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Profiles of Random Trees: Limit Theorems for Random
Recursive Trees and Binary Search Trees1

Michael Fuchs,2 Hsien-Kuei Hwang,3 and Ralph Neininger4

Abstract. We prove convergence in distribution for the profile (the number of nodes at each level), normalized
by its mean, of random recursive trees when the limit ratio α of the level and the logarithm of tree size lies
in [0, e). Convergence of all moments is shown to hold only for α ∈ [0, 1] (with only convergence of finite
moments when α ∈ (1, e)). When the limit ratio is 0 or 1 for which the limit laws are both constant, we prove
asymptotic normality for α = 0 and a “quicksort type” limit law for α = 1, the latter case having additionally
a small range where there is no fixed limit law. Our tools are based on the contraction method and method of
moments. Similar phenomena also hold for other classes of trees; we apply our tools to binary search trees and
give a complete characterization of the profile. The profiles of these random trees represent concrete examples
for which the range of convergence in distribution differs from that of convergence of all moments.

Key Words. Random recursive tree, Random binary search tree, Profile of trees, Probabilistic analysis of
algorithms, Weak convergence.

1. Introduction. The profile or height profile of a tree is the sequence of numbers
whose kth element enumerates the number of nodes at distance k from the root of the tree
(or the number of descendants in the kth generation in branching process terms). Profiles
of trees are fine shape characteristics encountered in diverse problems such as breadth-
first search, data compression algorithms (Jacquet et al., 2001), random generation of
trees (Devroye and Robson, 1995), and the levelwise analysis of quicksort (Chern and
Hwang, 2001b; Evans and Dunbar, 1982). In addition to their interest in applications and
connections to many other shape parameters, we show, through recursive trees and binary
search trees, that profiles of random trees having roughly logarithmic height are a rich
source of many intriguing phenomena. The high concentration of nodes at certain (log)
levels results in the asymptotic bimodality for the variance, as already demonstrated in
Drmota and Hwang (2005a); our purpose of this paper is to unveil and clarify the diverse
phenomena exhibited by the limit distributions of the profiles of random recursive trees
and binary search trees. The tools we use, as well as the results we derive, are of some
generality.
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Recursive trees. Recursive trees have been introduced as simple probability models
for system generation (Na and Rapoport, 1970), spread of contamination of organisms
(Meir and Moon, 1974), pyramid scheme (Gastwirth and Bhattacharya, 1984; Smythe
and Mahmoud, 1995), stemma construction of philology (Najock and Heyde, 1982),
Internet interface map (Janic et al., 2002), and stochastic growth of networks (Chan
et al., 2003). They are related to some Internet models (van Mieghem et al., 2001;
van der Hofstad et al., 2002; Devroye et al., 2002) and some physical models (Tetzlaff,
2002); they also appeared in Hopf algebra under the name “heap-ordered trees”; see
Grossman and Larson (1989). The bijection between recursive trees and binary search
trees not only makes the former a flexible representation of the latter but also provides
a rich direction for further extensions; see for example Mahmoud and Smythe (1995).

A simple way of constructing a random recursive tree of n nodes is as follows. One
starts from a root node with the label 1; at stage i (i = 2, . . . , n) a new node with label i
is attached uniformly at random to one of the previous nodes (1, . . . , i −1). The process
stops after node n is inserted. By construction, the labels of the nodes along any path
from the root to a node form an increasing sequence; see Figure 2 for a recursive tree
of ten nodes. For a survey of probabilistic properties of recursive trees, see Smythe and
Mahmoud (1995).

Known results for the profile of recursive trees. Let Xn,k denote the number of nodes
at level k in a random recursive tree of n nodes, where Xn,0 = 1 (the root) for n ≥ 1.
Then Xn,k satisfies (see van der Hofstad et al., 2002)

Xn,k
d= X In ,k−1 + X∗n−In ,k,(1)

for n, k ≥ 1 with Xn,0 = 1− δn,0 (δn,0 being Kronecker’s symbol), where (Xn,k), (X∗n,k)

and (In) are independent, Xn,k
d= X∗n,k , and In is uniformly distributed over {1, . . . , n−1}.

Meir and Moon (1978) showed (implicitly) that

µn,k := E(Xn,k) = s(n, k + 1)

(n − 1)!
(0 ≤ k < n),(2)

where s(n, k) denotes the unsigned Stirling numbers of the first kind; see also Moon
(1974) and Dondajewski and Szymański (1982). By the approximations given in Hwang
(1995), we then have

µn,k = λk
n

�(1+ αn,k)k!
(1+ O(λ−1

n )),(3)

uniformly for 1 ≤ k ≤ Kλn , for any K > 1, where, here and throughout this paper,

λn := max{log n, 1}, αn,k := k/λn,

and � denotes the Gamma function. This approximation implies, in particular, a local
limit theorem for the depth (distance of a random node to the root); see Devroye (1998),
Szymański (1990), Mahmoud (1991).

The second moment is also implicit in Meir and Moon (1978):

E(X2
n,k) =

∑
0≤ j≤k

(
2 j

j

)
s(n, k + j + 1)

(n − 1)!
;
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see also van der Hofstad et al. (2002). Precise asymptotic approximations for the variance
V(Xn,k) were derived in Drmota and Hwang (2005a) for all ranges of k. In particular,
the variance is asymptotically of the same order as µ2

n,k when α ∈ (0, 2) except k ∼ λn

(where the profile variance exhibits a bimodal behavior).

Limit distribution when 0 ≤ α < e. From the asymptotic estimate (3), we have

logµn,k

λn
→ α − α logα,

where here and throughout this paper k = k(n) and α := limn→∞ k(n)/λn . Thus
µn,k →∞ when α < e. Note that the expected height (length of the longest path from
the root) of random recursive trees is asymptotic to eλn; see Devroye (1987) or Pittel
(1994).

Define a class of random variables X (α) by the fixed-point equation

X (α)
d= αUαX (α)+ (1−U )αX (α)∗,(4)

with E(X (α)) = 1, where X (α), X (α)∗, and U are independent, X (α)∗ d= X (α), and
U is uniformly distributed in the unit interval; see Proposition 1 for the existence and
properties of X (α). Define X (0) = 1.

THEOREM 1.

(i) If 0 ≤ α < e, then
Xn,k

µn,k

d−→ X (α),(5)

where
d−→ denotes convergence in distribution.

(ii) If 0 ≤ α < m1/(m−1), where m ≥ 2, then Xn,k/µn,k converges to X (α) with
convergence of the first m moments but not the (m + 1)st moment.

In particular, convergence of the second moment holds for 0 ≤ α < 2.

COROLLARY 1. If 0 ≤ α < 2, then

V(Xn,k) ∼
(

�(α + 1)2

(1− α/2)�(2α + 1)
− 1

)
µ2

n,k .

Note that the coefficient on the right-hand side becomes zero when α = 0 and α = 1,
and the variance indeed exhibits a bimodal behavior when α = 1; see Figure 1 for a
plot and Drmota and Hwang (2005a) or below for more precise approximations to the
variance.

Since m1/(m−1) ↓ 1, the unit interval is the only range where convergence of all
moments holds.

COROLLARY 2. If 0 ≤ α ≤ 1, then

Xn,k

µn,k

M−→ X (α),(6)
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Fig. 1. A plot of E(Xn,k) (the unimodal curve),V(Xn,k) (the bimodal curve with higher valley), and |E(Xn,k−
µn,k)

3| (right) of the number Xn,k of nodes at level k in random recursive trees of n = 1100 nodes, all
normalized by their maximum values. Note that the valley of |E(X1100,k − µ1100,k)

3| (when normalized by
n3) is deeper than that of V(X1100,k) (normalized by n2); see Corollary 5 for the general description.

where
M−→ denotes convergence of all moments. Convergence of all moments fails for

1 < α < e.

Thus the profile of random recursive trees represents a concrete example for which the
range of convergence in distribution is different from that of convergence of all moments.
We will show that such a property also holds for random binary search trees; it is expected
to hold for other trees like ordered (or plane) recursive trees and m-ary search trees, but
the technicalities are expected to be much more complicated. We focus at this stage on
new phenomena and their proofs, not on generality.

The proof of (5) relies on the contraction method developed in Neininger and Rüschen-
dorf (2004) (see also the survey paper by Rösler and Rüschendorf (2001)), and the mo-
ment convergence Xn,k/µn,k uses the method of moments. Both methods are technically
more involved because we deal with recurrences with two parameters. We will indeed
prove a stronger approximation to (5) by deriving a rate under the Zolotarev metric (see
Zolotarev, 1976).

However, why m1/(m−1)? This is readily seen by the recurrence of the moments
νm(α) := E(X (α)m) of X (α):

νm(α) = 1

m − αm−1

∑
1≤h<m

(
m

h

)
νh(α)νm−h(α)α

h−1(7)

× �(hα + 1)�((m − h)α + 1)

�(mα + 1)
(m ≥ 2),

where ν0(α) = ν1(α) = 1. This recurrence is well defined for νm(α)when α < m1/(m−1).
This explains the special sequence m1/(m−1).

Note that since E(X (α)m) = ∞ for α ≥ m1/(m−1), we have E(Xn,k/µn,k)
m →∞ in

that range.
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A “quicksort-type” limit distribution when α = 1. Since X (1) = 1, we can refine the
limit result (5) for α = 1 as follows.

THEOREM 2.

(i) If k = λn + tn,k , where |tn,k | → ∞ and tn,k = o(λn), then

Xn,k − µn,k

tn,kλ
k−1
n /k!

M−→ X ′(1),(8)

where X ′(1) := (d/dα)X (α)|α=1 satisfies

X ′(1) d= U X ′(1)+ (1−U )X ′(1)∗ +U +U log U + (1−U ) log(1−U ),

with X ′(1), X ′(1)∗, and U independent and X ′(1) d= X ′(1)∗.
(ii) If k = λn + O(1), then the sequence of random variables (Xn,k − µn,k)/

√
V(Xn,k)

does not converge to a fixed law.

Although (8) can also be proved by the contraction method, we prove both results of
the theorem by the method of moments because the proof for the non-convergence part is
readily modified from that for (8); see also Chern et al. (2002) for more examples having
no convergence to fixed limit law. On the other hand, since the distribution of X ′(1) is
uniquely characterized by its moment sequence (see (41)), we have the convergence in
distribution as follows.

COROLLARY 3. If k = λn + tn,k , where |tn,k | → ∞ and tn,k = o(λn), then

Xn,k − µn,k

tn,kλ
k−1
n /k!

d−→ X ′(1).

The same limit law X ′(1) also appeared in the total path length (which is
∑

k k Xn,k)
of recursive trees (see Dobrow and Fill, 1999), or essentially the total left path length of
random binary search trees, and the cost of an in-situ permutation algorithm; see Hwang
and Neininger (2002).

The appearance of the same limit law as the total path length is not a coincidence.
Intuitively, almost all nodes lie at the levels k = λn + O(

√
λn) (since E(Xn,k) � n/

√
λn

by (3)) and it is these nodes that contribute predominantly to the total path length; see
also (9) below for an estimate of the variance. Analytically, a deeper connection between
the profile and the total path length is seen through the level polynomials

∑
k Xn,k zk

(properly normalized) for which we can derive, following Chauvin et al. (2001), an
almost sure convergence to some (complex-valued) limit random variable. From such a
uniform convergence, the profile is quickly linked to the total path length by taking the
derivative of the normalized level polynomial with respect to z and substituting z = 1.
Indeed, limit theorems for weighted path-lengths of the form

∑
k km Xn,k , as well as the

width (maxk Xn,k), can be obtained as by-products. These and finer results on correlations
and expected width are discussed in Drmota and Hwang (2005b).
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Asymptotics of the variance. As a consequence of our convergence of all moments, we
have the following estimate for the variance.

COROLLARY 4. If k = λn + tn,k , where tn,k = o(λn), then the variance of Xn,k satisfies

V(Xn,k) ∼ p2(tn,k)

(
λk−1

n

k!

)2

,(9)

where p2(tn,k) := c2t2
n,k + 2c1tn,k + c0 with

c2 := 2− π
2

6
, c1 := c2(1− γ )− ζ(3)+ 1,(10)

c0 := c2(γ
2 − 2γ + 3)− 2(ζ(3)− 1)(1− γ )− π4

360
.

Here γ denotes Euler’s constant and ζ(3) :=∑j≥1 j−3.

Expression (9) explains the valley for the variance in Figure 1. Note that
V(Xn,k)/µ

2
n,k = O(t2

n,k/λ
2
n) when tn,k = o(λn).

Our proof indeed yields the following extremal orders of |E(Xn,k−µn,k)
m | for m ≥ 2.

COROLLARY 5. The absolute value of the mth central moment satisfies

max
0≤k<n

|E(Xn,k − µn,k)
m | � λ−m

n nm,

min
|k−λn |=O(

√
λn)
|E(Xn,k − µn,k)

m | � λ−3m/2
n nm,

where the maximum is achieved at k = λn ±
√
λn(1 + o(1)) and the minimum at

k = λn + O(1).

More refined results can be derived as in Drmota and Hwang (2005a). For example,
by (40) below, we have

max
0≤k<n

∣∣E(Xn,k − µn,k)
m
∣∣ ∼ |E(X ′(1)m)|e−m/2

(
n√

2πλn

)m

,

for m ≥ 2, where E(X ′(1)m) can be computed recursively; see (41).

Asymptotic normality when α = 0. The profile Xn,k in the remaining range 1 ≤ k =
o(λn)will be shown to be asymptotically normally distributed. It is known (see Bergeron
et al., 1992) that the out-degree of the root Xn,1 satisfies

P(Xn,1 = j) = s(n − 1, j)

(n − 1)!
(1 ≤ j < n);

thus Xn,1 is asymptotically normal with the mean and variance both asymptotic to λn .
Equivalently, Xn,1 is the number of nodes on the rightmost branch (the path starting
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from the root and always going right until reaching an external node) in a random binary
search tree of n − 1 nodes; see the transformation below for more information.

Let �(x) := (2π)−1/2
∫ x
−∞ e−t2/2 dt denote the distribution function of the standard

normal distribution.

THEOREM 3. The distribution of the profile Xn,k satisfies

sup
x

∣∣∣∣∣P
(

Xn,k − λk
n/k!

λ
k−1/2
n /

√
(k − 1)!2 (2k − 1)

< x

)
−�(x)

∣∣∣∣∣ = O

(√
k

λn

)
,(11)

uniformly for 1 ≤ k = o(λn), with the mean and variance asymptotic to

E(Xn,k) ∼ λk

n

k!
,

V(Xn,k) ∼ λ2k−1
n

(k − 1)!2 (2k − 1)
.

In particular, Xn,2 is asymptotically normally distributed with mean asymptotic to 1
2λ

2
n

and variance to 1
3λ

3
n . A similar central limit theorem appeared in the logarithmic order

of a random element in symmetric groups; see Erdős and Turán (1967).
Unlike previous cases, the proof of this result is based on a polynomial decomposition

of the associated generating functions using characteristic functions and singularity
analysis (see Flajolet and Odlyzko, 1990), the reasons being (i) this method leads to
the optimal Berry–Esseen bound (11), which is not obvious by the method of moments,
(ii) it is of independent methodological interests, and (iii) it can also be applied to give
an alternative proof of (6).

The asymptotic normality of Xn,k when α = 0 indicates that nodes are generated in
a very regular way in recursive trees, at least for the first o(λn) levels. The rough picture
here is that each node at these levels “attracts” about λn/k new-coming nodes, as is
obvious from (3); see also Drmota and Hwang (2005b) for an asymptotic independence
property for the number of nodes at two different levels, both being o(λn) away from the
root.

Profiles of random binary search trees. Binary search trees are one of the most stud-
ied fundamental data structures in Computer Algorithms. They have also been intro-
duced in other fields under different forms; see Drmota and Hwang (2005a) for more
references.

This tree model is characterized by a recursive splitting process in which n ≥ 2 distinct
labels are split into a root and two subtrees formed recursively by the same procedure
(one may be empty) of sizes Jn and n − 1 − Jn , where Jn is uniformly distributed
in {0, 1, . . . , n − 1}. Such a model is isomorphic to binary increasing trees in which a
sequence of n ≥ 2 continuous random variables (independent and identically distributed)
is split into a root with the smallest label and two subtrees formed recursively by the same
splitting process corresponding to the subsequences to the left and right respectively of
the smallest label. Note that when given a random permutation of n elements the size
of the left subtree of the binary increasing tree constructed from the permutation equals
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Fig. 2. A recursive tree of ten nodes and its corresponding transformed binary increasing tree of nine nodes.

j , 0 ≤ j ≤ n − 1, with equal probability 1/n, the same as in random binary search
trees.

A recursive tree can be transformed into a binary increasing tree by the well-known
procedure (referred to as the natural correspondence in Kunth (1997) and the rotation
correspondence by others): drop first the root and arrange all subtrees from left to right in
increasing order of their root labels; sibling relations are transformed into right branches
(of the leftmost node in that generation) and the leftmost branches remain unchanged; a
final relabeling (using labels from 1 to n − 1) of nodes then yields a binary increasing
tree of n − 1 nodes. Such a transformation is invertible; see Figure 2.

Under this transformation, the profile Xn,k in recursive trees becomes essentially the
number of nodes in random binary search trees of n − 1 nodes with left-distance k − 1
(k ≥ 1), the left-distance of a node being the number of left-branches needed to traverse
from the root to that node. This also explains the recurrence (1).

Known and new results for profiles of random binary search trees. We distinguish two
types of nodes for binary search trees: external nodes Yn,k (virtual nodes completed so
that all nodes are of out-degree either 0 or 2) and internal nodes Zn,k (nodes holding
labels). Chauvin et al. (2001) established almost sure convergence for Yn,k/E(Yn,k) and
Zn,k/E(Zn,k) when 1.2 ≤ α ≤ 2.8, and recently Chauvin et al. (2005) extended the
range for Yn,k/E(Yn,k) to the optimal range α− < α < α+, the two numbers α− ≈
0.37, α+ ≈ 4.31 being the fill-up and height constants (of binary search trees), namely,
0 < α− < 1 < α+ solving the equation e(z−1)/z = z/2; see also Chauvin and Rouault
(2004). For other known results on the profiles Yn,k , see Drmota and Hwang (2005a) and
the references therein.

Our tools for recursive trees also apply to binary search trees. Briefly, we derive
convergence in distribution for Yn,k/E(Yn,k) and Zn,k/E(Zn,k) in the range α ∈ (α−, α+)
and convergence of all moments for α ∈ [1, 2], the degenerate cases α = 1, 2 being
further refined by more explicit limit laws; see Section 7 for details.

While it is expected that the profiles for both types of nodes have similar behaviors to
Xn,k , we derive finer results showing more delicate structural difference between internal
nodes and external nodes.
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Organization of the paper. Since most of our asymptotic approximations are based on
the solution (exact or asymptotic) of the underlying double-indexed recurrence (in n and
k), we start by solving the recurrence in the next section. The proof of the convergence
in distribution (5) of Xn,k/µn,k when 0 < α < e by the contraction method is given in
Section 3. Then we prove the moment convergence part of Theorem 1 in Section 4 and
Theorem 2 in Section 5. The asymptotic normality when α = 0 is proved in Section 6,
where an alternative proof of (6) is also indicated. Our methods of proof can be easily
amended for binary search trees, and the results are given in Section 7. We conclude this
paper with a few questions.

Notations. Throughout this paper λn := max{log n, 1}, αn,k := k/λn and α :=
limn→∞ αn,k when the limit exists. The symbol [zn] f (z) stands for the coefficient of
zn in the Taylor expansion of f (z). The generic symbols ε and K always represent suf-
ficiently small and large, respectively, positive constants whose values may vary from
one occurrence to another. Finally, U represents a uniform [0, 1] random variable.

2. The Double-Indexed Recurrence and Asymptotic Transfer. Since all moments
(centered or not) satisfy the same recurrence, we derive in this section the exact solution
and study a simple type of asymptotic transfer (relating the asymptotics of the recurrence
to that of the non-homogeneous part) for such a recurrence.

By (1), we have the recurrence for the probability generating functions Pn,k(y) :=
E(yXn,k )

Pn,k(y) = 1

n − 1

∑
1≤ j<n

Pj,k−1(y)Pn− j,k(y) (n ≥ 2; k ≥ 1),(12)

with Pn,0(y) = y for n ≥ 1 and P0,k(y) = 1.

Recurrence of factorial moments. Let

A(m)n,k := E(Xn,k(Xn,k − 1) · · · (Xn,k − m + 1)) = P (m)
n,k (1).

Then A(0)n,k = 1 for n, k ≥ 0. By (12), we have the recurrence

A(m)n,k =
1

n − 1

∑
1≤ j<n

(
A(m)j,k−1 + A(m)j,k

)
+ B(m)n,k (n ≥ 2; k,m ≥ 1),

where

B(m)n,k =
∑

1≤h<m

(
m

h

)
1

n − 1

∑
1≤ j<n

A(h)j,k−1 A(m−h)
n− j,k ,(13)

with the boundary conditions A(1)n,0 = 1 for n ≥ 1 and A(m)n,0 (0) = 0 for m ≥ 2 and n ≥ 1.

Exact solution of the recurrence. Consider a recurrence of the form

an,k = 1

n − 1

∑
1≤ j<n

(
aj,k + aj,k−1

)+ bn,k (n ≥ 2; k ≥ 1),(14)
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with a1,k and bn,k given. We assume, without loss of generality, that a0,k = 0 (otherwise,
we need only to modify the values of a1,k and bn,k).

LEMMA 1. For n ≥ 1 and k ≥ 0,

an,k = bn,k +
∑

1≤ j<n

∑
0≤r≤k

bj,k−r

j
[ur ](u + 1)

∏
j<�<n

(
1+ u

�

)
,(15)

where b1,k := a1,k .

PROOF. Let an(u) :=∑k an+1,kuk and bn(u) :=∑k bn+1,kuk . Then an(u) satisfies the
recurrence

an(u) = 1+ u

n

∑
0≤ j<n

aj (u)+ bn(u) (n ≥ 1),

with the initial condition a0(u) =
∑

k a1,kuk . By taking the difference nan(u) − (n −
1)an−1(u), we obtain

an(u) =
(

1+ u

n

)
an−1(u)+ bn(u)− n − 1

n
bn−1(u) (n ≥ 2).

Solving this linear recurrence yields

an(u) = bn(u)+ (1+ u)
∑

0≤ j<n

bj (u)

j + 1

∏
j+2≤�≤n

(
1+ u

�

)
(n ≥ 1)

(since b0(u) := a0(u)). Taking the coefficient of uk on both sides leads to (15).

Mean value. Applying (15) with bn,k = δn,1δ0,k , we obtain, for n ≥ 1 and k ≥ 0,

µn,k = [uk]
∏

1≤�<n

(
1+ u

�

)
(16)

= s(n, k + 1)

(n − 1)!
.

This rederives (2).

A uniform estimate for the expected profile. For later use, we derive a uniform bound
for µn,k .

LEMMA 2. The mean satisfies

µn,k = O((vλn)
−1/2v−knv),(17)

uniformly for 1 ≤ k < n, where 0 < v = O(1).
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PROOF. Note that by (16), we have the obvious inequality

µn,kv
k ≤

∏
1≤�<n

(
1+ v

�

)
(v > 0),

which leads to µn,k = O(v−knv) for 1 ≤ k < n. However, this is too crude for our
purpose.

By Cauchy’s integral formula,

µn,k ≤ v−k

2π

∫ π

−π

∏
1≤�≤n

∣∣∣∣1+ veit

�

∣∣∣∣ dt

≤ v−k

2π

∫ π

−π
exp

(
v(cos t)

∑
1≤�≤n

1

�
+ O(1)

)
dt

= O((vλn)
−1/2v−knv),

proving (17).

Note that when k = O(λn), then the right-hand side of (17) is optimal if we take
v = k/λn and (17) becomes µn,k = O(λk

n/k!). Thus (17) is tight when k = O(λn).
This also explains why we write (vλn)

−1/2 instead of λ−1/2
n (to keep uniformity when

k = o(λn) and we choose v = k/λn).
On the other hand, leaving v unspecified in (17) and in many other estimates in this

paper considerably simplifies the analysis.

A simple asymptotic transfer. We will need the following result when applying the
contraction method. It roughly says that when the non-homogeneous part bn,k of (14)
is of order µwn,k , where w > 1, then an,k is also of the same order for a certain range
of α.

LEMMA 3. If bn,k = O(((vλn)
−1/2v−knv)w) for all 1 ≤ k ≤ n, where w > 1 and

0 < v < v0, then

an,k = O

(
1

w − vw−1

(
(vλn)

−1/2v−knv
)w)

,

uniformly for 1 ≤ k ≤ n, provided that 0 < v < min{w1/(w−1), v0}. Similarly, replacing
O by o in the estimate for bn,k yields an o-estimate for an,k .

PROOF. By the exact expression for an,k , we have, for 0 < v < v0,

an,k−bn,k = O

( ∑
1≤ j<n

∑
0≤r≤k

1

j
((vλj )

−1/2v−k+r jv)w[ur ](1+ u)
∏

j<�<n

(
1+ u

�

))
.(18)
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The inner sum over r can be simplified as follows:

∑
0≤r≤k

v−(k−r)w[ur ](1+u)
∏

j<�<n

(
1+ u

�

)
≤ v−kw

∑
r≥0

vrw[ur ](1+u)
∏

j<�<n

(
1+ v

wt

�

)
(19)

= v−kw(1+ vw)
∏

j<�<n

(
1+ v

w

�

)

= O

(
v−kw

(
n

j

)vw)
,

uniformly in j . Substituting this estimate into (18), we obtain

an,k = O

((
(vλn)

−1/2v−knv
)w + v−kwnv

w
∑

1≤ j<n

(vλj )
−w/2 jwv−v

w−1

)

= O

(
1

w − vw−1

(
(vλn)

−1/2v−knv
)w)

,

uniformly for 1 ≤ k ≤ n, where 0 < v < w1/(w−1). The o-estimate is similarly proved.
This completes the proof of Lemma 3.

3. Convergence in Distribution when 0 < α < e. We prove the first part of Theo-
rem 1 (excepting α = 0) in this section by contraction method based on the framework
developed in Neininger and Rüschendorf (2004). The new difficulty arising here is the
asymptotics of the double-indexed recurrence (14) (instead of the single-indexed ones
previously encountered).

The underlying idea. The idea used here is roughly as follows.
Define X̄n,k := Xn,k/µn,k . Then, by (1), X̄n,k satisfies the recurrence

X̄n,k
d= µIn ,k−1

µn,k
X̄ In ,k−1 + µn−In ,k

µn,k
X̄∗n−In ,k,(20)

with independence conditions as in (1). By the estimates (3) and the relation In =
�(n − 1)U�, we expect that

µIn ,k−1

µn,k
≈ k

λn

(
λn + log U

λn

)k−1

→ αUα,

with a suitable meaning for the convergence; similarly,

µn−In ,k

µn,k
→ (1−U )α.

Thus if we expect that X̄n,k → X (α), then X (α) satisfies the fixed-point equation (4).
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To justify these steps, we apply the contraction method.

Contraction method. The fixed-point equation (4) has a few special properties not
enjoyed by single-indexed recursions encountered in the literature for which the typical
fixed-point equation has the form

X
d=
∑

1≤ j≤h

Cj X ( j) + b,(21)

with X (1), . . . , X (h), (C1, . . . ,Ch, b) independent, X ( j) d= X , and 0 ≤ Cj ≤ 1 almost
surely for all 1 ≤ j ≤ h. Here, h may be deterministic or integer-valued random
variables. The special range [0, 1] for the coefficients C1, . . . ,Cj is roughly due to the
relation

σ(I (n)j )

σ (n)
→ Cj ,

where, in various applications (see Neininger and Rüschendorf, 2004), σ is the leading
term in the expansion of the standard deviation of the underlying random variable and
0 ≤ I (n)j ≤ n are the sizes of the subproblems. Typically, σ is a monotonically increasing
function, hence we obtain 0 ≤ Cj ≤ 1.

In general, the Lipschitz constant of the map of probability measures associated with
(21) under the Zolotarev metric ζw is assessed by

∑
j E(C

w
j ). This term is monotonically

decreasing asw increases. Thus, in typical applications for which one expects a contrac-
tion, the sum

∑
j E(C

w
j ) has to satisfy

∑
j E(C

w
j ) < 1, and for that purpose, one has to

choose w sufficiently large; see Neininger and Rüschendorf (2004) for implications of
this condition on the moments required.

For the bi-indexed recursion of Xn,k , we are led to the fixed-point equation (4), where
the coefficient αUα may have values larger than one for α > 1. This implies that the
corresponding estimateE(αU )w+E(1−U )w for the Lipschitz constant is not decreasing
in w. When α < e increases, the range where we have contraction becomes smaller and
vanishes in the boundary case α = e.

Notations. We denote byM the space of univariate probability measures, byMw ⊂M
the space of probability measures with finite absolute wth moment, and by Mw(1) ⊂
Mw the subspace of probability measures with unit mean, where 1 < w ≤ 2. Zolotarev
(1976) introduced a family of metrics ζw, which, for 1 < w ≤ 2, are given by

ζw(ν1, ν2) = sup
f ∈Fw
|E( f (X)− f (Y ))| (ν1, ν2 ∈Mw(1)),

where X and Y have the distributions L(X) = ν1, L(Y ) = ν2.
We have

Fw := { f ∈ C1(R,R) : | f ′(x)− f ′(y)| ≤ |x − y|w−1},
with C1(R,R) the space of continuously differentiable functions on R. We use the
property that convergence in ζw implies weak convergence and that ζw is ideal of order
w, i.e. we have, for W independent of (X, Y ) and c �= 0,

ζw(X +W, Y +W ) ≤ ζw(X, Y ), ζw(cX, cY ) = |c|wζw(X, Y ).

For general reference and properties of ζw, see Zolotarev (1977) and Rachev (1991).
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We also use the minimal L p metrics �p, defined for 1 < p ≤ 2 by

�p(ν1, ν2) = inf{‖X − Y‖p : L(X) = ν1,L(Y ) = ν2} (ν1, ν2 ∈Mp),

where ‖X‖p denotes the L p-norm of a random variable X . For simplicity, we use the ab-
breviation ζw(X, Y ) := ζw(L(X),L(Y )) for ζw as well as for the other metrics appearing
subsequently.

In addition, we assume that

R(n) := |k − αλn| = |αn,k − α|λn = o(λn),

where 0 < α < e, and fix a constant s as follows. If 2 ≤ α < e, then 1 < s < ρ with
ρ ∈ (1, 2] the unique solution of ρ = αρ−1, and s := 2 if 0 < α < 2. The bound ρ also
identifies the best possible order for the existence of absolute moment of X (α). Note that
s satisfies s − αs−1 > 0, which is the continuous version of m − αm−1 > 0 appearing
in (7).

Properties of X (α). Define the map

T : M→M, ν �→ L(αUαZ + (1−U )αZ∗),

where Z , Z∗,U are independent, L(Z) = L(Z∗) = ν.

PROPOSITION 1. For 0 < α < e, the restriction of T to Ms(1) has a unique fixed point
L(X (α)). Furthermore, E|X (α)|ρ = ∞ for 2 ≤ α < e.

PROOF. By Lemma 3.1 in Neininger and Rüschendorf (2004), T is a Lipschitz map in
ζs with Lipschitz constant bounded above by

lip(T ) ≤ αs + 1

αs + 1
.

Thus lip(T ) < 1 by our choice of s. Also T has a unique fixed point in the subspace
Ms(1) by Lemma 3.3 in Neininger and Rüschendorf (2004).

When 2 ≤ α < e, we assume E|X (α)|ρ < ∞ and prove a contradiction. First we
have E|X (α)|ρ = E|αUαX (α) + (1 − U )αX (α)∗|ρ , where X (α), X (α)∗, and U are
independent with L(X (α)) = L(X (α)∗). Note that X (α) ≥ 0 almost surely. Further-
more, E(X (α)) = 1 implies that there is a set with positive probability in which we have
X (α) > 0 and X (α)∗ > 0. It follows that

E|X (α)|ρ = E(X (α)ρ) = E(αUαX (α)+ (1−U )αX (α)∗)ρ

> E
(
αρUαρX (α)ρ + (1−U )αρ(X (α)∗)ρ

)
= αρ + 1

αρ + 1
E(X (α)ρ)

= E(X (α)ρ),

by the definition of ρ and the inequality (a + b)ρ > aρ + bρ for a, b > 0 and ρ > 1.
This is a contradiction, hence, we have E|X (α)|ρ = ∞.
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Zolotarev distance between Xn,k/µn,k and X (α)

THEOREM 4. If 0 < α < 2, then

ζ2

(
Xn,k

µn,k
, X (α)

)
= O

(
R(n)+ 1

λn

)
.

If 2 ≤ α < e, then

ζs

(
Xn,k

µn,k
, X (α)

)
→ 0,

where s is specified as above.

In particular, this theorem implies the convergence in distribution of Xn,k/µn,k for
0 < α < e and proves the first part of Theorem 1.

Convergence rate of the factors in (20)

LEMMA 4. With s and R(n) specified as above, we have∥∥∥∥µIn ,k−1

µn,k
− αUα

∥∥∥∥
s

+
∥∥∥∥µn−In ,k

µn,k
− (1−U )α

∥∥∥∥
s

= O

(
R(n)+ 1

λn

)
.

PROOF. We consider only the Ls-norm of µIn ,k−1/µn,k − αUα , the other part being
similar. By (3), we have

µn,k = s(n, k + 1)

(n − 1)!
= λ

k
n

k!
H(n, k),

where

H(n, k) = 1

�(1+ αn,k)
+ O

(
1

λn

)
,(22)

the O-term holding uniformly for 1 ≤ k ≤ Kλn . Then we decompose the ratio
µIn ,k−1/µn,k into three parts:

µIn ,k−1

µn,k
= k

λn

(
log In

λn

)k−1 H(In, k − 1)

H(n, k)
=: F [1]

n F [2]
n F [3]

n .(23)

We first show that

|F [1]
n − α| + ‖F [2]

n −Uα‖4s + ‖F [3]
n − 1‖4s = O

(
R(n)+ 1

λn

)
.

These estimates imply that ‖F [2]
n ‖4s, ‖F [3]

n ‖4s = O(1). Then Hölder’s inequality gives∥∥∥∥µIn ,k−1

µn,k
− αUα

∥∥∥∥
s

= O

(
R(n)+ 1

λn

)
.



382 M. Fuchs, H.-K. Hwang, and R. Neininger

First, we introduce the set A := {In ≤ nα/6}. Note that µn,k = O(1) for k ≥ 3λn . On
the set A, we have k − 1 = αλn + R(n) − 1 ≥ (α/2)λn ≥ (α/2) log I 6/α

n = 3 log In ,
for sufficiently large n; thus µIn ,k−1 = O(1). On the other hand, since α < e, the mean
satisfies µn,k = �(1); thus

∫
A

∣∣∣∣µIn ,k−1

µn,k
− αUα

∣∣∣∣
4s

dP = O(P(A)) = O(P(In ≤
√

n)) = O(1/
√

n) = O(λ−4s
n ).

Thus we need only consider the complement set Ac.
Obviously, F [1]

n = k/λn = α + O(R(n)/λn).
For F [2]

n , we observe that for x ≤ 0 the expansion (1 + x/m)m = ex + O(eϑx/m)
holds uniformly with ϑ < 1. Thus, we obtain

F [2]
n =

(
log In

λn

)k−1

=
(

In

n
+ O

(
(In/n)ϑ

λn

))α+(R(n)−1)/λn

= Uα + O

(
R(n)(Uα +Uα+ϑ−1) log U +Uα+ϑ−1

λn

)
.

Here we may choose ϑ with 1−α < ϑ < 1. Then (Uα+Uα+ϑ−1) log U and Uα+ϑ−1 are
both L4s-integrable and the O-term in the last display is bounded above by O((R(n)+
1)/λn) in L4s .

For the third factor in (23), we have

H(n, k) = 1

�(1+ α + R(n)/λn)
+ O

(
1

λn

)
= 1

�(1+ α) + O

(
R(n)+ 1

λn

)
.

For H(In, k − 1), we restrict to the set Ac. On Ac, for n sufficiently large, we have
k − 1 ≤ 12 log In , so the error in the expansion of H(In, k − 1) implied by (22) is
uniformly O(1/log In) = O(1/λn). Thus we have

H(In, k − 1) = 1

� (1+ α + (α log(n/In)+ R(n)− 1)/log In)
+ O

(
1

log In

)

= 1

�(1+ α) + O

(
log(n/In)+ R(n)

λn

)
.

Since ‖log(n/In)‖4s → ‖log U‖4s <∞, the last error term is of order O((R(n)+1)/λn)

in L4s . Collecting all estimates, we obtain ‖F [3]
n − 1‖4s = O((R(n)+ 1)/λn).

Asymptotic transfer of the double-indexed recurrence (14). Consider the recurrence
(14) with suitable initial conditions.

LEMMA 5. If

bn,k = O

(
((vλn)

−1/2nvv−k)w · R(n)+ 1

λn

)
(1 < w ≤ 2),
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uniformly for 1 ≤ k < n, where 0 < v < v0, then

an,k = O

(
1

w − vw−1
((vλn)

−1/2nvv−k)w · R(n)+ 1

λn

)
,(24)

uniformly for 1 ≤ k < n, where 0 < v < min{w1/(w−1), v0}.

PROOF. The proof is similar to that for Lemma 3 but slightly more complicated. By the
exact expression for an,k and the estimate for bn,k , we have, for 0 < v < v0,

an,k − bn,k = O

(
v−wk−w/2 ∑

1≤ j<n

∑
0≤r≤k

|k − r − αλj |λ−1−w/2
j jwv−1vwr [ur ](1+ u)

×
∏

j<�<n

(
1+ u

�

))
.

First, if |k − αλn| ≥ ελn , then |k − r − αλj | = O(k + λn), so that (24) holds by the
proof of Lemma 3. We assume now that |k − αλn| ≤ ελn . Split the sum in j into three
parts:

an,k − bn,k = O

(
v−wk−w/2

( ∑
1≤ j<δn

+
∑

δn≤ j≤(1−δ)n
+

∑
(1−δ)n< j<n

)

×
∑

0≤r≤k

|k − r − αλj |λ−1−w/2
j jwv−1vwr [ur ](1+ u)

∏
j<�<n

(
1+ u

�

))
,

where δ ∈ (0, 1) will be specified later. An analysis similar to the proof of Lemma 3
gives

an,k − bn,k = O

(
(vλn)

−w/2

w − vw−1
v−wknwv

(
δwv−v

w + |k − αλn| + 1

λn
+ δ

))
,

where 0 < v < min{w1/(w−1), v0}. Taking δ := ((R(n)+ 1)/λn)
1/(wv−vw) yields (24).

An inequality between ζs - and �s -distances

LEMMA 6. For 1 < w ≤ 2 and M > 0, there is a constant K > 0 such that

ζw(X, Y ) ≤ K (�w(X, Y ) ∨ �w−1
w (X, Y )),(25)

for all pairs L(X),L(Y ) ∈Mw(1) with ‖X‖w, ‖Y‖w ≤ M .

PROOF. We start from the inequality (see Theorem 3 in Zolotarev (1976)

ζw(X, Y ) ≤ 1

w
(2βw(X, Y )+ 2w−1βw−1

w (X, Y )(‖X‖ww ∧ ‖Y‖ww)2−w),
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for 1 < w ≤ 2, where βw denotes the difference pseudo-moment

βw(ν1, ν2) := inf{E||X |w−1 X − |Y |w−1Y | : L(X) = ν1,L(Y ) = ν2} (w > 1),

with ν1, ν2 ∈Mw. From ||x |w−1x−|y|w−1 y| ≤ w(|x |w−1∨|y|w−1)|x− y| and Hölder’s
inequality, it follows that

βw(X, Y ) ≤ w(E|X |w + E|Y |w)(w−1)/w�w(X, Y ),

which implies the desired inequality.

PROOF OF THEOREM 4. We introduce a hybrid quantity

�n := µIn ,k−1

µn,k
X (α)+ µn−In ,k

µn,k
X∗(α),

where X (α), X∗(α), and In are independent and X (α) and X∗(α) are identically dis-
tributed. Since L(X (α)), L(X̄n,k), L(�n) ∈ Ms(1), the ζs-distances between these
quantities are finite. For simplicity, write hn,k := ζs(X̄n,k, X (α)). By triangle inequality

hn,k ≤ ζs(X̄n,k, �n)+ ζs(�n, X (α)).

Note that ζs is ideal of order s. Thus

ζs(X̄n,k, �n) = ζs

(
µIn ,k−1

µn,k
X̄ In ,k−1 + µn−In ,k

µn,k
X̄∗n−In ,k,

µIn ,k−1

µn,k
X (α)+ µn−In ,k

µn,k
X∗(α)

)

≤ 1

n − 1

∑
1≤ j<n

ζs

×
(
µj,k−1

µn,k
X̄ j,k−1 + µn− j,k

µn,k
X̄∗n− j,k,

µj,k−1

µn,k
X (α)+ µn− j,k

µn,k
X∗(α)

)

≤ 1

n − 1

∑
1≤ j<n

((
µj,k−1

µn,k

)s

h j,k−1 +
(
µn− j,k

µn,k

)s

hn− j,k

)
.

We now show that

ζs(�n, X (α)) = O(D(n)s−1),(26)

where D(n) := (R(n)+ 1)/λn .
First, by Lemma 4,

‖�n‖s ≤
(∥∥∥∥µIn ,k−1

µn,k

∥∥∥∥
s

+
∥∥∥∥µn−In ,k

µn,k

∥∥∥∥
s

)
‖X (α)‖s

→ (α‖Uα‖s + ‖(1−U )α‖s)‖X (α)‖s,

which implies that ‖�n‖s is uniformly bounded for all n. SinceL(X (α)) ∈Ms(1), there
is an M > 0 such that ‖X (α)‖s, ‖�n‖s ≤ M for all n. We apply Lemma 6 to bound the
ζs-distance, which gives

ζs(�n, X (α)) ≤ K (�s(�n, X (α)) ∨ �s−1
s (�n, X (α))).
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By Lemma 4,

�s(�n, X (α)) ≤
(∥∥∥∥µIn ,k−1

µn,k
− αUα

∥∥∥∥
s

+
∥∥∥∥µn−In ,k

µn,k
− (1−U )α

∥∥∥∥
s

)
‖X (α)‖s

= O(D(n)).

This proves (26).
Collecting the estimates, we obtain

hn,k ≤ 1

n − 1

∑
1≤ j<n

((
µj,k−1

µn,k

)s

h j,k−1 +
(
µn− j,k

µn,k

)s

hn− j,k

)
+ O

(
D(n)s−1

)
.

Thus, hn,k = O(an,kµ
−s
n,k), where an,k satisfies (14) with

bn,k = O(µs
n,k D(n)s−1),

and suitable initial conditions. Theorem 4 then follows from applying the different types
of asymptotic transfer given in Lemmas 3 and 5.

REMARK. Note that the proof of Theorem 4 also yields a rate of convergence of order
O(((R(n)+ 1)/λn)

s−1) for ζs for the range 2 ≤ α < e.
Recently, S. Janson (private communication) showed that Lemma 6 also holds with

(25) there replaced by

ζw(X, Y ) ≤ K�w(X, Y ).

This inequality leads to an improvement of the error term in Theorem 4 for the range
2 ≤ α < e to O((R(n)+ 1)/λn).

4. Asymptotics of Moments. We prove in this section the moment estimate (6) whose
proof is more involved than the asymptotic transfer in Lemma 3. The idea is first to derive
a crude bound for higher moments of Xn,k , which holds uniformly for 1 ≤ k < n. Then
a more refined analysis leads to (6).

Note that the mth factorial moments of Xn,k and the mth moments are asymptotically
equivalent when µn,k →∞, or roughly when α < e.

A uniform estimate for higher moments. For convenience, define ϕ1(v) = 1 and

ϕm(v) := 1

m − vm−1
(m ≥ 2).

We now prove by induction that

A(m)n,k = O(ϕm(v)((vλn)
−1/2v−knv)m) (m ≥ 1),(27)

uniformly for 1 ≤ k < n, where 0 < v < m1/(m−1).
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Obviously, (27) holds for m = 1 by (17). By (13) and induction, we have, for 0 <
v < (m − 1)1/(m−2),

B(m)n,k = O

( ∑
1≤h<m

(
m

h

)
ϕh(v)ϕm−h(v)(28)

× n−1
∑

1≤ j<n

(
(vλj )

−1/2v−k+1 jv
)h (
(vλn− j )

−1/2v−k(n − j)v
)m−h

)

= O


ϕm−1(v)v

−kmn−1
∑

1≤h<m
1≤ j<n

j hv(n − j)(m−h)v(vλj )
−h/2(vλn− j )

−(m−h)/2




= O(ϕm−1(v)(vλn)
−m/2v−kmnmv),

uniformly for 1 ≤ k < n.
By (15),

A(m)n,k = B(m)n,k +
∑

1≤ j<n

∑
0≤r≤k

B(m)j,k−r

j
[ur ](u + 1)

∏
j<�<n

(
1+ u

�

)
.(29)

Substituting the estimate (28) into (29) gives, for 0 < v < m1/(m−1),

A(m)n,k = O

(
B(m)n,k + v−km

∑
1≤ j<n

(vλj )
−m/2 jmv−1

∑
0≤r≤k

vrm[ur ](1+ u)
∏

j<�<n

(
1+ u

�

))

= O
(

B(m)n,k + ϕm(v)(vλn)
−m/2nmvv−km

)
,

similar to the proof of Lemma 3. This proves (27).
Note that when α ≤ m1/(m−1) − ε, the optimal choice of v in (27) minimizing

nvv−k is v = αn,k , which yields the estimate A(m)n,k = O(λk
n/k!), uniformly in k. When

α ≥ m1/(m−1) − ε, the optimal choice is then v = m1/(m−1) − ε. This says that the
asymptotic behavior of A(m)n,k when α < m1/(m−1) is very different from that when α ≥
m1/(m−1). More precise estimates can be derived, but they are not needed here; see
Drmota and Hwang (2005a) for asymptotic approximations to the variance (covering all
ranges).

Asymptotics of A(m)n,k . Since the case α = 0 is treated separately, we assume throughout
this section that α > 0. We refine the above inductive argument and show that

A(m)n,k ∼ νm(α)µ
m
n,k ∼ νm(α)

(
λk

n

�(1+ α)k!

)m

,(30)

for each m ≥ 1 and k/λn → α < m1/(m−1), where νm(α) denotes the moment sequence
of X (α) given in (7). This will prove the moment convergence part of Theorem 1.
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Note that by (3), (30) holds for m = 1 with ν1(α) = 1. Assume that (30) holds for
all A(i)n,k with i < m. We split the right-hand side of (29) into three parts:

A(m)n,k = B(m)n,k +
∑

0≤r≤k

( ∑
1≤ j<εn

+
∑

εn≤ j≤(1−ε)n
+

∑
(1−ε)n< j<n

)
B(m)j,k−r

j
[ur ](u + 1)

×
∏

j<�<n

(
1+ u

�

)

=: B(m)n,k + A(m)n,k [1]+ A(m)n,k [2]+ A(m)n,k [3].

By the same proof used for Lemma 3, we have

A(m)n,k [1] = O(εmv−vm
ϕm(v)λ

−(m+1)/2
n nmvv−km),

A(m)n,k [3] = O(εϕm(v)λ
−(m+1)/2
n nmvv−km).

Letting ε→ 0, we see that, by (27),

A(m)n,k [1]+ A(m)n,k [3] = o(A(m)n,k ).

Asymptotics of A(m)n,k : the dominant terms. We start by showing that, for 0 < α <

(m − 1)1/(m−2),

B(m)n,k ∼ ν∗m(α)
(

λk
n

�(1+ α)k!

)m

(m ≥ 2),(31)

where

ν∗m(α) :=
∑

1≤h<m

(
m

h

)
νh(α)νm−h(α)α

h
∫ 1

0
uhα(1− u)(m−h)α du.

By (13), induction and (30), we have, for 0 < α < (m − 1)1/(m−2),

B(m)n,k ∼
∑

1≤h<m

(
m

h

)
νh(α)νm−h(α)

1

n

×
∑

εn≤ j≤(1−ε)n

(
λk−1

j

�(1+ α)(k − 1)!

)h (
λk

n− j

�(1+ α)k!

)m−h

∼
(

λk
n

�(1+ α)k!

)m ∑
1≤h<m

(
m

h

)
νh(α)νm−h(α)

1

n

×
∑

εn≤ j≤(1−ε)n
αh

(
j

n

)kh/λn
(

1− j

n

)k(m−h)/λn

,

which proves (31). The errors introduced for terms with j < εn and for j ≥ (1 − ε)n
can be easily bounded by using (27).
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To evaluate A(m)n,k [2], we first observe that

∏
j<�<n

(
1+ u

�

)
= exp

(
u
∑

j<�<n

�−1 + O

( |u|2
j

))

=
(

n

j

)u

(1+ O(|u|2 j−1)),

uniformly for finite complex u and j →∞. It follows that

[ur ]
∏

j<�<n

(
1+ u

�

)
= (log(n/j))r

r !

(
1+ O

(
r2

j

))
,

uniformly for εn ≤ j ≤ (1− ε)n and 0 ≤ r ≤ k = o(
√

j). Consequently, by (28) and
(31),

A(m)n,k [2] ∼ ν∗m(α)
(

λk
n

�(1+ α)k!

)m ∑
εn≤ j≤(1−ε)n

j−1

(
j

n

)mα

×
∑
r≥0

αmr

(
(log(n/j))r−1

(r − 1)!
+ (log(n/j))r

r !

)

∼ ν∗m(α)(α
m + 1)

(
λk

n

�(1+ α)k!

)m ∫ 1−ε

ε

xmα−αm−1 dx .

Letting ε→ 0, we then obtain, by (29), that

A(m)n,k ∼ ν∗m(α)
(

1+ (αm + 1)
∫ 1

0
xmα−αm−1 dx

)(
λk

n

�(1+ α)k!

)m

= ν∗m(α)
mα + 1

mα − αm

(
λk

n

�(1+ α)k!

)m

,

where

ν∗m(α)
mα + 1

mα − αm
= 1

m − αm−1

×
∑

1≤h<m

(
m

h

)
νh(α)νm−h(α)α

h−1�(hα + 1)�((m − h)α + 1)

�(mα + 1)

= νm(α),

for m ≥ 2, by (7). This completes the proof of (29) and thus Theorem 1(ii).

Moment convergence (6). Convergence of all moments implies convergence in distri-
bution if the moment sequence (7) uniquely characterizes the distribution. By considering
ν̄m(α) := νm(α)�(mα + 1)/m!, we easily obtain by induction that ν̄m(α) = O(K m)

for α ∈ [0, 1] (see Hwang and Neininger, 2002), and thus convergence in distribution of
Xn,k/µn,k follows from (6) when α ∈ [0, 1].
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5. The Central Rangeα = 1. We prove Theorem 2 in this section. The proof proceeds
essentially along the same lines as we did above but with one major difference: we
consider central moments instead of factorial moments. This minor step is crucial in
dealing with the cancellations involved in the asymptotics of higher central moments.
For simplicity, the case when |tn,k | → ∞ and tn,k = o(λn) is first analyzed; then the
same method of proof is extended to the case when tn,k = O(1). Justifications of the
error terms are similar to those for A(m)n,k given above but become more complicated.

Recurrence of central moments. Consider P̄n,k(y) := E(e(Xn,k−µn,k )y) = Pn,k(ey)e−µn,k y ;
see (12). Then we have the recurrence

P̄n,k(y) = 1

n − 1

∑
1≤ j<n

P̄j,k−1(y)P̄n− j,k(y)e
�n,k ( j)y (n ≥ 2; k ≥ 1),

where

�n,k( j) := µj,k−1 + µn− j,k − µn,k

and P̄n,0(y) = P̄1,k(y) = 1 for n, k ≥ 1.
Let now P (m)n,k := P̄ (m)n,k (0) denote the mth central moment of Xn,k . Then P (1)n,k ≡ 0

and, for m ≥ 2,

P (m)n,k =
1

n − 1

∑
1≤ j<n

(
P (m)j,k−1 + P (m)j,k

)
+ Q(m)

n,k (n ≥ 2; k ≥ 1),(32)

where

Q(m)
n,k :=

∑
a+b+c=m
0≤a,b<m
0≤c≤m

(
m

a, b, c

)
1

n − 1

∑
1≤ j<n

P (a)j,k−1 P (b)n− j,k�
c
n,k( j)

and P (m)n,0 = 0 for n,m ≥ 1.

Outline of the proof of Theorem 2. Similar to the proof of (30), we divide the proof of
Theorem 2 into three main steps.

– We first derive a uniform estimate for �n,k( j) for 1 ≤ j, k < n, which then implies
a uniform bound for P (m)n,k for 1 ≤ k < n. This bound is sufficient for our uses except
when |k − λn| = o(

√
λn).

– We then derive a second estimate for�n,k( j) uniformly valid for k ∼ λn . This in turn
implies a tight bound for P (m)n,k when k ∼ λn , and an asymptotic approximation to P (m)n,k
when 1 � |tn,k | = o(λn).

– A finer estimate for �n,k( j) is needed to deal with the case when tn,k = O(1).

An integral representation for �n,k( j). By (2),

µn,k = [uk]
nu

�(u + 1)
(1+ O(n−1)).

Then

�n,k( j) = 1

2π i

∮
|u|=v

u−k−1nuϕ(u, j/n)(1+ O( j−1 + (n − j)−1)) du,(33)
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uniformly for 1 ≤ j < n (when j or n − j is bounded, the O-term becoming O(1)
instead of o(1)), where

ϕ(u, x) := (1− x)u + uxu − 1

�(u + 1)
.

Here and throughout this section, we take v = 1+ o(1) since k ∼ λn .

A uniform estimate for �n,k( j). Since ϕ(1, x) = 0, we have

|ϕ(u, x)| = O(|u − 1|) (x ∈ [0, 1]).

Substituting this estimate into (33) gives

�n,k( j) = O

(
v−knv

∫ π

−π

∣∣veiθ − 1
∣∣ n−v(1−cos θ) dθ

)
(34)

= O((|v − 1| + λ−1/2
n )λ−1/2

n v−knv),

uniformly for 1 ≤ j, k < n.

A uniform estimate for P (m)n,k . From the recurrence (32) and the estimate (34), we deduce,
by an induction similar to that used for (27), that

Q(m)
n,k , P (m)n,k = O((|v − 1|m + λ−m/2

n )(λ−1/2
n v−knv)m) (m ≥ 2),(35)

uniformly for 1 ≤ k < n. This bound is however not tight when |k − λn| = o(
√
λn), the

reason being simply that v is not properly chosen to minimize the error term (the first
λ
−1/2
n ) in (34).

A finer estimate than (34). For a more precise estimate than (34), we use the two-term
Taylor expansion

ϕ(u, x) = ϕ′u(1, x)(u − 1)+ O(|u − 1|2),
where ϕ′u(1, x) = x + x log x + (1− x) log(1− x), which leads to

�n,k( j) = ϕ′u

(
1,

j

n

)
(k − λn)

λk−1
n

k!
(1+ O( j−1 + (n − j)−1))(36)

+ O((|v − 1|2 + λ−1
n )λ

−1/2
n v−knv).

Taking v = k/λn gives

�n,k( j) = O

(
(|k − λn| + 1)

λk−1
n

k!

)
.(37)

This bound holds uniformly for k ∼ λn and 1 ≤ j < n since ϕ′u(1, x) = O(x |log x |) as
x → 0+.
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A uniform bound for P (m)n,k when k ∼ λn . From (37), we deduce, again by induction,
that

Q(m)
n,k , P (m)n,k = O

(
(|k − λn|m + 1)

(
λk−1

n

k!

)m
)

(m ≥ 2),(38)

uniformly for k ∼ λn . The proof differs slightly from that for (30) in that we split all
sums of the form

∑
1≤ j<n into three parts:∑

1≤ j<n

=
∑

1≤ j<n/λm
n

+
∑

n/λm
n ≤ j≤n−n/λm

n

+
∑

n−n/λm
n < j<n

,

and then apply (38) and (37) to the middle sum, and (35) to the remaining two sums.

Asymptotics of P (m)n,k when |tn,k | → ∞ and tn,k = o(λn). In this case the estimate (36)
has the form

�n,k( j) ∼ ϕ′u
(

1,
j

n

)
tn,k
λk−1

n

k!
,(39)

uniformly in k when εn ≤ j ≤ (1− ε)n. Then we show that

P (m)n,k ∼ gm

(
tn,k
λk−1

n

k!

)m

(m ≥ 1),(40)

where g0 = 1, g1 = 0 and, for m ≥ 2,

gm = m + 1

m − 1

∑
a+b+c=m
0≤a,b<m
0≤c≤m

(
m

a, b, c

)
gagb

∫ 1

0
xa(1− x)bϕ′u(1, x)c dx .(41)

Equivalently, this can be written as

gm =
∑

a+b+c=m
0≤a,b,c≤m

(
m

a, b, c

)
gagb

∫ 1

0
xa(1− x)bϕ′u(1, x)c dx .

In particular,

g2 = 3
∫ 1

0
ϕ′u(1, x)2 dx = 2− π

2

6
.

The inductive proof is almost the same as that for A(m)n,k , with the factor (k − λn)
m

handled by direct expansion and then estimated term by term. We also need to split sums
of the form

∑
1≤ j<n into five parts:∑

1≤ j<n

=
∑

1≤ j<n/λm
n

+
∑

n/λm
n ≤ j<εn

+
∑

εn≤ j≤(1−ε)n
+

∑
(1−ε)n< j≤n−n/λm

n

+
∑

n−n/λm
n < j<n

,

and then apply (40) to the middle sum, and the two estimates (35) and (38) to the other
four sums.

The moment sequence (41) is easily checked to have the property of uniquely char-
acterizing the distribution; see Hwang (2005) for similar details.

This proves the first part of Theorem 2.
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The periodic case when tn,k = O(1). In this case we need a more precise expansion
than (39) as follows:

�n,k( j) ∼ λ
k−1
n

k!

(
ϕ′u

(
1,

j

n

)
tn,k − 1

2ϕ
′′
uu

(
1,

j

n

))
,(42)

uniformly for j/n ∈ [ε, 1− ε] and k ∼ λn , where

ϕ′′uu(1, x) = (x log x + (1− x) log(1− x))2 − 2(1− γ )ϕ′u(1, x).

This is proved by expanding more terms of ϕ(u, x) at u = 1 and then estimating the
error terms (see Hwang (1995) for similar details).

With the approximation (42), we first prove that, for m ≥ 0,

E(Xn,k − µn,k)
m = P (m)n,k ∼ pm(tn,k)

(
λk−1

n

k!

)m

,(43)

where pm(tn,k) is a polynomial in tn,k of degree m with p0(tn,k) = 1 and p1(tn,k) = 0.
This will imply that for k = �λn� + �, where � ∈ Z,

E

(
Xn,k − µn,k

λk−1
n /k!

)m

∼ pm(�− {λn}),

for m ≥ 0, where {λn} denotes the fractional part of λn . Then we apply an argument
based on the Frechet–Shohat moment convergence theorem similar to that used in Chern
and Hwang (2001a) to prove that (Xn,k − µn,k)/(λ

k−1
n /k!) does not converge to a fixed

limit law. The proof for (Xn,k − µn,k)/
√
V(Xn,k) is similar.

To prove (43), we again use induction. Assume m ≥ 2. Then a similar analysis as
above leads to

Q(m)
n,k ∼ qm(tn,k)

(
λk−1

n

k!

)m

,

where qm(t) is a polynomial of degree m defined by

qm(tn,k) :=
∑

a+b+c=m
0≤a,b<m
0≤c≤m

(
m

a, b, c

)∫ 1

0
ya(1− y)b

× pa(tn,k−1−log y)pb(tn,k−log(1− y))(ϕ′u(1, y)tn,k− 1
2ϕ
′′
uu(1, y))c dy.

Then by (32), we deduce that, for m ≥ 2,

P (m)n,k

(
λk−1

n

k!

)−m

∼ qm(tn,k)+
∫ 1

0
xm−1

∑
r≥0

log(1/x)r

r !

×(qm(tn,k − r − 1− log x)+ qm(tn,k − r − log x)) dx,

the infinite series on the right-hand side being convergent since qm is a polynomial of
degree m. This proves (43) and the second part of Theorem 2.

Note that by induction

pm(t) = qm(t)+
∫ 1

0
xm (pm(t − 1− log x)+ pm(t − log x)) dx (m ≥ 2).

Straightforward calculation of the integrals gives expression (10) for p2(tn,k).
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Extrema of |E(Xn,k − µn,k)
m |. To prove the maximum order of E(Xn,k − µn,k)

m , we
consider two cases. First, when |k − λn| ≤ λ2/3, we apply (38), so that

max
|k−λn |≤λ2/3

n

|P (m)n,k | = O

(
λ−3m/2nm · max

|tn,k |≤λ2/3
n

(
tm
n,k + 1

)
e−mt2

n,k/(2λn)

)

= O(λ−mnm),

the maximum being reached when tn,k ∼ ±
√
λn .

On the other hand, when |k − λn| ≥ λ2/3, we apply the estimate (35) and bound the
maximum by the sum

max
|k−λn |≥λ2/3

n

|P (m)n,k | = O

(
|v − 1|mλ−m/2

n nmv

( ∑
k≤λn−λ2/3

+
∑

k≥λ+λ2/3

)
v−mk

)
.

Taking v = 1− λ−1/3
n in the first sum and v = 1+ λ−1/3

n in the second, we obtain

max
|k−λn |≥λ2/3

n

|P (m)n,k | = O(λ1/3−5m/6
n nme−mλ1/3

n /2).

Thus

max
1≤k<n

|E(Xn,k − µn,k)
m | = O(λ−m

n nm).

The proof for the minimum order is similar. This proves Corollary 5.

6. Asymptotic Normality when α = 0. The approach we use in this section relies
on manipulating the recurrences of two sequences of polynomials defined from the
bivariate generating functions Pk(z, y) :=∑

n E(y
Xn,k )zn . Not only can it be applied to

prove Theorem 3 but it also gives an alternative proof of the moment convergence part
of Theorem 1.

Main steps. Let

σn,k :=
√

λ2k−1
n

(k − 1)!2 (2k − 1)
,

X∗n,k := (Xn,k−λk
n/k!)/σn,k , and� := λn/k. The proof of Theorem 3 uses the following

estimates.

PROPOSITION 2. The characteristic functions of X∗n,k satisfy the two estimates:

(i)

|E(eX∗n,k iθ
)− e−θ

2/2| = O

(
e−θ

2/2 |θ | + |θ |3√
�

+ n−ε
)
,(44)

uniformly for |θ | ≤ ε�1/6; and
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(ii)

E(eX∗n,k iθ
) = O(e−θ

2/4 + n−ε),(45)

uniformly for ε�1/6 ≤ |θ | ≤ ε√�.

Theorem 3 then follows from applying the Berry–Esseen smoothing inequality (see
Petrov, 1975).

These estimates are derived by singularity analysis (see Flajolet and Odlyzko, 1990),
starting from Cauchy’s integral representation

E(eXn,k iθ/σn,k ) = 1

2π i

∮
|z|=ε

z−n−1 Pk(z, e
iθ/σn,k ) dz.

We then need estimates for the generating functions Pk , and for that purpose, we introduce
two sequences of polynomials and derive approximations to Pk via those for the two
polynomials.

Two sequences of polynomials. By (12), the generating function Pk satisfies


P0(z, y) = 1+ yz

1− z
,

Pk(z, y) = 1+ z exp

(∫ z

0

Pk−1(t, y)− 1

t
dt

)
(k ≥ 1).

It is more convenient to work with

Qk(z, s) := Pk(z, es)− 1

z
.

Then 


Q0(z, s) = es

1− z
,

Qk(z, s) = exp

(∫ z

0
Qk−1(t, s) dt

)
(k ≥ 1).

(46)

Now, write L(z) := − log(1− z). We define two sequences of polynomials V and W
as follows:

Qk(z, s) := exp

(∑
m≥0

Vk,m(L(z))

m!
sm

)

:= 1

1− z

∑
m≥0

Wk,m(L(z))

m!
sm .

LEMMA 7. The two sequences of polynomials satisfy the recurrences


Vk,m(x) =
∫ x

0
Wk−1,m(t) dt (k ≥ 2),

Wk,m(x) = 1

m

∑
1≤ j≤m

(
m

j

)
j Vk, j (x)Wk,m− j (x) (m ≥ 1),

(47)

where V1,m = x for m ≥ 0 and Wk,0(x) = 1 for k ≥ 1.
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PROOF. The first relation follows from (46) and the second from taking the derivative
with respect to s and then collecting the coefficient of sm on both sides.

Mean value and variance. We first rederive the mean and variance by such a V W -
polynomial approach.

By (47) with m = 1, we obtain

Vk,1(x) = Wk,1(x) = xk

k!
(k ≥ 1).(48)

Consequently, with x = L(z),

µn,k = [zn]
z

1− z
· Lk(z)

k!
= s(n, k + 1)

(n − 1)!
,

which rederives (2). The asymptotic behavior of µn,k when k = o(λn) is derived as
follows:

µn,k = [uk]
nu

�(1+ u)

(
1+ O(n−1)

)

= λk
n

k!

∑
0≤ j≤k

k!

(k − j)! λ j
n

· [u j ]
1

�(1+ u)
+ O

(
λk

n

nk!

)

∼ λk
n

k!
.

For m = 2, we have, again by (47),

Vk,2(x) =
∫ x

0
Wk−1,2(t) dt = x2k−1

(k − 1)!2 (2k − 1)
+
∫ x

0
Vk−1,2(t) dt(49)

=
∑

0≤ j<k

(
2 j

j

)
xk+ j

(k + j)!
;

and then

Wk,2(x) = Vk,2(x)+ V 2
k,1(x) =

∑
0≤ j≤k

(
2 j

j

)
xk+ j

(k + j)!
.

Hence,

E(X2
n,k) = [zn]

z

1− z
·
∑

0≤ j≤k

(
2 j

j

)
Lk+ j (z)

(k + j)!
=

∑
0≤ j≤k

(
2 j

j

)
s(n, k + j + 1)

(n − 1)!

=
∑

0≤ j≤k

(
2 j

j

)
[uk+ j ]

nu

�(1+ u)
(1+ O(n−1));

see Meir and Moon (1978) and van der Hofstad et al. (2002). Now, observe that, for
k = o(λn), (

2k

k

)
[u2k]

nu

�(1+ u)
−
(

[uk]
nu

�(1+ u)

)2

= O

(
k2λ2k−2

n

k!2

)
.
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It follows that

V(Xn,k) ∼ λ2k−1
n

(k − 1)!2 (2k − 1)
(k = o(λn)),

which proves the variance estimate in Theorem 3.
This line of computation can be extended to higher moments. For example, a similar

reasoning for m = 3 yields

Vk,3(x) =
∫ x

0
Vk−1,3(t) dt +

∫ x

0

(
3Vk−1,2(t)Vk−1,1(t)+ V 3

k−1,1(t)
)

dt

= 3
∑

0≤�<k

∑
0≤ j<�

(
2 j

j

)(
j + 2�

�

)
xk+ j+�

(k + j + �)! +
∑

0≤ j<k

(
3 j

j, j, j

)
xk+2 j

(k + 2 j)!
;

and

Wk,3(x) = 3
∑

0≤�≤k

∑
0≤ j<�

(
2 j

j

)(
j + 2�

�

)
xk+ j+�

(k + j + �)! +
∑

0≤ j≤k

(
3 j

j, j, j

)
xk+2 j

(k + 2 j)!
,

which was used to compute E(Xn,k −µn,k)
3 in Figure 1. However, the resulting expres-

sions soon become very involved. Thus we focus directly on the asymptotics of these
polynomials and not on exact expressions.

Asymptotics of the V and W polynomials. First, by (48), we have

Vk,1(x) = Wk,1(x) ∼ xk

k!
(x ∈ C),

for k = o(|x |).
Next, by (49), we have the following estimates, for k = o(x):

Vk,2(x) = x2k−1

(k − 1)!2 (2k − 1)

(
1+

∑
1≤ j≤k

2k − 1

2k − j

∏
1≤�< j

(
k − �

x
· k − �

2k − j − �
))

∼ x2k−1

(k − 1)!2 (2k − 1)

and

Wk,2(x) = Vk,2(x)+ V 2
k,1(x) ∼

x2k

k!2
.

The general pattern is as follows.

LEMMA 8. If k = o(|x |), where x ∈ C is large, then


Vk,m(x) ∼ xm(k−1)+1

(k − 1)!m (m(k − 1)+ 1)
,

Wk,m(x) ∼ xmk

k!m
.

(50)
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PROOF. We use induction on m. We already proved (50) for m = 1, 2. Assume m ≥ 3.
By (47) and induction

Vk,m(x) =
∫ x

0
Wk−1,m(t) dt

∼ 1

m

∑
1≤ j<m

(
m

j

)
j
∫ x

0

t j (k−2)+1

(k − 2)! j ( j (k − 2)+ 1)
· t (k−1)(m− j)

(k − 1)!m− j
dt

+
∫ x

0
Vk−1,m(t) dt

∼ x (k−1)m+1

(k − 1)!m ((k − 1)m + 1)
+
∫ x

0
Vk−1,m(t) dt.

Hence, by iteration,

Vk,m(x) ∼
∑

0≤ j<k

(mj)!

j!m
· xk+ j (m−1)

(k + j (m − 1))!

∼ x (k−1)m+1

(k − 1)!m ((k − 1)m + 1)
.

Moreover, by applying (47) and induction again

Wk,m(x) ∼ 1

m

∑
1≤ j≤m

(
m

j

)
j

x j (k−1)+1

(k − 1)! j ( j (k − 1)+ 1)
· xk(m− j)

k!m− j

∼ xmk

k!m
.

This proves (50).

PROOF OF PROPOSITION 2. By Cauchy’s formula, we have

E(eXn,k iθ/σn,k ) = 1

2π i

∮
|z|=ε

z−n Qk(z, iθ/σn,k) dz.

We then deform the integration circle onto the left contour shown in Figure 3, where
δn = λ2

n/n. For the

larger circle, we have

1

2π i

∫
|z|=1+δn/n

z−n Qk

(
z, iθ

σn,k

)
dz = O

(
e−λ

2
n sup
|z|=1+δn/n

∣∣∣∣Qk

(
z, iθ

σn,k

)∣∣∣∣
)
.

Now by the estimate

σn,k = O

(
�−1/2 λ

k
n

k!

)
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b

1

C

H1

1/n

z

b

1 + δn

z �→ 1 − τ
n

b

τ

H0
0

Fig. 3. The Hankel contours used to derive the asymptotics of the moments of Xn,k .

and (50), we have

Vk,m(log(n/ωn))σ
−m
n,k = O(�−(m−2)/2) (m ≥ 1),

for any complex sequence ωn satisfying 1 � |ωn| = O(λK
n ). It follows that the contri-

bution from the large circle is bounded above by

1

2π i

∫
|z|=1+δn/n

z−n Qk

(
z, iθ

σn,k

)
dz = O(nλ−2

n e−λ
2
n+K�),

= O(n−ε),

uniformly for |θ | ≤ ε√�.
When z ∈ H1, we make the change of variables z �→ 1 − τ/n and apply estimate

(50), which gives

Qk

(
1− τ

n
,

iθ

σn,k

)
= n

τ
exp

{
λk

n

k! σn,k
iθ

(
1+O

( |log τ |
�

))
− θ

2

2

(
1+O

( |log τ |
�

))

+ O

(
�
∑
m≥3

|θ |m
m! �m/2

)}
.

From this we deduce that if |θ | ≤ ε�1/6, then

Qk

(
1− τ

n
,

iθ

σn,k

)
= n

τ
exp

(
λk

n

k! σn,k
iθ − θ

2

2

)(
1+ O

(
(|θ | + |θ |3) |log τ |√

�

))
;

and if ε�1/6 ≤ |θ | ≤ ε�1/2, then

Qk

(
1− τ

n
,

iθ

σn,k

)
= O

(
n

|τ | |τ |
−εe−θ

2/2+K |θ |3/√�
)

= O

(
n

|τ |1−ε e−θ
2/4

)
,

for sufficiently small ε.
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These estimates then yield

E(eX∗n,k iθ
) = e−θ

2/2

2π i

∫
H0

eτ

τ

(
1+ O

(
(|θ | + |θ |3) |log τ |√

�

))

×
(

1+ O

( |τ |2
n

))
dτ + O(n−ε)

= e−θ
2/2

(
1+ O

( |θ | + |θ |3√
�

))
+ O(n−ε),

uniformly for |θ | ≤ ε�1/6, where the contour H0 is shown in Figure 3, and similarly

E(eX∗n,k iθ
) = O(e−θ

2/4 + n−ε),

uniformly for ε�1/6 ≤ |θ | ≤ ε�1/2. This completes the proof of Proposition 2.

PROOF OF THEOREM 3. We now apply the Berry–Esseen smoothing inequality (see
Petrov, 1975)

sup
x∈R

∣∣P (X∗n,k < x
)− (x)∣∣ = O

(
1√
�
+ J

)
,

where

J =
∫ ε

√
�

−ε√�

∣∣∣∣∣∣
E

(
eX∗n,k iθ

)
− e−θ

2/2

θ

∣∣∣∣∣∣ dθ

=
(∫

|θ |≤�−1/2
+
∫
�−1/2≤|θ |≤ε�1/6

+
∫
ε�1/6≤|θ |≤ε�1/2

) ∣∣∣∣∣∣
E

(
eX∗n,k iθ

)
− e−θ

2/2

θ

∣∣∣∣∣∣ dθ

=: J1 + J2 + J3.

The integral J1 is assessed as follows:

J1 ≤
∫
|θ |≤�−1/2

∣∣∣∣∣E(e
X∗n,k iθ

)− 1

θ

∣∣∣∣∣ dθ +
∫
|θ |≤�−1/2

∣∣∣∣∣e
−θ2/2 − 1

θ

∣∣∣∣∣ dθ

≤ E(X∗2
n,k)

∫
|θ |≤�−1/2

|θ | dθ +
∫
|θ |≤�−1/2

|θ | dθ

= O(�−1).

By (44), the integral J2 satisfies

J2 = O

(
�−1/2

∫
�−1/2≤|θ |≤ε�1/6

(1+ θ2)e−θ
2/2 dθ + n−ε

∫
�−1/2≤|θ |≤ε�1/6

|θ |−1 dθ

)

= O(�−1/2 + n−ε log�)

= O(�−1/2).
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The last integral J3 is estimated by using (45)

J3 = O

(∫
ε�1/6≤|θ |≤ε�1/2

θ−1e−θ
2/4 dθ + n−ε log�

)

= O(�−1/2).

This proves Theorem 3.

In particular, Theorem 3 implies and completes the case α = 0 in Theorem 1.

An alternative proof of Theorem 1(ii). The above approach based on V W -polynomials
can also be refined to give an alternative proof of Theorem 1. We outline the main steps.

First, by (47) and induction, we can prove that


Vk,m(x) ∼ ξm

(
k

x

)
(k/x)m−1

m
· xmk

k!m
,

Wk,m(x) ∼ ξm

(
k

x

)
xmk

k!m
,

uniformly for 0 < k/|x | < m1/(m−1) and large complex x , where ξm(u) is defined
recursively by

ξm(u) = 1

m − um−1

∑
1≤h<m

(
m

h

)
ξh(u)ξm−h(u)u

h−1 (m ≥ 2),

with ξ1(u) = 1.
Then when k/λn → α, 0 < α < m1/(m−1),

E(Xm
n,k) = [zn]

z

1− z
Wk,m(L(z))

∼ 1

2π i

∫
H

eτ τ−1Wk,m

(
log

(n

τ

))
dτ

∼ ξm(α)

2π i

∫
H

eτ τ−1 (λn − log τ)mk

k!m
dτ

∼ ξm(α)
λmk

n

k!m

1

2π i

∫
H

eτ τ−1−mα dτ

∼ ξm(α)

�(1+ mα)
· λ

mk
n

k!m

∼ ξm(α)
�(1+ α)m
�(1+ mα)

µm
n,k,

for a suitably chosen Hankel contour H. It is straightforward to check, by (7), that

ξm(α)
�(1+ α)m
�(1+ mα)

= νm(α).

Note that this approach does not apply to profiles of binary search trees.
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7. Profiles of Random Binary Search Trees. We consider briefly in this section
random binary search trees whose profiles have been widely studied; see Drmota and
Hwang (2005a) and the references therein. Our method of moments and contraction
method apply. While the results for both trees are very similar, there is no range for
binary search trees where the limit law of the profile is normal.

Let Yn,k denote the number of external nodes at distance k from the root and let Zn,k

be the number of internal nodes at level k (root being at level 0) in a random binary
search tree of n nodes (as constructed from a random permutation of n elements). Then,
for k, n ≥ 1,

Yn,k
d= YJn ,k−1 + Y ∗n−1−Jn ,k−1,

Zn,k
d= Z Jn ,k−1 + Z∗n−1−Jn ,k−1,

with the initial conditions Yn,0 = δn,0 and Zn,0 = 1 − δn,0, where Jn is uniformly

distributed over {0, . . . , n − 1}, the summands are independent and Yn,k
d= Y ∗n,k , Zn,k

d=
Z∗n,k . Note that Zn,k =

∑
j>k Yn, j 2 j−k .

Mean values. The expected value of Yn,k satisfies (see Drmota and Hwang (2005a) and
the references therein)

E(Yn,k) = 2k

n!
s(n, k) = (2λn)

k

�(αn,k)k! n

(
1+ O

(
1

λn

))
,

the O-term holding uniformly for 1 ≤ k ≤ Kλn .
For internal nodes, the asymptotic behavior is different:

E(Zn,k) = 2k

n!

∑
j>k

s(n, j)

∼




2k − (2λn)
k

(1− αn,k)�(αn,k)nk!
, if 1 ≤ k ≤ λn − K

√
λn;

2k (−xn,k), if xn,k := (k − λn)/
√
λn

= o((λn)
1/6);

(2λn)
k

(αn,k − 1)�(αn,k)nk!
, if λn + K

√
λn ≤ k ≤ Kλn,

where the error terms in the first and the third approximations are of the form

O

(
(2λn)

k

|k − λn|2nk!

)
,

and that of the middle is O((1+ |xn,k |3)/
√
λn); see (51) below.

Note that
logE(Yn,k)

λn
→ α − 1− α log

(α
2

)
,

and the right-hand side is positive when α− < α < α+, where 0 < α− < 1 < α+ are the
two real zeros of the equation z− 1− z log(z/2) or e(z−1)/z = z/2. These two constants
are sometimes referred to as the binary search tree constants (or the fill-up level and
height constants, respectively).
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The limit law. Define the map

T : M→M, ν �→ L
(α

2
Uα−1 Z + α

2
(1−U )α−1 Z∗

)
,

where Z , Z∗, and U are independent and L(Z) = L(Z∗) = ν.
The constant s is defined by s := 2 when 2−√2 < α < 2+√2 and 1 < s < " when

α ∈ (α−, α+)\(2−
√

2, 2+√2), where " ∈ (1, 2] solves the equation "(α − 1)+ 1 =
2(α/2)".

Similar to Proposition 1, we have the following properties.

PROPOSITION 3. If α− < α < α+, then the restriction of T to Ms(1) has a unique fixed
point Y (α). In addition, E|Y (α)|" = ∞ for α ∈ (α−, α+)\(2−

√
2, 2+√2).

Limit distribution when α− < α < α+. The above estimates for the mean values of
Yn,k and Zn,k say roughly that internal nodes are asymptotically full (of sizes 2k) for the
first λn − K

√
λn levels, while external nodes are relatively sparse there. Observe that

the second-order term of E(Zn,k) is asymptotically of the same order as E(Yn,k) when
α < 1. This suggests that we should consider

Z̄n,k :=
{

2k − Zn,k, if α− ≤ α < 1,

Zn,k, if 1 ≤ α < α+.

THEOREM 5. Let Y (α) and " be defined as in Proposition 3. Assume that k = αλn +
o(λn). Then, for α− < α < α+,

Yn,k

E(Yn,k)
,

Z̄n,k

E(Z̄n,k)

d−→ Y (α),

with convergence of all moments for α ∈ [1, 2] but not for α outside [1, 2].

Chauvin et al. (2005) proved almost sure convergence for Yn,k/E(Yn,k) when α− <
α < α+; their result is stronger than convergence in distribution but does not imply
convergence of all moments.

As in Theorem 4, we can derive a convergence rate for the ζ2-distance when 2−√2 <
α < 2+√2 and for ζs when α ∈ (α,α+)\(2−

√
2, 2+√2).

Moments of the limit law. The integral moments ηm(α) of Y (α) satisfy (when they
exist) η0(α) = η1(α) = 1 and, for m ≥ 2,

ηm(α) = (α/2)m

m(α − 1)+ 1− 2(α/2)m

×
∑

1≤h<m

(
m

h

)
ηh(α)ηm−h(α)

�(h(α − 1)+ 1)�((m − h)(α − 1)+ 1)

�(m(α − 1)+ 1)
.

Observe that the polynomial m(z − 1)+ 1− 2(z/2)m has two positive zeros z−m and z+m ,
where z−m ∈ [2−√2, 1) and z+m ∈ (2, 2+

√
2] for m ≥ 2. The two sequences of zeros
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Table 1. Approximate numeric values of z−m and z+m for m = 2, . . . , 11.

m

2 3 4 5 6

z−m 0.58578 0.69459 0.76045 0.80420 0.83509
z+m 3.41421 3.06417 2.86989 2.74376 2.65416

m

7 8 9 10 11

z−m 0.85790 0.87533 0.88903 0.90006 0.90912
z+m 2.58668 2.53372 2.49085 2.45532 2.42531

for increasing m satisfy (see Table 1)

z−m ↑ 1, z+m ↓ 2.

Thus the interval [1, 2] is the only range where convergence of all moments holds.
More precisely, ηm(α) is finite when z−m < α < z+m and we have convergence of the

first mth moment (but not the (m + 1)st moment) for Yn,k/E(Yn,k) and Z̄n,k/E(Z̄n,k)

there. In particular, if α− < α ≤ 2−√2 or 2+√2 ≤ α < α+, then Y (α) has no second
moment. This is consistent with the result in Drmota and Hwang (2005a).

Limit distributions when α = 1. Note that Y (1) = Y (2) ≡ 1.
The following theorem states that there is a delicate difference between the limit

distribution of Yn,k and that of Zn,k (properly normalized) when α = 1+ O(1/
√
λn).

THEOREM 6. Assume k = λn + tn,k , where tn,k = o(λn). If |tn,k | → ∞, then

Yn,k − E(Yn,k)

2tn,k(2λn)k−1/(nk!)
M−→ Y ′(1);

if tn,k = O(1), then the sequence of random variables (Yn,k − E(Yn,k))/
√
V(Yn,k) does

not converge to a fixed limit law.
For internal nodes, uniformly for tn,k = o(λn),

Zn,k − E(Zn,k)

(2λn)k/(nk!)
M−→ Y ′(1).

Thus periodicity does not play a special role for internal nodes when α = 1. Note that
the normalizing constants differ by the factor αn,k − 1 = tn,k/λn .

The limit law Y ′(1) can also be defined as

Y ′(1) d= 1
2 Y ′(1)+ 1

2 Y ′(1)∗ + 1+ 1
2 log U + 1

2 log(1−U ),

with independent summands and Y ′(1) d= Y ′(1)∗. Note that the random variables∑
j≥0 Zn, j/2 j have mean equal to

∑
1≤ j≤n j−1 and converge to Y ′(1) (after centered

and normalized).
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Since the distribution of Y ′(1) is uniquely characterized by its moment sequence, the
convergence in distribution is also implied by the Frechet–Shohat moment convergence
theorem.

The quicksort limit law when α = 2

THEOREM 7. Assume αn,k = 2+ tn,k/λn , where tn,k = o(λn). If |tn,k | → ∞, then

Yn,k − E(Yn,k)

2tn,k(2λn)k−1/(nk!)
,

Zn,k − E(Zn,k)

2tn,k(2λn)k−1/(nk!)
M−→ Y ′(2);

if tn,k = O(1), then neither of the two sequences{
Yn,k − E(Yn,k)√

V(Yn,k)
,

Zn,k − E(Zn,k)√
V(Zn,k)

}

converges to a fixed limit law.

The limit law Y ′(2) is essentially the quicksort limit law (see Hwang and Neininger,
2002):

Y ′(2) d= UY ′(2)+ (1−U )Y ′(2)∗ + 1
2 +U log U + (1−U ) log(1−U ),

with independent summands on the right-hand side and Y ′(2) d= Y ′(2)∗.
Convergence in distribution in the case when |tn,k | → ∞ is also implied.
The approach given in this paper gives not only the bimodality of the variances

V(Yn,k) and V(Zn,k) but also the extremal (reachable) orders of |E(Yn,k − E(Yn,k))
m |

and |E(Zn,k − E(Zn,k))
m | for m ≥ 3 when α = 2.

Sketch of proofs. We sketch a few steps for internal nodes, external nodes being similar
and simpler.

Starting from the recurrence for the probability generating function of Zn,k ,

Pn,k(y) = 1

n

∑
0≤ j<n

Pj,k−1(y)Pn−1− j,k−1(y) (n ≥ 2; k ≥ 1),

with P0,0(y) = 1 and Pn,0(y) = y for n ≥ 1, we have the recurrence for the mean value

E(Zn,k) = 2

n

∑
0≤ j<n

E(Zj,k−1) (n ≥ 2; k ≥ 1).

LEMMA 9. The solution to the recurrence

an,k = 2

n

∑
0≤ j<n

aj,k−1 + bn,k

is given explicitly by

an,k = bn,k + 2

n

∑
0≤ j<n

∑
0≤r<k

bj,k−1−r [ur ]
∏

j<�<n

(
1+ 2u

�

)
,

where b0,k := a0,k .
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Then we have, by applying the exact solution with bn,0 = 1 for n ≥ 1 and bn,k = 0
otherwise,

E(Zn,k) = 2

n
[uk−1]

∑
1≤ j<n

∏
j<�<n

(
1+ 2u

�

)
(51)

= 2k[uk−1]
1

u − 1

(
�(n + u)

�(n + 1)�(u + 1)
− 1

)

= 2k

2π i

∮
|u|=αn,k>1

u−k−1 1

u − 1

(
n + u − 1

n

)
du.

Thus

E(Zj,k−1)+ E(Zn−1− j,k−1)− E(Zn,k)

= 2k

2π i

∮
|u|=αn,k

u−k−1nu−1ϕ

(
u,

j

n

)
(1+ O( j−1 + (n − j)−1)) du,

where

ϕ(u, x) = uxu−1 + u(1− x)u−1 − 2

2�(u)(u − 1)
.

Note that, unlike recursive trees and external nodes of binary search trees, ϕ(1, x) is not
zero and ϕ(1, x) = 1+ 1

2 log x + 1
2 log(1− x). This is why there is no periodic case for

internal nodes when α = 1+ O(1/
√
λn).

All estimates required forE(Zn,k) and for its differenceE(Zj,k−1)+E(Zn−1− j,k−1)−
E(Zn,k) can be derived as for recursive trees. For example, we have, uniformly for
λn + K

√
λn ≤ k ≤ Kλn ,

E(Zn,k) ∼ (2λn)
k

(α − 1)�(α)k! n
.

8. Conclusions. Most random trees in discrete probability or data structures have a
height of order either in

√
n or in log n; see Aldous (1991). While profiles and other

related processes defined on random trees of
√

n-height have been thoroughly studied
in the literature (see Aldous, 1991; Drmota and Gittenberger, 1997; Kersting, 1998;
Pitman, 1999; and the references therein), profiles of trees with logarithmic height have
received little attention (except for digital search trees; see Aldous and Shields (1988)
and Jacquet et al. (2001)). This paper shows that the phenomena exhibited in such trees
are drastically different yet highly attractive. A detailed study of more general random
search trees (including m-ary search trees, quadtrees, fringe-balanced binary search trees,
etc.) will be given elsewhere.

Many questions remain unclear at this stage. For example, are there more “humps” or
valleys for higher central moments or cumulants in the central range? Are there interesting
process approximations? How to simulate the limit laws appearing in this paper? What
happens when α = e for recursive trees and α = α−, α+ for binary search trees? Do
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we still have the same convergence in distribution for Xn,k/µn,k when µn,k → ∞?
Note that for recursive trees, E(Xn,k) → ∞ for k ≤ eλn − e1 log λn , where e1 >

1
2 ,

but V(Xn,k) → ∞ for k ≤ (4/log 4)λn − e2 log λn , where e2 > 1/(2 log 4). Since
4/log 4 ≈ 2.88 > e, there is still a small range in k where the mean goes to zero but the
variance goes to infinity.
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