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Comparison of the Performance of Linear Multivariate
Analysis Methods for Normal and Dyplasia Tissues
Differentiation Using Autofluorescence Spectroscopy

Shou Chia Chu, Tzu-Chien Ryan Hsiao, Jen K. Lin, Chih-Yu Wang, and Huihua Kenny Chiang*, Member, IEEE

Abstract—We compared the performance of three widely used
linear multivariate methods for autofluorescence spectroscopic tis-
sues differentiation. Principal component analysis (PCA), partial
least squares (PLS), and multivariate linear regression (MVLR)
were compared for differentiating at normal, tubular adenoma/ep-
ithelial dysplasia and cancer in colorectal and oral tissues. The
methods’ performances were evaluated by cross-validation anal-
ysis. The group-averaged predictive diagnostic accuracies were
85% (PCA), 90% (PLS), and 89% (MVLR) for colorectal tissues;
89% (PCA), 90% (PLS), and 90% (MVLR) for oral tissues. This
study found that both PLS and MVLR achieved higher diagnostic
results than did PCA.

Index Terms—Colorectal tissue, light-induced autofluorescence,
multivariate linear regression, oral tissue, partial least squares,
principal component analysis.

I. INTRODUCTION

IGHT-INDUCED autofluorescence (LIAF) measurement
Lis an optical technique that is based on the principle
that intrinsic tissue fluorophores absorb ultraviolet light and
fluoresce at longer wavelengths. Previous researchers have
shown that low-power light radiation is capable of inducing
autofluorescence from tissues without causing damage, and
which can be implemented in real time during a clinical ex-
amination [1]. In general, the different stages of pathological
development of tissue may influence the composition of in-
trinsic tissue fluorophores and lead to changes in the LIAF
spectra. Presently, many various types of LIAF measurement
systems have been developed by researchers for identifying
different stages of the pathological development of a number
of surface cancers, including oral cancer [2], nasopharyngeal
carcinoma [3] esophageal carcinogenesis [4] gastrointestinal
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cancer [5], colorectal neoplasms [6], skin tumors [7], and
cervical precancer [8].

Human tissues contain intrinsic fluorophores, such as col-
lagen, nicotinamide adenine dinucleotide (NADH), and flavin
adenine dinucleotide (FAD). The fluorescence spectra of these
intrinsic tissue fluorophores are broadband and overlapping with
each other. In addition, the measured fluorescence spectra can
be affected by scattering and absorption effects while the flu-
orescence propagates through the tissue. Therefore, differenti-
ating among the different stages of cancerous tissue develop-
ment on the basis of autofluorescence spectra is a challenging
research objective. Many researchers utilize three multivariate
autofluorescence spectroscopic methods—principal component
analysis (PCA), partial least squares (PLS), and multivariate
linear regression (MVLR)—for the differentiation of different
developmental stages of biologic tissue.

PCA is a widely used multivariate spectroscopic method [3],
[9]-[11]. By using the singular value decomposition method,
PCA decomposes the entire fluorescence spectra into a linear set
of eigenvalues and corresponding eigenvectors. Ramanujam et
al. [10], [11] adopted the PCA method for differentiating human
squamous intraepithelial lesions (SILs) from normal squamous
epithelia and inflammation tissues, and also for discriminating
high-grade SILs, non-high-grade SILs, and non-SILs of cervix
tissue. Chang et al. [3] compared the performances of PCA,
two-wavelengths analysis, and three-wavelengths analysis for
classifying the autofluorescence spectra of nasopharyngeal car-
cinomas. Their results showed that PCA could achieve a higher
diagnostic accuracy for the detection of nasopharyngeal carci-
noma because it takes advantage of the diagnostic information
carried across the entire fluorescence spectra.

PLS is another widely used multivariate spectroscopic
method [2], [9], [12]-[14]. The PLS method, which is based
on factor analysis, describes the linear relationship between
the multivariate data set and the desired output variables. This
method extracts a set of factors that account for most variance
of the measured spectra, and thus the related information of
different stages of cancer tissue development can be extracted
from the multivariate data set by using fewer variables. Wang
and Chiang [2], [13], [14] applied the PLS method in the LIAF
spectroscopic analysis of oral squamous cell carcinoma for
discrimination of different stages of cancer tissue development.

O’Brien et al. [15] proposed the use of MVLR for developing
a spectral classification algorithm for fluorescence-guided laser
angioplasty. Their results indicated that this method classi-
fied atherosclerotic and normal aorta with an 89% accuracy.
Schomacker et al. [16] successfully implemented MVLR for
identifying the different stages of pathological development
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of colorectal tissue. The MVLR method includes two main
steps: 1) linear decomposition of each fluorescence spectrum
through the fluorescence spectra of each of the intrinsic tissue
fluorophores; 2) multivariate linear regression of the coding
values through use of the factor scores of each of the intrinsic
tissue fluorophores. Their results demonstrated that the linear
combination of the spectra of intrinsic tissue fluorophores
(collagen, NADH, and FAD) and the absorption spectrum of
hemoglobin provided the physical composition of the mea-
sured fluorescence spectra of different stages of pathological
development of colorectal tissue.

PLS, PCA, and artificial neural network neural network
(ANN) algorithms have been commonly employed in multi-
variate spectroscopic analysis. The ANN technique has several
variations in algorithm, such as the widely used back propaga-
tion network (BPN) algorithm. A previous study by Hsiao and
Chiang et al. have shown that the PLS, PCA, and BPN algo-
rithms are all based on a common three-layered computation
architecture, which is composed of an input layer, a hidden
layer, and an output layer [12]. These layers are associated with
each other by connecting weights. All these algorithms can
reach reasonable spectrum analysis accuracy in general cases.
However, PLS and PCA can obtain a global minimum result,
while BPN often converges to a local minimum result [12].

Although PCA, PLS, and MVLR have yielded results with
promising sensitivity and specificity for cancer tissue classifi-
cation, these methods are quite different in mathematical and
physical features. These methods also differ in their discrimi-
nate analytic ability in the multivariate spectroscopic analysis.
Eker et al. [17] compared the PCA and PLS methods for laryn-
geal fluorescence spectroscopic analysis. Their results showed
that PLS performed as well as PCA. O’Brien et al. [1] com-
pared the MVLR and PCA methods for fluorescence-guided
laser angioplasty and concluded that PCA emphasized a few dis-
tinct spectral features and enabled more accurate classification
than MVLR. Since these methods have been widely used in the
classification of cancerous tissues, a comparison of their perfor-
mances and discriminate abilities is very useful for providing
essential information about the advantages of each methods for
other cancer tissue diagnosis.

In this study, the main focus is to compare the respective
performances of the above-mentioned three linear multivariate
spectroscopic methods when used in the diagnosis of different
stages of pathological development of colorectal and oral tis-
sues. To achieve this objective, the first step is to obtain the flu-
orescence spectra of three samples of colorectal and oral tissues
in three different pathological states: normal state, tubular ade-
noma/epithelial dysplasia state, and cancerous state; and then a
three-layered multivariate architecture is adopted for the anal-
ysis of the data from the fluorescence spectra. The number of
hidden nodes was set according to the number of principal com-
ponents (PCs), and which was determined based on the min-
imum prediction error sum of squares (PRESS) from cross-val-
idation (CV) analysis.

II. MATERIAL AND METHODS
Subjects: A fluorescence spectrometer (Aminco-Bowman
Series II, Thermo Spectronic, Waltham, MA) with a 150-W
Xenon lamp was used for tissue LIAF measurements. A total of
70 colorectal tissue specimens were provided from the Veterans
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Fig. 1. A schematic diagram. Showing the internal structure of the LIAF mea-
surement system.

General Hospital, Taipei, Taiwan, and 96 oral tissue specimens
were got from forty-eight male Syrian hamsters. The surgical
tissues were stored in a —70 °C refrigerator immediately, and
were stored until the time of fluorescent measurement. There
were 28 normal, 20 tubular adenoma, and 22 cancer tissues in
colorectal tissues; 48 normal, 30 epithelial dysplasia, and 18
cancer in oral tissues.

In this study, all tissues were frozen in 5 min immediately
after surgical operation. A preliminary experiment that was
conducted to monitor the autofluorescence alterations between
the fresh and frozen samples showed less than 3% change in
the intensities between two kinds of samples. According to
Schomaker et al. the fluorescence intensity of NADH decays
with a time constant of 118 min after resection [16]. Since the
tissues were frozen within 5 min after surgical operation, the
time that elapsed between the resection and the freezing of
samples might not affect the data significantly.

All specimens (5 X 5 mm) were set on a metal plate and
mounted on a custom-designed sample holder so that a spec-
imen’s surface was facing the excitation beam at a 37° incident
angle. The fluorescence was collected at 90° normal to the ex-
citation light, as Fig. 1. Such an arrangement can effectively re-
duce the collection of the excitation light reflected from the sur-
face of the specimen [2]. The emission spectrum was measured
from 350 to 580 nm with the excitation wavelength set at 330 £
5 nm [with a 10-nm full-width at half-maximum (FWHM)]. All
measured spectra were area-normalized; the original fluores-
cence spectrum was divided by the integrated area under the en-
tire spectrum. After the LIAF measurement, the specimens were
embedded in 10% neutral formalin and sent to the pathology de-
partment for diagnosis. Two pathologists, who were blinded to
the fluorescence spectra results, reviewed the specimens. The
pathology report for each specimen was recorded and used for
further analysis.

Three-Layered Multivariate Architecture: In the analysis of
spectral data, a three-layered multivariate architecture, which
is composed of an input layer, a hidden layer, and an output
layer, is adopted for comparing the respective physical features
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Fig. 2. The three-layered multivariate architecture of the PCA, PLS, and
MVLR methods in multivariate spectroscopic analysis.

Input layer

of the three linear multivariate spectroscopic methods—PCA,
PLS, and MVLR (Fig. 2), i.e.,

ana = Xnmmpmxa
Ynzl = VnzaQaml (1)

where the matrices X,z , Viza, and Y,,,1 represent the vari-
ables from the input layer, the hidden layer, and the output
layer, respectively; the matrix P,,,, represents the connective
weights between the input layer and the hidden layer; and the
matrix (Q,,1 represents the connective weights between the
hidden layer and the output layer. In multivariate spectroscopic
analysis, the input-layer variables can be treated as the fluores-
cence spectra, i.e.,

i1z L2 L1im
I21 X292 e Tom

Xozm = | . : ) (2)
Tn1 Tnp2 Tnm

where the element z,, denotes the intensity of fluores-
cence spectra of the n** sample at the m'” wavelength. The
output-layer variables can be coded in predefined values for
representing the different stages of pathological development
of tissue, for example “2” for normal tissue, “1” for tubular ade-
noma/epithelial dysplasia tissue, and “0” for cancerous tissue).
The development stages were determined by the pathology of
each specimen.

PCA Method: PCA is a widely used multivariate spec-
troscopic analytic tool. This method transforms the original
variables of the fluorescence spectra into a smaller set of linear
combinations of PCs that account for most of the variance of the
original data set. By the PCA method, the first step is to decom-
pose the fluorescence spectra by using the singular value de-
composition [18], i.e., Xpzm = OnmSamPg;m = VnmPg;m,
where the superscript T denotes the transposition of the matrix,
a represents the number of eigenvalues, and ¢ < min(n,m).
The matrices ST, Suzq and P,,.. are the eigenvalues and
corresponding eigenvectors of the square covariance ma-
trix X},:anxm- The diagonal matrix S, is the singular
value matrix of X,,,, with positive or zero elements, i.e.,
si; = 0if i # j. The matrices Opzq = [01,032,...,0,]
and Pnzo = [P1,Ps,...,P,] are column-orthogonal ma-

trices, in which the columns represent unit vectors, i.e.,
OZTOJ = PiTPj = 0ifq ;é J, and OzTOL = PLTPL = 1if

2267

1 = j. In addition, the matrix F,,,, can be treated as the PCs
of matrix X,,zm.-

In the three-layered multivariate architecture, the matrix
P,.q represents the connective weights between the input
layer and the hidden layer. The factor scores of PCs, V., =
[V1> Vo, ..., Va] = OnzaSaza= (Onwasazapgwm)ljmma =
XnzmPmaza, can be calculated and denoted as the hidden-layer
variables. The connective weights (Q,,1 between the hidden
layer and the output layer can be determined from the matrices
Vhza (hidden layer) and Y1 (output layer) by using the
least squares method. Hence, the PCA method can reduce the
fluorescence spectra into the factor scores of PCs as well as
constructs the connective weights between the factor scores of
PCs and the stages of pathological development of tissue.

PLS Method: PLS is the other commonly employed method
of multivariate spectroscopic analysis, which describes the max-
imum variance between the fluorescence spectra X, .., and the
known diagnostic results Y,,,1. The connective weights, P,,.q
and (.1, and the factor scores, V,,.4, can be derived from the
matrices X, .m and Y, .1 based on the following equations:

anm = anapg?;m +FE

=ViPl + VoPf + -+ VoPl 4 Epom
Yn.rl = Vn.raQa:rl +F
=ViQ1 +VaQ2+ -+ VoQu + Frz1 3)

where a represents the number of PLS regression factors, and
the matrices F,,.,, and F) .1 represent the residual matrices
after the extraction of PLS regression factors. The structure of
the PLS method can also be represented as a three-layered mul-
tivariate architecture. The matrix P,,,, represents the connec-
tive weights between the input layer and the hidden layer, and
the matrix @,,1 represents the connective weights between the
hidden layer and the output layer. The factor scores, V,,,, =
XnzmPmza, can be denoted as the hidden-layer variables, and
then a is the number of hidden nodes [12].
The PLS procedure includes the following steps:

1) setting the matrix Y,,,1 as the temporal scores matrix V;;

2) computing the values of the connective weights Pl
based on the matrices X,,;,, and Y,,,1 by using the least
squares method with the vector scaled to length 1;

3) estimating the values of the scores matrix V; with the use
of the matrices X,,,., and P;;

4) computing the values of the loading weight @; based
on the matrices V; and Y,,,1 by using the least squares
method;

5) determining the values of the residual matrices F,, .,
and F,,,1 after the steps (a)—(d) have been repetitively
executed for a number of times equal to a, where

i=1 i=1

The PLS factor scores V; are determined for describing the
most variance of the multivariate fluorescence spectra X,,;,, as
well as by correlating the known diagnostic results Y, ..1. There-
fore, the relationship between the matrices X, .., and Y,,,1 can
be represented by the connective weights PT  and Q,,; and

arm
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Fig. 3. The fluorescence spectra of collagen, NADH, and FAD fluorophores,
and part of the reflection spectra of excitation light, and the spectra of residue
(including hemoglobin).

the factor scores V,,.., by making || E,,.r || and || Frz1]| as small
as possible (the || || symbol denotes Euclidean normalization).

Magnitude of PLS Factor Scores: By applying the eigen-
values/eigenvectors concept of the PCA method, the magnitude
of PLS factor scores can be derived. Based on the PLS analysis,
the factor scores V., can be rewritten as follows:

Vnza = [V17I/27 .. '7Va]

" Va
VAl Vel ([ Vall
val 0o ... 0
o vall ... 0
: . . (4)
0 0 [IVall

where the scalar ||V, || and vector V,,/||V,|| are the nth magni-
tude and unit vector of the factor scores in the PLS method:
IVall = /V.IV,. Therefore, (3) and (4) can be rewritten as
Xpom = OnmSamPfxm. Because the matrices O,,;, and
P,,zq are the column-orthogonal matrices, the square covari-
ance matrix V.5, Viza = ST, Saza can be also treated as the
eigenvalues of the square covariance matrix X7, . X, in the
PLS method.

MVLR Method: The MVLR method includes two main
steps: 1) linear decomposition of each fluorescence spectrum
through use of the fluorescence spectra of each of the intrinsic
tissue fluorophores (Fig. 3); 22) multivariate linear regression
of the coding values by using the factor scores of each of the
intrinsic tissue fluorophores. In the multivariate spectroscopic
analysis, the measured fluorescence spectra X,,;,, consist of
a linear combination of the following elements: 1) part of the
excitation light source (F) of reflected and scattered light
from the front surface; 2) the autofluorescence spectra of the
intrinsic tissue fluorophores of tissues. Collagen (C'), NADH
(N), and FAD (F') are the main intrinsic tissue fluorophores.
The mathematical representation of the linear combination is

A

X, =eE+c,C+n;N+ f;F 5
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where e;, ¢;, n;, and f; represent the factor scores of the spectral
vector F, C, N, and F when || X; — X; || is as small as possible.
Because all spectra are normalized, these factor scores also rep-
resent the fractional percentages of their respective spectra. The
difference between “X” and “X,;” was minimized by fitting
“X” and the measurement spectrum “Xi”, over 350-360 nm
(spectral vector F), over 370 to 380 nm (spectral vector C),
over 470-480 nm (spectral vector N), and over 550-560 nm
(spectral vector F), but neglecting the range from 380—470 nm,
where the hemoglobin absorption range is and a good fit is
not expected. To quantify the hemoglobin re-absorption effect,
hi = 1 — (X;(A = 425 nm))/(X;(A = 425 nm)), was de-
fined as the factor score of the hemoglobin absorption factor at
425 nm wavelength [16].

In the three-layered multivariate architecture, the factor
scores, €, Ck, Nk, fr, and hy, represent the hidden-layer vari-
ables. The connective weights between the hidden and output
layers, (.1, are determined from the factor scores e;, ¢;, n;,
fi» hi (hidden layer), and Y,,,1 (output layer) by using the least
squares method. Hence, the MVLR method decomposes each
spectrum to obtain the scores of the spectral vector E, C, N,
F', and H and constructs the connective weights of these scores
and the stages of pathological development of tissue.

CV Technique: To evaluate effectively the diagnostic perfor-
mances of PCA, PLS, and MVLR in differentiating normal,
tubular adenoma (epithelial dysplasia), and cancerous tissues,
a CV technique is adopted. In this study, a leave-one-out CV
method was used. Each sample of the tissues is divided into n
groups with each group consisting of only one specimen. One
group was kept apart for prediction purposes, and all the other
groups were used for calibration. The analytical model was then
established by using the calibration set, and the prediction re-
sult was obtained from the prediction set. Next, the other group
was used as the prediction set, and the steps were repeated. The
procedure was continued until all n groups had been used for
prediction. This leave-one-out CV method yielded a reasonable
estimate of the predictive ability of the statistical algorithms.

III. RESULTS AND DISCUSSION

Measured Spectra: Fig. 4 illustrates the averaged spectra of
the three different stages of pathological development of col-
orectal tissue; the error bar represents one standard deviation.
The normalized fluorescence spectra (Y axis) were plotted
against the emission wavelength (X axis). The position of
sample and range of illuminate often affect intensity of spectra
so normalizing the fluorescence spectrum removes the absolute
intensity information. Therefore, the analysis of normalized
fluorescence spectra emphasizes information on the spectral
shape instead of the intensity of the fluorescence spectra. One
tail-like decay spectrum (350-370 nm) and two peaks near
385 and 470 nm appear in Fig. 3. The tail-like decay spectrum
represents part of the spectrum of the excitation light source
reflected and/or scattered from the surface of the tissue, and
the first peak (near 385 nm) decreases whereas the second peak
(near 470 nm) increases with the different stages of pathological
development of tissue (normal, tubular adenoma, and cancer).
In general, these different stages may influence the composition
of intrinsic tissue fluorophores and lead to changes in the
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Fig. 4. The three normalized colorectal fluorescence spectra, with one standard
deviation. The symbol “+s” denotes the selective range of the MVLR method:
350-360 nm for component E, 370-380 nm for component C', and 470-580 nm
for components N and F'.

fluorescence spectra. The change of two peaks may be due to
the relative decrease in collagen and the increase in NADH
with the different stages, from normal state to cancerous state.
The fluorescence spectra of three types of intrinsic tissue
fluorophores—collagen, NADH, and FAD—were measured
by using the same fluorescence spectrometer. All samples
were commercial grade (collagen: Taiwan Salt Biotech. Fac-
tory, Tainan, Taiwan; NADH and FAD: Sigma Chemical Co.,
St. Louis, MO). To simulate the tail-like spectrum of the excita-
tion light reflected and/or scattered from the tissue surface, the
reflected light from the surface of BaSO4 was measured while
it was being excited at 330 £ 5 nm (with a 10-nm FWHM).
Fig. 4 plots the normalized fluorescence spectra of these fluo-
rophores and the tail-like spectrum of the excitation light. The
peaks of the fluorescence spectra of collagen, NADH, and FAD
were near 395, 455, and 545 nm, respectively. The residual
spectrum was obtained from the averaged residual spectrum
between each of the measured spectra (X;) and a linear spectral
combination of intrinsic tissue fluorophores (X nam)-
Comparing the PCs of PCA and PLS Methods: In the
three-layered multivariate architecture, the connective weights
between the input and hidden layers are the PCs of the
input-layer variables. Because the PCA method employs only
the input-layer variables for the mathematical derivation of
PCs and the PLS method employs the input- and output-layer
variables for the mathematical derivation of PCs, it is nec-
essary to compare the statistical meaning of PCs in both the
PCA and PLS methods. Fig. 5 illustrates the four leading PCs
of 70 colorectal through use of the PCA and PLS methods.
In colorectal tissue, the correlation coefficient (Pearson’s r)
[19] of the first PCs between the PCA and PLS methods is
0.998. Therefore, both of the first PCs of the PCA and PLS
methods have a significant correlation. This statistical result
indicates that the first PCs of the PCA method also correlate
the relationship between the input- and output-layer variables.
In addition, the mathematical derivation of the PCs of the PCA
method employs only the input-layer variables; and hence, it
can be concluded that the input-layer variables (350-580 nm
range) correlated to the output-layer variables. Therefore, the
normalized LIAF spectra correlated to the different stages
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Fig. 5. The four leading principal components of the colorectal fluorescence
spectra as determined by the (a) PCA and (b) PLS methods.

of pathological development of tissue. The normalized LIAF
spectra from 350-580 nm, which is excited by light source, are
the major representative spectra of the colorectal tissues.

From the first PCs of the LIAF spectra of the colorectal tissue,
it can be observed that a waveform segment of positive intensity
extends within the range from 370 to 400 nm indicative of a rel-
ative decrease in collagen with cancer development, and a wave-
form segment of negative intensity extends within the range
from 450 to 500 nm indicative of a relative increase in NADH
with cancer development. Hence, this result suggests that the
first PCs in colorectal tissue captured the difference in the spec-
tral data between the regions of 370-400 nm and 450-500 nm
and correspond to the autofluorescence range of two intrinsic
tissue fluorophores, collagen, and NADH, respectively.

Comparing the Factor Scores of PCA and PLS Methods:
In the three-layered multivariate architecture, the hidden-layer
variables are the factor scores of PCs. Given that Ramanujam
et al. [10] showed that eigenvalues could be used to describe
most of the variance of the original data set in the PCA method.
Wang and Chiang [2] showed that the larger factor scores
represented more information in the PLS method. It is worth
noting that the factor scores of PCs can be used to compare the
calibration abilities of the PCA and PLS methods. Therefore,
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Fig. 6. Summation of the four leading total variance proportion in the colorectal
fluorescence spectra, as determined by the PCA and PLS methods.

to compare the respective calibration abilities of PCA and PLS,
the following total variance proportion (TVP) is adopted:

2

TVP(i) = nsi for the PCA metod
52
=
and
112
TVP() = nHV—zH for the PLS method.
2 IVill?
7=1

Fig. 6 shows the four leading TVPs of colorectal fluorescence
spectra for each of the two methods. The summation in col-
orectal spectra of TVP(1) — TVP(4) of the PCA method is
over 96%; whereas the summation in colorectal is over 99% for
the PLS method and the PCA method. This result indicates that
most of the variance of the fluorescence spectra can be described
by using the four leading PCs. In addition, the 94.9% TVP(1)
of the PLS method is much larger than the 69.4% TVP(1) of
the PCA method in colorectal tissue.

In summary, the PLS method is likely capable of obtaining
more variance of the original data set because this method links
the input- and output-layer variables for the calculation of the
hidden-layer variables, whereas PCA links only the input layer
variables for the calculation of the hidden-layer variables.

Optimal Number of Principle Components(PCs) Using PCA
and PLS Methods: The PRESS value of the PCA and PLS
methods in CV analysis is calculated to determine the optimal
number of hidden nodes, i.e.,

n n-—1

PRESS = Z Z(yz’j - 9ij)°

=1 j=1

where y;; and 7;; denote the desired and predicted values on the
jth spectrum in the i*"» CV analysis process. Fig. 7 shows that
the location of the lowest PRESS value corresponds to four PCs
in colorectal tissue in both the PCA and the PLS methods.
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Fig. 7. The PRESS values of the PCA and PLS methods of analyzing the
colorectal fluorescence spectra, according to CV analysis.

TABLE I
COLORECTAL TISSUE SPECTROSCOPIC DIAGNOSTIC USING CV ANALYSIS

Method Prediction Pathology Accuracy
C P N subgroup group average

C 2004 0 91%

PCA P 2 15 3  75% 85%
N 0 1 25 89%
C 19 1 0 86%

PLS P 3 18 2 90% 89%
N 0 1 26 93%
C 19 1 0 86%

MVLR P 317 1 85% 89%
N 0 2 27 96%

C=cancer; P=tubular adenoma; and N=normal.

In the three-layered multivariate architecture, the lowest
PRESS value indicates the optimal number of hidden nodes
[12], [20]. The choice of an insufficient number of hidden
nodes can lead to a higher PRESS value in the CV calculation
process. Likewise, the choice of a greater-than-needed number
of hidden nodes will lead to an overfit and result in a higher
PRESS value. Hence, Fig. 7 indicates that the leading PCs
in tissues of the PCA and PLS methods are the main PCs of
fluorescence spectra in the research.

Diagnostic Accuracy: Table I illustrates the diagnostic accu-
racy of the spectroscopic analysis of colorectal tissue by using
the PCA, PLS, and MVLR methods in CV analysis. The PCA
method achieved an accuracy of 91% for cancerous tissues, 75%
for tubular adenoma tissues, and 89% for normal tissues; the
PLS method achieved 86%, 90%, and 93%; and the MVLR
method achieved 86%, 85%, and 96%. Based on these facts, it
can be concluded that PLS and MVLR obtained better group-av-
eraged predictive diagnostic accuracy than PCA. In addition,
notably both the PLS and MVLR methods achieved better di-
agnostic results in the tubular adenoma group (90% and 85%)
than the PCA method.

The PCA method obtained a group-averaged predictive diag-
nostic accuracy in colorectal tissue, not too much worse than
the PLS and MVLR methods, because the measured fluores-
cence spectra, 350-580 nm, which is excited by light source, are
the major representative spectra of the tissues. The PLS method
is a better method than the MVLR method based on the fact
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Fig. 8(a). The three normalized oral fluorescence spectra, with one standard
deviation.

that the PLS method requires no prior knowledge of the fluores-
cence spectra of intrinsic tissue fluorophores and is unnecessary
to select each of the fluorophores’ spectral range for the spec-
troscopic analysis.

Implementation on Oral Tissue Study: In order to further
evaluate the respective performances of the three methods-PCA,
PLS, and MVLR, these methods were also implemented on pre-
vious oral tissue study for comparison.

Fig. 8(a) illustrates normalized autofluorescence spectra
of different stages of pathological development of oral
tissue.—normal, epithelial dysplasia, and cancer tissue. In
general, the fluorescence spectra characteristics of oral tissues
are very similar to those of colon tissue. In normal and epithe-
lial dysplasia tissues, the collagen peak is higher than NADH
peak. In cancer tissues, the collagen peak is lower than the
NADH peak. Collagen peak intensity decreases and NADH
peak increases with the development of cancerous tissue. It can
be observed that the hemoglobin absorption peak appears at
420 £ 5 nm.

Fig. 8(b) shows the contribution of factor score [TVP(1)
~(4)] of the PLS and PCA methods. The respective TVP(1)
values of the PLS and PCA methods in oral tissue are 92%
and 90%; the summation the four leading TVPs of the two
methods in oral tissue is over 99%. This result indicates that
most important variance of the fluorescence spectra can be well
described by the four leading PCs in PCA and PLS methods.

The PRESS values of the PCA and PLS methods analyze the
oral fluorescence spectra. Fig. 8(c) shows that the lowest PRESS
can be achieved by using eight PCs in PLS and ten PCs in PCA.

The data shown in Table II can be compared to evaluate the
diagnostic performance of the PCA, PLS and MVLR methods,
which shows that the group-averaged CV accuracy is 89% for
PCA, 90% for PLS, and 90% for MVLR. Although the overall
performance of these three methods were very close to each
other; PLS achieved the best diagnostic results for normal tis-
sues stages; MVLR achieved better diagnostic results for cancer
and epithelia dysplasia than PLS and PCA methods did. It is
worth knowing that PCA provided best diagnostic accuracy for
cancer (c) diagnosis. However, in clinics, the diagnostic accu-
racy for precancer/early cancer tissues (P) is more important
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Fig. 8(b). Summation of the four leading total variance proportion in the oral
fluorescence spectra, as determined by the PCA and PLS methods.
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Fig. 8(c). The PRESS values of the PCA and PLS methods of analyzing the
oral fluorescence spectra based on CV analysis.

TABLE II
ORAL TISSUE SPECTROSCOPIC DIAGNOSTIC USING CV ANALYSIS
Method Prediction Pathology Accuracy
C P N subgroup group average
C 18 6 1 100%
PCA P 0 24 6 80% 89%
N 0 0 42 88%
C 17 4 1 94%
PLS P 1 26 4 87% 90%
N 0 0 43 90%
C 18 3 1 100%
MVLR P 0 27 9 90% 90%
N 0 0 38 79%

C=cancer; P=epithelial dysplasia; and N=normal.

than for cancer tissues because cancer tissues are more easily
to be recognized under traditional examinations.

IV. CONCLUSIONS

In this study, three widely used linear multivariate aut-
ofluorescence spectroscopic methods—PCA, PLS, and
MVLR—were examined and compared for evaluation of
their utilization values in cancer diagnosis. By the multivariate
spectroscopic analysis, the following facts can be concluded:
the connective weights between the input and hidden layers are
equivalent to the PCs of fluorescence spectra; the hidden-layer
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variables are equivalent to the factor scores of PCs; and the
connective weights between the hidden and output layers
are equivalent to the connective weights between the factor
scores and the coding values of different stages of pathological
development of tissue.

The diagnostic accuracy of these three methods were com-
pared for the fluorescence spectroscopic analysis of colorectal
and oral samples. The results obtained from use of these three
widely used linear multivariate analysis methods showed great
promise for fluorescence spectroscopic analysis in the differ-
entiation of biological tissues between different stages of col-
orectal and oral carcinogenic development.

Both PLS and MVLR methods reached a high accuracy per-
formed better in differentiating the normal and dyplasia group
than did PCA; this differentiation capability is important for
early cancer detection. In addition, from comparisons of the cal-
ibration abilities of the PCA and PLS methods, it can be con-
cluded that PLS, which benefits from the cross-correlation of the
input-layer and output-layer variables, is capable of obtaining a
larger variance than could PCA. Therefore, a better overall di-
agnostic accuracy could be reached by PLS.
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