves as
a wake-up signal. In order to minimize the number of RMRs,
the permission word not only serves as permission to enter the
region C, but also carries enough information for processes
to arrange among themselves the order to enter the region C,
without using any other control word.

The permission will be conveyed in the following way. First,
any process that succeeded in acquiring nil from L enters the
region C. When such a process leaves its region C, it conveys
the permission to the tail of the current waiting list. Then, the
permission will be transmitted along the list from the tail to the
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Fig. 3. Our algorithm.

head, allowing every process in the list to enter its region C
in an orderly way. While the permission is being transmitted,
all subsequent requesting processes form a new waiting list ap-
pending to the tail of the old list. Once the head of the old list
leaves its region C, i.e., all processes in the list have finished
their regions C, the permission will be redirected to the tail of
the new waiting list. Similarly, the permission will be conveyed
along the new list. We call a process that redirects the permis-
sion to the tail of a new waiting list a controller. Namely, a
process is a controller if it gets nil from L or it is the head of
a waiting list. In addition, a controller has the responsibility to
encode some information into the permission so that each pro-
cess in a new list can check whether it is the head of the list
and if so, it should take the role of a new controller. If there is
no new waiting list when a controller tries to redirect the per-
mission, the controller modifies L’s value to nil, thus properly
setting the system to the starting state. Using compare&swap, a
controller can atomically check whether there is a new waiting
list and if not, modify L’s value to nil, avoiding any interleaving
with processes that make requests about the same time.

For example, in Fig. 4(a), when process 3 (the controller
at the time) leaves its region C, it conveys the permission to
process 4, the tail of the current waiting list, called list 1. Pair
(3,4) serves as the permission, where 3 is used for each process
receiving the permission to check whether it is the head of list

1, and 4 indicates the tail of the list and will be used to encode
the next permission. The permission will be transmitted along
list 1. In Fig. 4(b), when process 1 in list 1 leaves its region
C, i.e., all processes in the list have finished their regions C,
process 1 knows that it is the head of list 1 by checking whether
its predecessor is 3. Process 1 encodes new information into
the permission and redirects it to the tail of the current waiting
list, called list 2.

We now describe the algorithm in more detail. The algorithm
uses n+1 shared variables: L and Spin(i) for each i ∈ P . L can
be located at any process; in contrast, Spin(i) must be located
at process i. Spin(i) is the spin variable of process i. Whenever
busy-waiting is necessary, process i repeatedly checks its spin
variable without causing any RMR. Each spin variable consists
of two parts, (head, tail), each being the identity of a process
or ⊥. Initially, L is set to nil and each spin variable is set to
(⊥,⊥).

In the region T, a process executes fetch&store on L (T 1). If
the returned value of the primitive is nil, the requesting process
enters its critical region immediately; otherwise, it waits by
repeatedly testing its spin variable until the value is not equal
to (⊥,⊥) (T 3).

In the region E, a process will identify itself as a controller
if the result of checking E2 is “yes”—that is, pred is equal to
nil or head of its spin variable. If the process is not a controller,
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Fig. 4. An execution of our algorithm. A gray node indicates a process that has finished one life cycle. An upward arrow from a process points to the process’s
predecessor, and a downward arrow from a process, which must be a controller, points to the tail of the waiting list to which the process is responsible. The
label of a downward arrow from a process represents the permission word conveyed to the tail by the process.

it just transmits the permission to its predecessor by executing
E12. Otherwise, it first encodes new control information into
the permission word (head, tail) by executing steps E3.E8.
Steps E3.E7 set the new value of head: if the controller gets
nil from L, head is set to its current identity; otherwise, head
is set to the value of tail in the old permission word. This is
because the value of head will be used by processes in the new
waiting list to check whether it is the head of the list. Step E8
sets tail to the returned value of compare&swap on L, which is
the identity of the tail of the new waiting list if there is one. If
there is no new waiting list, E8 atomically modifies L’s value
to nil. Otherwise, the controller redirects the permission to the
tail of the new list by executing E10.

We have presented the algorithm. It remains to explain the
reason why each process uses different identities in any two
consecutive life cycles. Each process alternately uses one of
its identities to avoid a subtle situation. Although a process
cannot appear more than once in a waiting list, it may appear
in two neighboring lists. A process’s identity in one life cycle
is different from that in the next cycle since a process always
changes its current identity in E15. Therefore, no two identities
of the same process in any two consecutive lists are the same.

This is important for a process to determine whether it should
act as the controller for the next waiting list. For example, in Fig.
4(c), process 3 in list 3 would not be able to tell the difference
between 4 in list 3 and 4̄ in list 2 if process 4 uses the same
identity. With the different identities, process 3 should pass the
permission to process 4, rather than taking up the role of a
controller. The situation occurs whenever a process at the tail
of a waiting list, after having been given permission to enter its
region C, quickly makes a new request in the next waiting list.
Fortunately, the subtlety needs to be resolved only between two
neighboring waiting lists, thus two identities for each process
suffice.

Time complexity: Inspecting the algorithm, it is easy to find
that the worst case number of RMR steps taken by any single
process in its regions T and E is three (steps T 1, E8 and E10).

3.3. A correctness argument

3.3.1. Mutual exclusion
In the algorithm, a process i has permission to enter its region

C exactly if it obtains nil from L when executing T 1 (i.e.,
pred = nil) or Spin(i) �= (⊥,⊥). Since a process that obtains
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nil when executing T 1 writes its identity, a non-nil value, to L
in the same step, a nil in L permits at most one process to gain
permission. Initially, L is set to nil and Spin(i) = (⊥,⊥) for
each process i. Thus, at most one process may enter the region
C initially.

To prove mutual exclusion, we focus on steps that may cause
some process to gain permission, that is, on steps that may set
L to nil or modify some process’s spin variable. Inspection of
the algorithm clearly indicates that only steps E8, E10, and
E12 need to be considered.

• Step E8 (t := compare&swap(L, h, nil)) assigns the current
value of L to t, and modifies L’s value to nil only if L =
h. If the step indeed modifies L’s value, it is regarded as
successful. A successful E8 allows at most one process to
gain permission.
• Each of E10 and E12 modifies some process’s spin variable.

Since the spin variables of any two processes are distinct,
each of the two steps allows at most one process to gain
permission.

According to the algorithm, a process that executes a suc-
cessful E8 bypasses E10 since t = h. Hence, a process in its
region E executes exactly one of the following steps: success-
ful E8, E10, or E12. That is, a process in its region E passes
its permission to at most one process.

Since at most one process may gain permission initially and
each process having permission passes its permission to at most
one process, the following lemma holds.

Lemma 5. The algorithm guarantees mutual exclusion.

3.3.2. Lockout-freedom
We now show that the algorithm is lockout-fee. This also

implies that the algorithm satisfies progress.
Before proving the lockout-freedom condition, we present

several definitions that intend to organize all requests in an
execution. First, a busy period is an execution fragment that
starts with a step T 1 that succeeds in acquiring nil from L,
and ends with the following successful E8, which modifies L’s
value to nil. Since L = nil initially, all occurrences of T 1 (i.e.,
all requests) in an execution can be divided into busy period(s).
In a busy period, each requesting process except the first one
has the identity of its predecessor because each process makes
a request by executing T 1 on the same shared variable L.

Next, we try to divide all requests in a busy period into
lists. A list in a busy period is a sequence of processes that
execute T 1 between the first T 1, which obtains nil from L, and
the following unsuccessful E8, or between an unsuccessful E8
and the next unsuccessful one. Starting from the last process
in a list, we can trace the whole list from the tail to the head
through the value of pred of each process in the list. A process
that executes E8 is called a controller. If a controller executes
an unsuccessful E8, it defines a new list and is also called the
controller of the new list. Otherwise, if a controller executes a
successful E8, it ends the busy period.

Lemma 6. The algorithm guarantees lockout-freedom.

Proof. The argument for the exit region is simple. Since no
loop occurs in the exit region, each process in its region E
eventually enters its region R.

The lockout-freedom condition for the trying region is now
considered. We argue that each requesting process in any busy
period of an admissible execution eventually enters its region
C.

In a busy period, the first T 1 obtains nil from L and thus the
first requesting process eventually enters its region C. When
leaving its region C, the process identifies itself as a controller
since pred = nil. After executing E4 to assign its current iden-
tity to h, it executes E8. When it executes E8, if L = h (i.e.,
no other request exists), it modifies L’s value to nil in the same
step and ends the busy period. Otherwise, it defines the first
list and is the controller of the list. We need to prove that each
requesting process in the first list and all possible subsequent
lists eventually enters its region C.

We show that each requesting process in the ith list, called
list i, eventually enters its region C, and only the head of the
list is selected as a new controller by induction on i.

Basis: i = 1. List 1 contains all processes that make requests
between the first T 1 in the busy period and the unsuccessful
E8 executed by the controller of list 1. Through the returned
value of compare&swap in E8, the controller has the identity
of the tail of the list. Lemma 5 implies that at most one process
has permission at any system state. Thus, before the controller
passes the permission to the tail, all requesting processes will
be blocked at T 3. The controller then executes E10 to pass the
permission to the tail by writing pair (h, t) to the tail’s Spin
variable, where h is the controller’s identity and t is the tail’s
identity. In list 1, each process except the head will not be
selected as a new controller since pred �= nil and pred �= h,
and will pass the permission to its predecessor by executing
E12. Thus, the permission will be conveyed along the whole list
from the tail to the head so that each process in list 1 eventually
enters its region C. When the head of list 1 leaves its region C,
it identifies itself as a new controller since its pred is equal to
the previous controller’s identity (i.e., pred = h).

Inductive step: Assume that each process in list i eventually
enters its region C and only the head of the list is selected as
a new controller. While the permission is conveyed along list
i, all subsequent requesting processes, including those that are
in list i and make requests again, will be blocked at T 3.

According to the induction hypothesis, the head of list i
identifies itself as a new controller after leaving its region C.
The new controller executes E6 to assign the identity of the
tail of list i to its h. Since a process always switches its identity
in E15, if the process at the tail of list i makes a request,
after having been given permission, it has a different identity.
Thus, if L = h when the new controller executes E8, no other
request exists. The new controller modifies L’s value to nil in
the same step and ends the busy period. Otherwise, it defines
list i+1 and is the controller of list i+1. List i+1 contains all
requesting processes that make requests between the previous
unsuccessful E8, which defines list i, and the unsuccessful E8
executed by the controller of list i + 1. The controller then
passes the permission to the tail of list i + 1 by writing pair
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(h, t) to the tail’s Spin variable, where h is the identity of the
tail of list i and t is the identity of the tail of list i + 1.

It remains to show that the permission will be conveyed
along the whole list. Although the process at the tail of list i
may be a member of list i + 1, it has a different identity when
it appears in list i + 1. Therefore, in list i + 1, only the head
will identify itself as a new controller when checking whether
its predecessor’s identity equals the identity of the tail of list i.
The permission will be conveyed along the whole list so that
each process in list i + 1 eventually enters its region C. �

3.3.3. Bounded bypass
In a busy period of an execution, since a list does not receive

the permission until each process in the previous list has left
its region C, the algorithm satisfies bounded bypass.

Lemma 7. The algorithm guarantees bounded bypass.

4. A time complexity lower bound

In this section we show that, under the system model and
definitions in Section 2, the time complexity of any mutual
exclusion algorithm with at least four processes is at least three.

Theorem 8. Let A be a mutual exclusion algorithm for n > 3
processes. Then the time complexity of A must be three or more.

Theorems 4 and 8 together imply the tight bound of three on
time complexity.

This section is organized as follows. We first make a simpli-
fying restriction on the mutual exclusion algorithms. Next, we
present several properties of a process that is busy waiting only
at certain local shared variable(s) in its region T, i.e., a process
that is locally spinning in its region T. These properties will be
used in our lower bound proof. Finally, we present the outline
of the lower bound proof, and then show the detailed proof.

For simplicity, we make the following restriction on mutual
exclusion algorithms: we only consider local-spin mutual exclu-
sion algorithms. This entails no loss of generality, because the
time complexity of a non-local-spin algorithm is unbounded.

4.1. Basic properties

We present three lemmas about a process that is locally spin-
ning and show that for any local-spin mutual exclusion algo-
rithm, there exists a reachable system state at which some pro-
cess is locally spinning.

First, a definition is needed to describe a system state at which
some process is locally spinning in its region T. Informally,
a process i locally spinning in its region T at a system state
s has two features: by running i alone from s, (1) i will not
perform any RMR step; and (2) i will never change regions.
The definition below tries to capture this notion.

Definition 2. Let s be a system state of a mutual exclusion
algorithm. We say that process i is locally spinning in its region

T at s if

1. i is in its region T at s, and
2. for any finite i-execution fragment � executable from s, �

contains no RMR step and i remains in its region T from s
to �(s).

The following lemma says that whether a process is locally
spinning at a system state depends on the state of the process
and the values of its local shared variables.

Lemma 9. Let s and t be system states of a mutual exclusion

algorithm such that s
i∼
Vi

t for process i. Then i is locally spinning

in its region T at s if and only if i is locally spinning in its
region T at t.

Proof.

1. (→) Suppose i is locally spinning in its region T at s. Since

i is in its region T at s and s
i∼
Vi

t , i is in its region T at t. It

remains to show that for any finite i-execution fragment �
executable from t, � contains no RMR step and i remains in
its region T from t to �(t). By way of contradiction, suppose
that � is a finite i-execution fragment executable from t such
that � contains an RMR step or i changes regions in �. Let
�′ be the prefix of � including and ending with the first step
that is either an RMR step or an operation that makes i

change regions. Since s
i∼
Vi

t , �′ is also executable from s. (If

�′ ends with an RMR step, this follows from Corollary 3;
otherwise, this follows from Lemma 2.) This contradicts the
assumption that i is locally spinning in its region T at s.

2. (←) The other direction follows from symmetry. �

The next lemma says that starting from a system state at
which process i is locally spinning, i will not perform any RMR
step before any other process takes an RMR step to i.

Lemma 10. Let s be a system state of a mutual exclusion al-
gorithm at which process i is locally spinning in its region T. In
any execution fragment executable from s, no RMR step from i
exists before the first RMR step to i occurs.

Proof. Suppose for the sake of contradiction that � is an exe-
cution fragment executable from s in which an RMR step from
i exists before the first RMR step to i occurs. We construct an
i-execution fragment that is executable from s but ends with
an RMR step from i. This contradicts the assumption that i is
locally spinning at s.

Let �′ be the prefix of � including and ending with the first
RMR step from i. Note that the assumption on � implies that �′
contains no RMR step to i. We show that �′|i is also executable
from s. This is the needed contradiction because �′|i ends with
an RMR step from i. By the definition of �′, it is executable
from s, ends with an RMR step from i, and contains neither
RMR steps from i nor RMR steps to i except the last step. Also,
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it is trivial that s
i∼
Vi

s. By Corollary 3, �′|i is also executable

from s. �

Intuitively, if a process i is locally spinning in its region T at
some point and i enters its region C at a later point, then some
other process must have taken at least one RMR step to wake
up i. The next lemma, also called the inherent cost lemma,
formalizes this intuition. A similar observation in a message-
passing model can be found in Chandy and Misra’s work about
“knowledge” among processes [10].

Lemma 11 (inherent cost). Let s be a system state of a mutual
exclusion algorithm at which process i is locally spinning in its
region T. Suppose that process i reaches its region C in a finite
execution fragment � executable from s. Then, � must contain
at least one RMR step to i.

Proof. By way of contradiction, suppose that � contains no
RMR step to i. We construct an i-execution fragment that is
executable from s but violates the assumption that i is locally
spinning in its region T at s.

By Lemma 10, � contains no RMR step from i and therefore
it contains neither RMR steps from i nor RMR steps to i. In

addition, it is clear that s
i∼
Vi

s. Thus, by Lemma 2, �|i is also

executable from s and process i has the same state at �(s) and
(�|i)(s). Since i is in its region C at �(s), i is also in its region C
at (�|i)(s). Thus, �|i is the needed execution fragment because
i changes regions in �|i. �

Finally, the following lemma says that for any local-spin
mutual exclusion algorithm, if some process has been in its
region C at a system state, then running another requesting
process i alone eventually leads to a system state at which i is
locally spinning.

Lemma 12. Let A be a local-spin mutual exclusion algorithm
for n > 1 processes. Let s be a reachable system state of A at
which process i is in its region R and some other process is in
its region C. Then there exists a finite i-execution fragment �
executable from s such that i is locally spinning in its region T
at system state �(s).

Proof. Starting from s, let i enter its region T and continue
to run i alone. This must lead to a system state at which i is
locally spinning since otherwise the time complexity would be
unbounded or i would change regions. The former violates the
assumption that A is a local-spin mutual exclusion algorithm;
while, the latter violates the mutual exclusion condition. �

4.2. Proof outline

Throughout the rest of this paper, we let A = (P, V, �) be
an arbitrary local-spin algorithm for n > 3 processes and let
sinit be an initial system state of A. To prove the lower bound
of three on time complexity, our objective is to construct an

i in C

i only

j spinning in T

j onlysinit i, j only

j in C

i only

i in E

�i

�ij

Fig. 5. A goal execution extended from �ij in which time(i, �ij )�2.

execution of A from sinit in which some process takes at least
three RMR steps to enter and exit its region C once. We call
such an execution a goal execution.

A goal execution will be constructed in the following way.
We start by constructing n solo executions, one per process,
each starting from sinit and involving its steps only until it
has just entered its region C. (The progress condition implies
that this is possible.) For each i ∈ P , let �i denote the solo
execution of i. Next, for each �i and each process j �= i, we
extend �i to what is denoted by �ij by running j alone until j
has just entered a system state at which j is locally spinning in
its region T. Execution �ij exists according to Lemma 12. Our
lower bound proof focuses on the set of all �ij ’s, called set E .
More precisely, we define

E = {�ij | i, j ∈ P and i �= j}.
We show that a goal execution can be constructed by extending
some execution in E .

Consider the number of RMR steps that have been taken by
each process in each execution in E . For brevity, let time(i, �ij )

and time(j, �ij ), respectively, denote the number of RMR steps
taken by i and j in their regions T in �ij . Then two cases are
discussed.

Case 1: ∃ �ij ∈ E : t ime(i, �ij )�2 or t ime(j, �ij )�2. Let
�ij ∈ E be such an execution. A goal execution can be extended
from �ij by applying the inherent cost lemma.

If time(i, �ij )�2, we extend �ij to an execution in which i
takes at least one RMR step in its corresponding region E, so
that i takes at least three RMR steps in total. The way to extend
�ij is described as follows and is illustrated in Fig. 5. From the
end of �ij , we let i leave its region C first and then let i and j
take enabled steps alternately until j enters its region C. Since i
and j take enabled steps alternately, this execution is admissible.
Thus, the progress condition implies that j eventually enters its
region C. By the inherent cost lemma, there exists at least one
RMR step to j, which must be taken by i because only processes
i and j are involved, in the portion of the resulting execution
after �ij .

If time(i, �ij )�2 does not hold, it must be the case that
time(j, �ij )�2 holds. Similarly, by the inherent cost lemma, we
extend �ij to an execution in which j instead of i takes at least
one RMR step in its corresponding region E. The construction
will be given in the detailed proof.

Case 2: ∀ �ij ∈ E : t ime(i, �ij ) < 2 and t ime(j, �ij ) < 2.
This case is the core of the lower bound proof. We construct a
goal execution in which some process takes one RMR step in its
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i in C

i in C

i only

j spinning in T
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j onlysinit
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i, j only

i, k only

j in C

k in C

i only

i in E

� | i

�ij

�ik

�ij′

�ik′

�

Fig. 6. A goal execution extended from either �ij or �ik . We write e to
denote the RMR step from i to j.

region T and takes at least two RMR steps in its corresponding
region E.

We first use the following property, called the rendezvous
property, which says that in most executions in E , processes
communicate through the same remote shared variable: (The
property will be proved in the next subsection.)

Suppose that for all �ij ∈ E , processes i and j each access at
most one remote shared variable in �ij . Then there exists a
shared variable v such that for all �ij ∈ E that v is remote to
both i and j, both i and j must access v in �ij . More precisely,

∃ v ∈ V, ∀ �ij ∈ E, v �= Vi and v /∈ Vj : both i and j

must access v in �ij .

Since for all �ij ∈ E , time(i, �ij ) < 2 and time(j, �ij ) < 2, i
and j each access at most one remote shared variable in �ij .
Therefore, the above property guarantees the existence of such
a shared variable v. Let m be the process to which v is local. We
conclude that for each �ij with i �= m and j �= m, we always
have time(i, �ij ) = 1 and time(j, �ij ) = 1. Furthermore, both
i and j must access the same remote shared variable v.

Take any three distinct processes i, j and k that are different
from m. Processes i, j and k exist since n > 3. Consider �ij

and �ik . By the conclusion above, i and j each take exactly one
RMR step in �ij , and they access the shared variable v, which
is located at process m. Likewise, i and k each take exactly one
RMR step in �ik , and they access v. A goal execution can be
constructed by extending either �ij or �ik , in which i takes at
least two more RMR steps in addition to the one it has taken
in �ij or �ik . The construction is illustrated in Fig. 6.

First, we extend �ij to �′ij in the same way as that shown in
Fig. 5, i.e., by letting i leave its region C and then running i
and j until j reaches its region C. In the suffix of �′ij after �ij , if
i takes at least two RMR steps, �′ij is already a goal execution.
Otherwise, the inherent cost lemma implies that i takes exactly
one RMR step, which is from i to j. Based on this implication,
a goal execution �′ik is constructed below.

Execution �′ik begins with �ik , in which i has taken one RMR
step. It then continues by letting process i run alone until it
takes the RMR step to j as it does in the suffix of �′ij after

�ij . This is possible mainly because �ij (sinit)
i∼
Vi

�ik(sinit). (A

precise argument will be given in the detailed proof.) It finishes
by running processes i and k until k enters its region C; along
the way, the inherent cost lemma guarantees that i must take
at least one RMR step to k. Thus, i takes at least three RMR
steps in �′ik , and thereby �′ik is a goal execution.

4.3. Detailed proof

We begin by proving the rendezvous property (Lemma 15)
and then provide the detailed lower bound proof.

In order to prove the rendezvous property, we first present
two lemmas for all �i of A, i ∈ P . The first, Lemma 13, says
that for any two distinct solo executions �i and �j , there exists
at least one shared variable that is accessed in both �i and �j .
That is, processes i and j must access at least one common
shared variable in their respective solo executions. The other,
Lemma 14, says that if every i ∈ P accesses at most one
remote shared variable in its �i , then there is exactly one shared
variable, say v, that is accessed in all �i , i ∈ P . That is, every
process i must access v in its �i . Note that unlike Lemma 14,
Lemma 13 holds without any assumption on the number of
remote shared variables accessed in each �i .

For presenting Lemmas 13 and 14, we need a definition: for
every shared variable v, let Pv denote the set of all processes
that access v in their respective solo executions. That is, for
every v in V , define

Pv = {i ∈ P | i accesses v in �i}.
First, we prove Lemma 13, also called the pairwise common

lemma. Informally, although �i and �j are two independent
executions, processes i and j should access at least one common
shared variable for synchronization purposes. For otherwise,
it is easy to yield an execution in which both i and j are in
their regions C simultaneously by concatenating �i and �j . This
violates the mutual exclusion condition.

Lemma 13 (pairwise common). For any two solo executions
�i and �j , i �= j , there exists at least one shared variable
accessed in both �i and �j . More precisely, ∀ i, j ∈ P, i �=
j, ∃ v ∈ V : {i, j} ⊆ Pv .

Proof. By way of contradiction, suppose that there exists no
shared variable accessed in both �i and �j . Thus, each shared
variabl accessed in �j has the same value at system states
sinit and �i (sinit). In addition, process j has the same state at

sinit and �i (sinit), and therefore we have sinit
P∼
V

�i (sinit), where

P = Pro(�j ) = {j} and V = Var(�j ). Hence, according to
Lemma 1, �j is also executable from �i (sinit). This violates the
mutual exclusion condition because both i and j are in their
regions C at (�i ◦ �j )(sinit). �

Since a shared variable is local to one process and remote to
all other processes, a shared variable accessed in both �i and
�j is remote to either i or j, or to both. That is, at least one of
i and j accesses a remote shared variable.
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Next, we prove Lemma 14. Suppose that every process i ∈
P accesses at most one remote shared variable in �i . (Note
that i may access many local shared variables in �i .) Based on
the pairwise common lemma, we show that all processes must
access one common shared variable, say v, in their respective
solo executions. This implies that for all i ∈ P , except the
process to which v is local, i accesses exactly one remote shared
variable in �i and this shared variable is v.

Lemma 14. Suppose that for all �i , i ∈ P , i accesses at most
one remote shared variable in �i . Then there exists exactly one
shared variable v such that for all �i , i ∈ P , i accesses v in
�i . More precisely, there exists exactly one shared variable v

such that |Pv| = n.

Proof. If there exists one shared variable that is accessed in
every �i , it is easy to show that the number of such shared
variables must be exactly one. Suppose not, that is, there is
more than one such shared variable. Since n > 3 (A is for
n > 3 processes), there exists one process that accesses more
than one remote shared variable, violating the assumption that
each process accesses at most one. Thus, all we need to show
is that there exists one such shared variable. More precisely,
∃ v ∈ V : |Pv| = n. We first show the following weaker
claim.

Claim 14.1. Suppose that for all �i , i ∈ P , i accesses at most
one remote shared variable in �i . Then, ∃ v ∈ V : |Pv| > 2.

Proof. By way of contradiction, suppose that |Pv|�2 for all
v ∈ V . We show that some process accesses more than one
remote shared variable. This contradicts the assumption that
each process accesses at most one.

Consider four distinct processes i, j, k and l. (Processes i, j,
k and l exist because n > 3.) By the pairwise common lemma,
for �i and �j , there exists one shared variable accessed in both
�i and �j . Let variable w be such a variable, i.e., {i, j} ⊆
Pw. Since |Pv|�2 for all v ∈ V , Pw = {i, j}. Likewise, we
conclude that Px = {j, k} for some variable x, Py = {k, l}
for some variable y and Pz = {j, l} for some variable z. Since
Pw = {i, j} �= Px = {j, k}, w and x must be two different
shared variables. Similarly, we conclude that w, x, y and z are
four different shared variables. (See Fig. 7.)

Since a shared variable is local to only one process, vari-
able w is remote to at least one of processes i and j. Assume,
without loss of generality, w is remote to j. Since j accesses
at most one remote shared variable in �j and it has accessed

i

w

R

j j

x

R

k

y

R

z

L
R: remote
L: local

L

j k l l

Fig. 7. Shared variables for the proof of Claim 14.1.

w, variable x must be local to j and therefore x is remote to
process k. Similarly, y is remote to process l. Hence, we know
that j accesses remote shared variable w in �j and l accesses
remote shared variable y in �l . However, variable z, which is
accessed in both �j and �l , is remote to at least one of j and
l. Thus, at least one of j and l accesses more than one remote
shared variable, which is the needed contradiction. �

Next, we prove that ∃ v ∈ V : |Pv| = n. Again, by way of
contradiction, suppose that |Pv| < n for all v ∈ V . We will
show that some process accesses more than one remote shared
variable, which contradicts the assumption that each process
accesses at most one. By Claim 14.1, we conclude that there
exists one shared variable v such that n > |Pv| > 2. Let
variable w be such a shared variable. Since n > |Pw| > 2,
assume {i, j, k} ⊆ Pw and {l}�Pw. For processes i, j and k,
variable w is remote to at least two of them. Without loss of
generality, assume w is remote to j and k. Namely, j and k each
access remote shared variable w in �j and �k .

We now show that some process accesses more than one
remote shared variable. Consider �j and �l . By the pairwise
common lemma, there exists a variable accessed in both �j and
�l . Let variable x be such a variable, i.e., {j, l} ⊆ Px . Similarly,
for �k and �l , let variable y be a variable that {k, l} ⊆ Py .
Clearly, both x and y are variables different from variable w

since {l} ⊆ Px , {l} ⊆ Py , but {l}�Pw.
If x and y are the same shared variable, i.e., {j, k, l} ⊆ Px =

Py , since x is remote to at least one of j and k, at least one of j
and k accesses more than one remote shared variable: variables
w and x.

Otherwise, if x and y are two different shared variables, since
j has accessed remote shared variable w, variable x is local to
j and therefore x is remote to l. Thus, for processes k and l,
we know that k accesses remote shared variable w in �k , and
l accesses remote shared variable x in �l . However, because y,
which is accessed in both �k and �l , is remote to at least one of
k and l, at least one of k and l accesses more than one remote
shared variable. �

In the following, we complete the proof of the rendezvous
property.

Lemma 15 (rendezvous property). Suppose that for all �ij ∈
E , processes i and j each access at most one remote shared
variable in �ij . Then there exists a shared variable v such that
for all �ij ∈ E that v is remote to both i and j, both i and j
must access v in �ij . More precisely,

∃ v ∈ V, ∀ �ij ∈ E, v /∈ Vi and v /∈ Vj : both i and j

must access v in �ij .

Proof. Since for all �ij ∈ E , processes i and j each access at
most one remote shared variable in �ij , it is true, a fortiori,
that for all �i , i ∈ P , process i accesses at most one remote
shared variable in �i . From Lemma 14, there exists exactly one
common shared variable, say v, that is accessed in all �i , i ∈ P .
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Let m be the process to which v is local. We prove that j also
accesses v in every �ij ∈ E with i �= m and j �= m, which
completes the proof because v is the needed shared variable.

We first show the following claim.

Claim 15.1. In every �ij ∈ E with i �= m and j �= m, process j
must access some shared variable that has been accessed by i.

Proof. Suppose not, that is, there exists an �ij with i �= m

and j �= m in which j does not access any shared vari-
able that has been accessed by i. Let �ij be such an ex-
ecution. We construct an execution violating the progress
condition.

Let � be the subsequence of �ij containing all steps executed
by j, that is, the suffix of �ij after �i (�ij = �i ◦ �). We will

show that � is executable from sinit and �ij (sinit)
j∼
Vj

�(sinit).

By Lemma 9, and because �ij (sinit)
j∼
Vj

�(sinit) and j is locally

spinning in its region T at �ij (sinit), this implies that j is also
locally spinning in its region T at �(sinit). But this easily
yields a j-execution �′ violating the progress condition. Start-
ing from sinit , execution �′ begins with �. It then continues
by running j alone. Since j is locally spinning in its region
T at �(sinit), no finite j-execution fragment executable from
�(sinit) will lead j to its region C. This violates the progress
condition.

It remains only to show that � is executable from sinit and

�ij (sinit)
j∼
Vj

�(sinit). Since j does not access any shared vari-

able that has been accessed by i, we have �i (sinit)
j∼
V

sinit , where

V = Var(�). By the definition of �, Pro(�) = {j} and � is
executable from �i (sinit). Thus, by Lemma 1, � is also exe-

cutable from sinit and �ij (sinit)
j∼
V

�(sinit). In addition, since v

is the only remote shared variable accessed by i in �ij , i does
not access any shared variable located at j. We now show that

�ij (sinit)
j∼
Vj

�(sinit) holds. Let w be any variable in Vj . If w is

in V , it has the same value at �ij (sinit) and �(sinit) because

we have proved that �ij (sinit)
j∼
V

�(sinit). Otherwise, if w is not

accessed by j in �, because i does not access any shared vari-
able located at j, the value of w is never changed in �ij and �.

Hence, �ij (sinit)
j∼
Vj

�(sinit). �

Next, we prove that j also accesses v in every �ij with i �= m

and j �= m by contradiction. Assume that there exists an �ij

with i �= m and j �= m in which j does not access v. Let �ij

be such an execution.
In �ij , the possible shared variables accessed by i are v and

the shared variables located at i. By Claim 15.1, since j does
not access v, j must access some shared variable located at i.
Since j accesses at most one remote shared variable in �ij , j
must access exactly one remote shared variable and this shared
variable is located at i.

i in C

k in C

i only

j spinning in T

j spinning in T

k only

j only

j onlysinit

sinit

�kj

�ij

�i �″

�″�k

Fig. 8. Executions �ij and �kj . Execution fragment �′′ ends with the first
RMR step from j to i.

Consider another �k , k �= m, i, j . We show that in �kj , j does
not access any shared variable that has been accessed by k in
�kj , contradicting Claim 15.1. As shown in Fig. 8, let �′′ be the
subsequence of �ij starting from the end of �i (not including
the end of �i) until j has just finished its first RMR step, which
is from j to i. In �i and �k , since i and k do not access any
shared variable located at process j (variable v, which is located
at m, is the only remote shared variable accessed by i and k),

we have �i (sinit)
j∼
Vj

�k(sinit). Since �i (sinit)
j∼
Vj

�k(sinit), j enables

the same step at �i (sinit) and �k(sinit) by the determinism and
the localized enabling assumptions of the model. Furthermore,
if the step is not remote, the resulting system states are also
indistinguishable to j with respect to Vj by the localized update
assumption. Using such an argument repeatedly, it is easy to
see that j also performs �′′ in �kj after �k as it does in �ij . Thus,
j also accesses a shared variable located at i in �kj .

Since process j accesses at most one remote shared variable
in �kj by the assumption on every execution in E , j accesses
exactly one remote shared variable and this shared variable is
located at i. Therefore, j does not access any shared variable that
has been accessed by k in �kj . (Note that the possible shared
variables accessed by k in �kj are v and the shared variables
located at k.) This contradicts Claim 15.1. �

The main lemma, rendezvous property, has been proven. To
finish the lower bound proof, it remains to provide the details
that are skipped in the proof outline in Section 4.2.

Proof (of Theorem 8). We show that there exists an execution
of A in which some process performs at least three RMR steps
to enter and exit its region C once. We complete the proof with a
case analysis on E , getting a goal execution for each possibility.

Case 1: ∃ �ij ∈ E : time(i, �ij )�2 or time(j, �ij )�2. Let
�ij ∈ E be such an execution.

If time(i, �ij )�2, we have presented the construction of a
goal execution in Section 4.2. If time(i, �ij )�2 does not hold,
it must be the case that time(j, �ij )�2 holds. It remains to
construct a goal execution in this case. We extend �ij to an
execution in which j must take at least one RMR step in its
region E.

As shown in Fig. 9, we extend �ij , in which j has taken at
least two RMR steps, to �1 by letting i leave its region C first
and then alternately executing enabled steps of i and j until i
enters its region R and j enters its region C. This follows from
the progress condition. Then we extend �1 to �2 by running a
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Fig. 9. Executions in Case 1.

new competing process k alone until k is locally spinning in its
region T. This follows from Lemma 12. Finally, we extend �2
to �3 by letting j leave its region C first and then alternately
executing enabled steps of j and k until k enters its region C;
along the way, by the inherent cost lemma, process j must take
at least one RMR step to k. In total, j takes at least three RMR
steps to enter and exit its region C once in �3.

Case 2: ∀ �ij ∈ E : time(i, �ij ) < 2 and time(j, �ij ) < 2. By
the rendezvous property, there exists a shared variable v such
that for any distinct processes i and j to which v is remote, both
i and j must access v in �ij .

Let m be the process to which v is local. Take any three
distinct processes i, j and k that are different from m. As shown
in Section 4.2, we first extend �ij to �′ij by letting i leave its
region C and then running i and j until j reaches its region C.
If process i takes at least two RMR steps in the portion of �′ij
after �ij , execution �′ij is already a goal execution. Otherwise,
the inherent cost lemma implies that i takes exactly one RMR
step, which is from i to j. We now construct a goal execution
�′ik . Let � be the subsequence of �′ij starting from the end of �ij

(not including the end of �ij ) until i has just finished its RMR
step, say step e. The precise construction of �′ik is given below.

Execution �′ik begins with �ik , in which i has taken one RMR
step. Then it is concatenated by �|i, which ends with an RMR
step from i to j. It finishes by letting processes i and k alternately
execute enabled steps until k enters its region C; along the way,
i must take at least one RMR step to k by the inherent cost
lemma. In total, i takes at least three RMR steps in �′ik .

It remains to show that it is legitimate in our construction
to concatenate �ik by �|i. This follows from Corollary 3. To
apply the corollary, we need to show the following properties:

�ij (sinit)
i∼
Vi

�ik(sinit); � is executable from �ij (sinit) and it ends

with an RMR step from i; and � contains neither RMR steps
from i nor RMR steps to i except the last step. In �ij and �ik ,
since i performs the same sequence of steps (i.e., �i), and j and
k do not access any shared variable located at i (v, which is
located at m, is the only remote shared variable accessed by j

and k), we have �ij (sinit)
i∼
Vi

�ik(sinit). By the definition of �, it

is executable from �ij (sinit) and it ends with an RMR step from
i. Since e is the only RMR step from i in the portion of �′ij
after �ij , � contains no RMR step from i except the last one. In
addition, by Lemma 10, � contains no RMR step from j and, a
fortiori, � contains no RMR step from j to i. Thus, �, which is

an {i, j}-execution fragment, contains neither RMR steps from
i nor RMR steps to i except the last step. Thus, by Corollary 3,
�|i is executable from �ik(sinit). �

5. Conclusion

5.1. Summary of results

We have proved that the remote reference time complexity
of any mutual exclusion algorithm with at least four processes
is at least three in DSM systems, and provided an algorithm
with the matching upper bound. The bound is therefore tight.
The lower bound is proved by constructing an execution in
which some process takes at least three RMRs to enter and
exit its critical region once. In the course of proving the lower
bound, we need to formalize the notion of a process “entering
a local-spin loop.” Danek and Hadzilacos [14] and we [11]
independently proposed a similar formal definition at about the
same time. Based on the definition, we also present several
properties of local-spin mutual exclusion algorithms.

The tight bound remains unchanged when we consider
lockout-freedom and bounded bypass. Because we only as-
sume the basic conditions of the mutual exclusion problem
in the proof of the lower bound, this bound also holds for
lockout-free mutual exclusion and bounded-bypass mutual ex-
clusion. Additionally, we have shown that the algorithm also
satisfies these two fairness properties. Consequently, the time
complexity of mutual exclusion in our model is not sensitive
to the properties.

5.2. Other open questions

One disadvantage of our algorithm is that it uses two prim-
itives, compare&swap and fetch&store, besides read/write.
Since Cypher [13] showed that there is no constant time
algorithm using comparison primitives (e.g., test&set and
compare&swap) and read/write, a non-comparison primitive
is needed to implement an algorithm with the matching up-
per bound. An open question is whether such an algorithm is
obtainable using only one non-comparison primitive such as
fetch&store in addition to read/write.

The algorithm satisfies lockout-freedom and bounded by-
pass. However, it does not satisfy the first-come-first-served
(FCFS) property that if process i performs a step in its region
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T before process j, then j does not enter its region C before i.
Hence, the tight bound for the FCFS mutual exclusion problem
remains to be solved. The tight bound must be either three or
four, because the MCS lock [23] satisfies the FCFS property
and its time complexity is four, and our lower bound of three
also holds for the problem.

In this paper, we focus only on DSM systems. The lower
bound proof herein is not applicable to CC systems. A problem
left open is what exact lower bounds are obtainable for CC
systems.
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