
www.elsevier.com/locate/tre

Transportation Research Part E 42 (2006) 445–472
A novel dynamic resource allocation model for
demand-responsive city logistics distribution operations

Jiuh-Biing Sheu *

Institute of Traffic and Transportation, National Chiao Tung University, 4F, 114 Chung Hsiao W. Rd.,

Sec. 1 Taipei 10012, Taiwan, ROC

Received 5 February 2005; received in revised form 16 May 2005; accepted 20 May 2005
Abstract

This paper presents a dynamic customer group-based logistics resource allocation methodology for the
use of demand-responsive city logistics distribution operations. The proposed methodology is developed
based on the following five developmental procedures, including: (1) specification of demand attributes,
(2) customer grouping, (3) customer group ranking, (4) container assignment, and (5) vehicle assignment.
The numerical results show that the model permits managing both the time-varying customer order data
and logistics resources dynamically with the goal of optimal logistics resource allocation. Particularly, both
the aggregate operational costs and average lead time are reduced by 27.4% and 8.7%, respectively, in a case
study.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Dynamic logistics resource allocation, referring to the mechanism of allocating logistics re-
sources, e.g., containers and vehicles, in quick response to the variety of customer order demands
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changing in short-term time intervals, is of vital importance to efficient demand-responsive city
logistics distribution operations. In fact, recent advances in information and communication
technologies have significantly altered the consuming behavior of end-customers, and aroused
their desire for quick response from the vendor enterprises. Facing such induced issues as dis-
tribution channel restructuring and quick response to the diversity of customer order demands,
the specialized city logistics companies have been urgently requested with the capability of
allocating limited resources, efficiently and effectively, in the process of city logistics distribu-
tion operations. One striking example is found in our study case, where a specialized city logis-
tics enterprise has encountered a serious resource allocation problem resulting from the request
of a contracted tele-shopping company to not only manage the corresponding inventories
but also provide quick-responsive door-to-door logistics services to the corresponding end-cus-
tomers. Accordingly, dynamic allocation of logistics resources defines the feasibility of an effi-
cient demand-responsive city logistics distribution system by enhancing the resource utility as
well as by shortening the pre-route work process time in quick response to changes in customer
demands.

Despite the importance of dynamic logistics resource allocation in demand-responsive city
logistics distribution operations, studies in terms of incorporating such a mechanism into the com-
prehensive scheme of demand-responsive city logistics distribution operations are rather limited in
previous literature. In contrast, most previous research appears to focus mainly on the en-route
freight transportation problems, e.g., vehicle routing problems (VRP), and the corresponding fleet
management problems (Altinkemer and Gavish, 1990; Bramel and Simchi-Levi, 1995; Gendreau
et al., 1996; Powell, 1987; Powell and Carvalho, 1997; Powell et al., 2002; Mahmassani et al., 2000;
Secomandi, 2000). Among these, two typical VRP-induced problems, including the inventory
routing problems (IRP) and multi-commodity fleet management problems are illustrated below
for discussion.

Essentially, IRP, which is also termed as the vendor-managed distribution system in recent lit-
erature (Beltrami and Bodin, 1974; Burns et al., 1985; Federgruen et al., 1986; Blumenfeld et al.,
1987; Dror and Ball, 1987; Larson, 1988; Webb and Larson, 1995; Herer and Levy, 1997; Larsen,
2001; Ghiani et al., 2003), can be regarded as an enrichment of vehicle routing problems (VRP) to
consider customers� inventory factors, such as storage capacity, consumption characteristics and
the consequences of stockouts in determining logistics distribution strategies. Such an idea of
incorporating both supply-oriented routing and demand-oriented inventory considerations in a
logistics distribution system was first proposed by Beltrami and Bodin (1974), followed by some
literature which aimed to minimize either the fleet size required for goods delivery in the strategic
domain (Larson, 1988; Webb and Larson, 1995) or the corresponding distribution costs in the
operational domain (Burns et al., 1985; Federgruen et al., 1986; Blumenfeld et al., 1987; Dror
and Ball, 1987; Herer and Levy, 1997). As noted in Dror and Ball (1987), one distinctive feature
of IRP models is the ability to ensure that none of the customers run out of the commodity at any
time in the planning horizon of logistics distribution, and accordingly, it seems that IRP may be
more practical for the operations of demand-responsive logistics distribution, relative to classical
VRP approaches.

Although the aforementioned demand-driven operational factors are considered in the existing
IRP models, the issues of multiple logistics resource allocation in the supply domain still remain in
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the corresponding model formulation process. It is noteworthy that most classical IRP models
aim to define the corresponding inventory costs, e.g., holding costs and shortage costs, incurred
in the demand side rather than the supply side. And thus, it may contribute to the inadequacy of
the existing IRP models in characterizing the dynamics of logistics resources as well as their capa-
bility in allocating the corresponding resources for quick response to short-term changes in cus-
tomer demand patterns.

In contrast to prior IRP approaches, which attempt to incorporate customers� replenishment
requirements into routing problems, studies of multi-commodity fleet management concentrate
particularly on the supply side regarding the utilization of vehicular fleets and the corresponding
resource assignment so as to match the given customer demands characterized with either deter-
ministic or stochastic features (Shan, 1985; Chih, 1986; Powell, 1986, 1987; Crainic and Delorme,
1993; Gendron and Crainic, 1995; Cheung and Powell, 1996; Powell and Carvalho, 1997; Powell
et al., 2002; Hall, 1999; Chan et al., 2001; Godfrey and Powell, 2002a,b; Leung et al., 2002; List
et al., 2003). For instance, the issue of empty container reallocation under demand uncertainty
was tackled in Crainic and Delorme (1993), and followed by Gendron and Crainic (1995), which
considered both the loaded container delivery and empty container reutilization issues for heter-
ogeneous container fleet management of maritime shipping companies. The distinctive feature of
these two models is the ability to integrate the allocation of empty containers into classical loaded
container delivery problems, and then solve it with relatively efficient algorithms for managing
system-wide heterogeneous resource allocation. Similar concepts are applied in Hall (1999) to deal
with empty truck problems in a less-than-truckload (LTL) trucking network, where the effects of
empty truck movements are referred to as imbalance costs in fleet management. A more general
model of resource allocation can also be found in McGinnis (1997), which regards sizing vehicle
fleets as a specific example of sizing system-wide reusable resources.

In addition, there is a growing attempt in recent literature to investigate the issues of assigning
pre-determined multiple commodities to multiple types of vehicles and corresponding resources
(Powell and Carvalho, 1997; Powell et al., 2002; Mahmassani et al., 2000; Godfrey and Powell,
2002a,b; Smilowitz et al., 2003). Among those studies, fleet management is tackled specifically
with network-wide commodity-based flow problems, involving both intra-node and inter-node
physical distribution activities, such as vehicle loading and routing, respectively. Furthermore,
the deferred item and routing problem (DIVRP) addressed in Smilowitz et al. (2003) can be re-
garded as a special case of the aforementioned multi-commodity flow problems since it deals spe-
cifically with delivering deferred items by different types of transportation modes to improve the
utility of transportation modes in a distribution network. Nevertheless, in-depth investigation in
the nature of delivery-commodity attributes and their dynamic effects on allocating logistics re-
sources before the phase of vehicle dispatching appear limited in the previous literature. Further-
more, the computational efficiency under large-scale network flow conditions also remains to be a
difficult challenge.

Based on the literature review, several generalizations are summarized in the following to clar-
ify the significance of this study.

(1) In the field of traditional freight transportation, there is an extensive amount of literature
in relation to VRP and container/truck assignment for multi-commodity multi-modal
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transshipment problems. However, techniques of clustering customer orders dynamically
and integration with multi-resource assignment for logistics distribution operations are
scarce. In most early literature, the customer demands were assumed to be known with either
deterministic or stochastic properties, and then input directly into a global optimization
model for multi-resource assignment.

(2) Some early literature of logistics management may shed light on proposing either the
principles of customer grouping or the utilization of classical clustering techniques for
route segmentation and fleet management (Fisher and Jaikumar, 1981; Altinkemer and
Gavish, 1990; Bramel and Simchi-Levi, 1995; Bramel et al., 1999; Ballou, 2002). Neverthe-
less, their treatments may not be applicable for dynamical logistics resource allocation in
response to a variety of customer order demands in the operational level, as addressed in this
study.

(3) Development of multi-objective programming models to deal with the general resource allo-
cation problems can be readily found in the literature (Mine and Ohno, 1979; Chankong and
Haimes, 1983; Hussein and Abo-Sinna, 1995; Lai and Li, 1999; Ross, 2000). However, as
maintained previously, the integration with the specific phase of data clustering is rare in
the resource allocation literature.

Accordingly, in this study, we propose a comprehensive operational framework together with spe-
cific operational models for dynamic logistics resource allocation. Compared to previous litera-
ture, the proposed methodology exhibits two distinctive features. First, considering the
dynamics of customer demand attributes and their effects on city logistics distribution operations,
five sequential phases, including (1) order entry processing, (2) customer grouping, (3) customer
group ranking, (4) container assignment, and (5) vehicle assignment, are incorporated into the
proposed framework to dynamically allocate multi-type logistics resources prior to vehicle dis-
patching.1 Second, using the phases of customer grouping and ranking, customer order data
are dynamically updated and clustered to facilitate inventory assignment and the corresponding
resource allocation. Here, employing advanced clustering techniques, e.g., fuzzy clustering
approaches, customer orders are efficiently classified into several groups associated with specific
service priority to optimize the availability of logistics resources.

The remainder of this paper is organized as follows. The primary procedures for methodology
development and the fundamentals of the proposed method are presented in Section 2. A numer-
ical study and the corresponding results generated via the proposed method are summarized in
1 In the previous literature, it is found that some multi-resource allocation problems are formulated with globally
optimized models. Nevertheless, some assumptions in terms of the problem definition either in the demand side or
supply side are needed, and thus may lead these global optimization models too simplified to be true. In addition, the
corresponding model formulation with global optimization programming approaches may have some difficulties in
searching optimal solutions under conditions of large-scale distribution networks and tremendous customer demand
data. Furthermore, these globally optimized models may not have the features of updating and grouping customer
orders dynamically in quick response to the diversity of customer orders changing in short-term time intervals. That�s
why we formulate such a dynamic logistics resource allocation model with an architecture embedding sequential
mechanisms rather than a global optimization model.
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Section 3 to demonstrate the feasibility of the proposed method. Section 4 summarizes the con-
cluding remarks.
2. Methodology development

The architecture of the proposed dynamic logistics resource allocation system is composed
mainly of five sequential operational phases: (1) order processing, (2) customer grouping, (3) cus-
tomer group ranking, (4) container assignment, and (5) vehicle assignment. Here phases (1), (2),
and (3) refer to the dynamic demand-oriented data processing conducted for the purpose of
grouping customer orders with respective service priority. The resulting output is then input to
the remaining phases for dynamic optimization in allocating the time-varying logistics resources
available. The aforementioned five sequential mechanisms are carried out each time when the
database of customer entries is input to trigger a new logistics distribution mission. The corre-
sponding models and algorithms embedded in these operational phases are detailed in the follow-
ing subsections.

2.1. Order processing

The phase of order processing aims to determine the target customer orders which are pro-
cessed and served in a given time horizon T. To facilitate model formulation, it is assumed that
the cycle time of customer order processing of the proposed logistics system is fixed, and is equal
to T. In addition, each given time horizon T is assumed to embed several time steps referring to
the headways of vehicle dispatching to serve group-based logistics distribution in the given time
horizon T. Correspondingly, the proposed logistics system examines the order entry database at
the beginning of each given time horizon T for grouping the customers, and then for multi-step
resource allocation and management in that horizon. Note that the length of T may depend on
the operational conditions of the individual company.

To accomplish the aforementioned operational purpose, the current order entry database is
examined at the beginning of a given time horizon T (T) with the following collection conditions.
L 6 T � ti 6 L ð1Þ

T 6 �ti ð2Þ

where �L and L represent the allowable maximum and minimum lead times that the proposed logis-
tics system commits to customers; ti and �ti represent the time of order entry and the corresponding
delivery deadline associated with a given customer i, respectively; T and T represent the onset and
end of the given time horizon T. Eq. (1) denotes the upper bound of the lead time associated with
a given customer i, and Eq. (2) is involved to ensure that the corresponding delivery deadline con-
straint is not violated. The resulting decision rule of order selection is illustrated in Fig. 1. Using
the above collection conditions, the order entry database is examined at T, and those order en-
tries, which satisfy the above collection conditions, are considered for further grouping in the next
operational phase. Meanwhile, the remaining order entry database is updated with new order en-
tries for the order processing in the next time horizon.
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Fig. 1. Illustration of decision rules for time-varying order selection.
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2.2. Customer grouping

The purpose of this phase is to cluster commodities based on the data of customer order entries
identified in the previous phase. Considering the complexity of multi-attribute customer orders, a
two-stage customer grouping algorithm is proposed to expedite the corresponding clustering
mechanism. The proposed two-stage customer-grouping algorithm scheme is presented in
Fig. 2. The major difference between these two stages is rooted in the nature of criteria used
for customer grouping. The first stage clusters the commodities of customer orders using hard cri-
teria, e.g., the temperature level required for reservation and the service zone, and is followed by
the second stage, which clusters these commodities in sequence employing fuzzy clustering tech-
niques based on linguistic measures of the evaluation criteria. Details of the corresponding pro-
cedures and models are presented below.

In the first cluster stage, two hard criteria, i.e., the required reservation temperature level and
service zone, are utilized. The utilization of these two hard criteria is motivated mainly by two
factors: container requirements and delivery efficiency, which are considered in practical logistics
operations. In general, considering the operational temperature requirement, commodities can be
classified into three categories: normal, low-temperature, and frozen goods, where the second and
third ones need specific temperature requirements for the reservation in the process of logistics
distribution operations. In addition, typical logistics service companies may adopt zone-based
delivery service strategies to facilitate vehicle routing and scheduling (Ballou, 2002). Correspond-
ingly, customers are clustered into several groups bounded by specific service zones, based mainly
on their locations so as to assign common logistics resources, including containers, vehicles, and
drivers, to serve customers in the same groups. Accordingly, both the aforementioned hard crite-
ria are proposed for customer clustering in the first stage.
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Fig. 2. The proposed two-stage customer-grouping algorithm scheme.
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After the hard clustering in the previous stage, the commodities of customer orders in each
hard-clustered group are further clustered using fuzzy clustering techniques, which have exten-
sively been used in diverse areas for either data compression or data categorization (Bezdek,
1973; Cannon et al., 1986; Dave and Bhaswan, 1992; Frigui and Krishnapuram, 1996; Sheu,
2002; Tao, 2002). Conveniently, the analytical results from our previous research (Hu and Sheu,
2003) have been employed to determine four customer attributes for the use of fuzzy clustering in
this stage. They are defined as follows:

(1) x1
ihðkÞ represents the time difference between the deadline to customer ih in a given hard-clus-

tered group h and the current vehicle-dispatching time step k. In real-world operations, it is
permissible to deliver products to those customers associated with close distribution dead-
lines, and thus, these customers can be categorized into a group that is served by the same
vehicular fleet.

(2) x2
ihðkÞ corresponds to the value of the product distributed to customer ih in a given hard-clus-

tered group h at a given vehicle dispatching time step k, and to a certain extent it may depend
on the market price of the product. In real-world distribution operations, high-value
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products may be segmented from other products, and handled with specific security mea-
sures for safe delivery.

(3) x3
ihðkÞ represents the external compatibility in terms of the products ordered by customer ih in

a given hard-clustered group h, relative to the products that are scheduled to be distributed
to customers in a given customer group at time step k. This variable is specified to efficiently
provide bulk delivery service to customers in the same group. The higher the external com-
patibility of products in a given group, the more efficient will be the bulk delivery service in
distribution operations.

(4) x4
ihðkÞ represents the internal compatibility in terms of the products associated with a given

customer ih in a given hard-clustered group h at a given vehicle-dispatching time step k.
In contrast with x3

ihðkÞ; x
4
ihðkÞ can be used to determine if multiple delivery services are needed

for any given customer.

Using the attributes specified above, each customer order can then be represented by a specific
multi-attribute datum used for further fuzzy clustering analysis.

The proposed fuzzy clustering stage is executed through three major procedures, including: (1)
binary transformation, (2) generation of fuzzy correlation matrix, and (3) customer grouping. The
primary steps executed in the aforementioned procedures are detailed in the following.

2.2.1. Binary transformation
The mechanism of binary transformation aims to transform the customer order attributes col-

lected from the processed order entry data into binary data. Three sequential steps are involved in
this mechanism. First, we specified five linguistic terms, including ‘‘very high’’, ‘‘high’’, ‘‘med-
ium’’, ‘‘low’’, and ‘‘very low’’, which represent five levels of qualitative criteria to characterize cus-
tomers� order attributes. Second, using the order entry data clustered in the previous stage, the
attributes associated with each customer order datum were measured using the aforementioned
five linguistic terms. Third, based on the mapping relationships presented in Table 1, the linguistic
terms associated with the attributes of customers� orders were transformed into binary codes. As
can be seen in Table 1, each linguistic item is represented by a specific set of four bits such as
‘‘0000’’ for the linguistic item ‘‘very low’’, and ‘‘1111’’ for ‘‘very high.’’ Thereby, each given order
attribute p measured from customer ihðxp

ih
ðkÞÞ can then be transformed into binary codes with four

bits ðrp
ih;j
ðkÞÞ, which can be expressed as:
Table
Binar

Lingu

Very
High
Mediu
Low
Very
xp
ih
ðkÞ ¼ ½rp

ih;1
ðkÞ;rp

ih;2
ðkÞ;rp

ih;3
ðkÞ;rp

ih;4
ðkÞ� ð3Þ
1
y transformation of the specified five linguistic terms

istic measure Binary code

rp
i;1ðkÞ rp

i;2ðkÞ rp
i;3ðkÞ rp

i;4ðkÞ

high 1 1 1 1
1 1 1 0

m 1 1 0 0
1 0 0 0

low 0 0 0 0
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To facilitate processing the heterogeneity of customers� order attributes, the procedure of stan-
dardization with respect to ðrp

ih;j
ðkÞÞ is conducted, and herein, the standardized value of ðrp

ih;j
ðkÞÞ

(i.e., ~rp
ih;j
ðkÞ) is given by
~rp
ih;j
ðkÞ ¼

rp
ih;j
ðkÞ � �rp

j ðkÞ
Sp

j ðkÞ
ð4Þ
where �rp
j ðkÞ and Sp

j ðkÞ correspond to the values of the mean and standard deviation with respect to
rp

ih;j
ðkÞ, respectively, and they are denoted by
�rp
j ðkÞ ¼

PMh

ih¼1r
p
ih;j
ðkÞ

Mh ð5Þ

Sp
j ðkÞ ¼

PMh

ih¼1 rp
ih;j
ðkÞ � �rp

j ðkÞ
� �2

Mh � 1

264
375

1=2

ð6Þ
where Mh represents the number of customers in a given hard-clustered group, served at the cur-
rent time step. Therefore, we have the standardized form ð~xp

ih
ðkÞÞ associated with each customer�s

order attribute, given by
~xp
ih
ðkÞ ¼ ~rp

ih;1
ðkÞ; ~rp

i;2ðkÞ; ~r
p
ih;3
ðkÞ; ~rp

ih;4
ðkÞ

h i
ð7Þ
2.2.2. Generation of fuzzy correlation matrix
At this stage, for each hard-clustered group h, a time-varying Mh · Mh fuzzy correlation matrix

(Wh(k)) is constructed in which each element ðwrh;shðkÞÞ represents the correlation between a given
pair of customers rh and sh. Herein, Wh(k) and wrh;shðkÞ are given, respectively, by
WhðkÞ ¼ w1ðkÞjw2ðkÞj � � � jwMhðkÞ½ �Mh�Mh ¼

w11ðkÞ w12ðkÞ w13ðkÞ � � � w1MhðkÞ

w21ðkÞ w22ðkÞ � � � � � � ..
.

w31ðkÞ � � � . .
. ..

.

..

.
� � � � � � . .

. ..
.

wMh1ðkÞ � � � � � � � � � wMhMhðkÞ

26666666664

37777777775
Mh�Mh

ð8Þ

wrh;shðkÞ ¼ 1� 1

k1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX4

p¼1

X4

q¼1

½~rp
rhqðkÞ � ~rp

shqðkÞ�
2

vuut ð9Þ
where k1 is a parameter which needs to be calibrated to ensure that wrh;shðkÞ is bounded with the
corresponding upper and lower bounds, i.e., 1 and 0, respectively.
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2.2.3. Customer grouping
This procedure executes the mechanism of clustering the customers in each given hard-clustered

group into several sub-groups with the objective that the customers assigned to the same sub-
group are characterized by relatively higher similarity in terms of their attributes, compared to
the members in any other sub-groups. Fig. 3 presents the proposed customer grouping logic,
and the major computational steps are summarized as follows:

Step 0: Initialize the computational iteration for a given hard-clustered group; input the estimated
fuzzy correlation matrix (i.e., Eq. (8)); select a given hard-clustered group h to start the
iteration from the first column of the fuzzy correlation matrix (Wh(k)), i.e., letting sh = 1.

Step 1: Given a target customer sh, remove the row of Wh(k) associated with customer sh (i.e.,
wshðkÞT Þ. Note that the column of the fuzzy correlation matrix associated with the given
customer shðwshðkÞÞ is targeted for the use of clustering other possible customers into
the same sub-group. In contrast, the elements of wshðkÞT are redundant in the following
clustering process, and thus they are removed in this step.

Step 2: Find the largest element in wshðkÞ, denoted by _wrhshðkÞ, and then conduct the following
cluster procedures in sequence:
• If the condition _wrhshðkÞ > k2 holds,2 then assign customer rh to the same sub-group as

customer sh, and remove the row of Wh(k) associated with customer rh.
• Go back to Step 2 to continue checking the other elements of wshðkÞ until there is no

element that meets the aforementioned clustering condition.
• Remove wshðkÞ from Wh(k).
• If there are any customers who have not been assigned at this stage, let any given un-

assigned customer be the target customer, and then go back to Step 1 to continue the
fuzzy clustering process until all the customers are assigned.
Step 3: Conduct the following termination rules to stop the mechanism of customer grouping:
• If all the hard-clustered groups are processed, then stop the fuzzy clustering algorithm.
• Otherwise, select a given un-processed hard-clustered group, and then go back to Step 0

to initialize the fuzzy clustering process for the target hard-clustered group.
2.3. Customer group ranking

After clustering the customer order entries, the next step is to rank the clustered customer
groups for their priority of logistics resource allocation. To simplify the computational procedure,
2 Here, k2 represents a threshold for identifying the relative similarity between a given pair of customers, and is
tentatively set to be 0.7 using trial-and-error tests in this study. In practice, k2 determines the number of iteration steps
and the number of clusters, both of which exhibit a trade-off relationship in the clustering procedure. For instance, a
lower value of k2 may speed up the clustering procedure as indicated by the reduced iteration steps; and meanwhile, it
may cause a reduced number of customer groups, which loosens the requirement for identifying the mutual similarity of
intra-group customers. Accordingly, to avoid any unrealistic clustering results, e.g., an unusually large number of
clustered customer groups in queue waiting for delivery services due to inadequate resources, and vice versa, the
specification of k2 should also take into account the numbers and capacities of available logistics resources for practical
applications.
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Fig. 3. Proposed fuzzy clustering logic for customer grouping.
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the customers� order attributes in terms of the time difference between vehicle dispatching and
delivery deadline and commodity prices (i.e., x1

ihðkÞ and x2
ihðkÞ), together with the hard-clustering
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criterion in terms of the reservation temperature level specified in the previous customer grouping
stage remain to be the determinants at this stage.

The group ranking estimation procedure contains two main steps. First, each level of reserva-
tion temperature (t) is associated with a specific weight (xt) which is predetermined by logistics
operators. In general, the corresponding weight associated with the frozen-temperature level is
suggested to be the highest value, followed by the weight associated with the low-temperature le-
vel, and then the weight associated with the normal-temperature level, considering the life cycle of
goods and specific logistics distribution requirements. Second, the clustered customer groups (g)
are ranked by comparing the corresponding group-ranking indexes (dg(k)) given by
dgðkÞ ¼
P
8ig2g

P2
p¼1xtgðkÞ � ~xp

igðkÞ
Mg

ð10Þ
where xtg represents the corresponding weight associated with a given customer group which
needs a specific reservation temperature requirement tg; Mg represents the number of customers
assigned in a given customer group g; ~xp

igðkÞ represents the quantity of the linguistic measurement
associated with the attribute (p) of a given customer ig, and the integers ranging from 0 to 4 are
specified to conveniently quantify the pre-specified five linguistic terms from ‘‘very low’’ to ‘‘very
high’’, respectively. Here the customer order data which are employed to group customer orders
are used again to rank the customer groups.
2.4. Container assignment

After ranking the customer groups, this phase triggers the mechanism of assigning appropriate
containers to package customer orders with the goals of maximizing the aggregate container load-
ing rate and minimizing the aggregate packaging costs, as presented in Eqs. (11) and (12), respec-
tively. Note that the containers assigned at this stage refer to small-sized containers, e.g., boxes
and cases, suitable for city logistics distribution operations. The large-sized containers used for
line-haul transportation may be associated with the given freight vehicles, and their corresponding
assignment problems are quite similar to vehicle assignment problems, thus are not considered in
this phase.
Max CR ¼
X
8k2T

X
8g

X
8jg

CRjgðkÞ ð11Þ

Min PC ¼
X
8k2T

X
8g

X
8jg

PCjgðkÞ ð12Þ
where CRjgðkÞ and PCjgðkÞ represent the disaggregate container loading rate and the correspond-
ing packaging costs associated with a given container jg, which is suitable for the use in a given
customer group g. Herein, CRjgðkÞ and PCjgðkÞ are given, respectively, by
CRjgðkÞ ¼
X
8ig

vigjg � Y igjgðkÞeV jg

ð13Þ

PCjgðkÞ ¼
X
8ig

cjg � Y igjgðkÞ ð14Þ
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where cjg represents the corresponding packaging costs when a given container jg is utilized to
serve a given customer group g; vigjg is the volume of commodity ordered by a given customer
ig and served by a given container jg; eV jg represents the capacity of a given container jg; Y igjgðkÞ
is specified as a 0-1 integer decision variable, which is equal to 1 if the commodity of customer
ig is served by container jg at a given time step k; otherwise it is 0.

Considering the diverse potential effects of the above two goals (i.e., maximizing the aggregate
container loading rate and minimizing the aggregate packaging costs) on the corresponding con-
tainer assignment problem, two positive weights (i.e., -CR and -PC) are introduced. In addition,
the difference in measurement scales associated with fill rates and costs may also influence the
determination of optimal solutions. Accordingly, the aforementioned container assignment prob-
lem is re-formulated as a composite multi-objective optimization problem (U) given by
Max U ¼ -CRCR� -PCPC ð15Þ

where -CR and -PC are positive, and the sum of these two weights is 1; CR and PC represent the
normalized forms of the corresponding aggregate container loading rate and packaging costs,
respectively, and are given by
CR ¼ CR� CRmin

CRmax � CRmin

ð16Þ

PC ¼ PC� PCmin

PCmax � PCmin

ð17Þ
In Eqs. (16) and (17), CRmax and PCmax represent the estimates of aggregate container loading
rate and the corresponding packaging costs measured in the case in which only the loading-rate
maximization problem is considered (i.e., -CR is set to be 1); and in contrast, CRmin and PCmin

represent the corresponding estimates measured in the case involving the objective function of
cost-minimization (i.e., -PC is set to be 1).

In addition, considering the logistics requirements limited by the corresponding operating
capacities, seven respective sets of constraints, shown as follows, are involved in the proposed
model.
X

8k2T

X
8g

X
8ig

vigjg � Y igjgðkÞ 6 eV jg 8jg ð18Þ

X
8k2T

X
8g

X
8ig

hig � vigjg � Y igjgðkÞ 6 ~Hjg 8jg ð19Þ

X
8k2T

X
8g

X
8ig

Y igjgðkÞ 6 1 8jg ð20Þ

X
8jg

vigjg � Y igjgðkÞ ¼ vig 8ig; k ð21Þ
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8k2T

X
8g

X
8ig

Y igjgðkÞ 6 ~Q
T

jg 8jg ð22Þ
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X
8k2T

X
8g

X
8ig

X
8jg

Y igjgðkÞ 6 QT
g ð23Þ

Y igjgðkÞ ¼ 0 or 1 8ig; jg; k ð24Þ

where hig represents the commodity density associated with the goods ordered by a given customer
ig; ~Hjg represents the loading weight limit associated with a given container jg; vig represents the
total amount of goods ordered by a given customer ig; ~Q

T

jg represents the total number of a given
container jg available in a given time horizon T; and in contrast, QT

g represents the total number of
containers available for the use of a given customer group g in a given time horizon T. Herein,
Eqs. (18) and (19) refer to the disaggregate container loading limits in terms of volume and
weight, respectively; Eq. (20) is specified to ensure that any given container is assigned to merely
serve a single customer, and correspondingly, the case of mixed-order packaging is not permitted
in this phase; Eq. (21) implies that the case of multiple containers assigned to a given customer is
allowed considering the customers� large-order cases; Eqs. (22) and (23) represent the correspond-
ing limitations of disaggregate and aggregate container availability in a given time horizon T,
respectively; and Eq. (24) denotes the characteristics of decision variables Y igjgðkÞ.
3. Vehicle assignment

This phase aims to assign containers resulting from the previous phase to appropriate vehicles
under the three goals, i.e., maximizing the aggregate vehicle loading rate (VR), and minimizing
both the corresponding aggregate operational costs (OC) and delivery time (DT). In addition,
one distinctive feature of the proposed model is that in addition to vehicles standing by in the de-
pot, the time-varying proportion of en-route vehicles returning to the depot during a given time
horizon T is also considered for the use of vehicle assignment in this phase. Conveniently, the mul-
ti-objective optimization based approach is used in this phase, and the corresponding composite
objective function (U) is given by
Max U ¼ -VRVR� -OCOC� -DTDT ð25Þ

where -VR, -OC and -DT are positive, and the sum of these three weights should be equal to 1;
VR;OC and sDT represent the normalized forms of the corresponding aggregate operations vehi-
cle loading rate, operational costs and delivery time, respectively, and are given by
VR ¼ VR� VRmin

VRmax � VRmin

ð26Þ

OC ¼ OC�OCmin

OCmax �OCmin

ð27Þ

DT ¼ DT�DTmin

DTmax �DTmin

ð28Þ
In Eqs. (26)–(28), VRmax represents the estimate of the aggregate vehicle loading rate measured in
the case in which the loading rate-maximization problem is considered (i.e., -VR is set to be 1);
and similar treatments are applied to estimate OCmin and DTmin, respectively. In contrast, the
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other parameters, including VRmin, OCmax, and DTmax, are measured under the corresponding
worst cases. Here, VR, OC and DT presented in Eqs. (26)–(28) can be further expressed as
VR ¼
X
8k2T

X
8l

X
8g

P
8jg
eV jg

� �
� ZglðkÞeU l

ð29Þ

OC ¼
X
8k2T

X
8l

X
8g

dlg � ZglðkÞ ð30Þ

DT ¼
X
8k2T

X
8l

X
8g
ðk � T Þ þ

X
8g02Gk

Mg0 � stg0
� �

þMg � stg

" #
� ZglðkÞ ð31Þ
where dlg represents the unit operational costs associated with a given vehicle l, which is scheduled
to serve a given customer group g; g 0 represents any given customer group, which has a relatively
higher group-ranking index dg0 than dg; Gk represents the customer sets scheduled to be served at a
given time step k; Mg0 and Mg represent the number of customer groups g 0 and g, respectively; stg0

and stg represent the expected delivery times associated with customer groups g 0 and g, respec-
tively; Zgl(k) is specified as a 0-1 integer decision variable, which is equal to 1 if a given customer
group g is served by vehicle l at a given time step k; otherwise it is 0.

In addition, considering the limitations in terms of vehicle availability and the corresponding
capacity associated with each type of vehicle, several sets of constraints, shown as follows, are in-
volved in the proposed model.
XNlðkÞ

l¼1

X
8g

X
8jg

eV jg

 !
� ZglðkÞ 6

XNlðkÞ

l¼1

eU l 8k ð32Þ
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8g
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8jg

eV jg � ZglðkÞ 6 eU l 8l; k ð33Þ

X
8g

X
8jg

hjg � eV jg � ZglðkÞ 6 ~Hl 8l; k ð34Þ

ZglðkÞ ¼ 0 or 1 8g; l; k ð35Þ
where eU l represents the capacity of a given vehicle l; hjg represents the density of a given container
jg; ~Hl represents the loading weight limit associated with a given vehicle l; Nl(k) represents the
time-varying number of vehicles available at a given time step k. In the proposed model, Nl(k)
is dynamic, and determined at each given time step k by the number of available vehicles remain-
ing at the previous time step k � 1 (Nl(k � 1)) coupled with the expected number of en-route vehi-
cles which may return to the depot before the end of the current time step k. Accordingly, we have
Nl(k) given by
NlðkÞ ¼ N lðk � 1Þ þ int E ~N � N lðk � 1Þ
� �

� rðkÞ
� �

� 1� eð Þ
	 


8k ð36Þ
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where ~N represents the total number of available vehicles; r(k) is the time-varying possibility with
which any given en-route vehicle may return to the depot at a given time step k; and e represents
the maximum allowable error percentage associated with the estimation of r(k). Note that under
the intelligent transportation systems (ITS) operational environment, the positions of en-route
vehicles can be readily monitored through related information technology, e.g., global positioning
systems (GPS) and two-way communication systems, thus leading to the availability of the afore-
mentioned en-route vehicle information.

In the aforementioned constraints, Eqs. (32) and (33) represent the aggregate and disaggregate
loading capacity limits of vehicles, respectively; in contrast, Eq. (34) denotes the disaggregate
loading weight limit associated with each given vehicle, and Eq. (35) specifies the mathematical
characteristics of decision variables Zgl(k) mentioned previously.

Note that once the aforementioned logistics resources allocation mechanisms are executed, the
corresponding output results can be readily integrated with any existing vehicle routing model to
solve the corresponding vehicle routing problem for each customer group without any extra bur-
den and incompatible problem. This is the reason for proposing the incorporation of such a
sophisticated logistics resource allocation method into a comprehensive logistics distribution
framework in spite of remarkable advances that have been made in previous literature to improve
vehicle routing problems.
4. Numerical results

The main purpose of this numerical study is to demonstrate the potential advantages of the pro-
posed dynamic logistics resource allocation methodology used in a practical logistics distribution
case, relative to the existing strategies. The case study examines a specialized city logistics enter-
prise, which contracts with a tele-marketing company to manage the corresponding inventories
and provides door-to-door logistics services to the corresponding end-customers. One of the logis-
tics enterprise�s warehouses is located in the northeast of Taipei in Taiwan to mainly serve the cus-
tomers of the contracted tele-marketing enterprise, and conveniently, it is selected as the study
site. To facilitate conducting this numerical study, including data collection, we contacted the
company to obtain a part of the customer order entry data for the generation of input data,
and the parameters required by the proposed method. Herein, samples of customers were drawn
from a 1-day order-processing database. Accordingly, the relative performance of the proposed
method was evaluated by comparing with the existing logistics resource allocation strategy, given
the same customer demand data and logistics requirements, e.g., the number of drivers and the
availability of vehicles.

The original logistics resource allocation strategies, including container and vehicle loading
strategies, of the targeted logistics enterprise were mainly based on personal judgment of the man-
ager of the corresponding logistics-related sector, subject to the deadlines of customer orders. The
available fleet size of this study case was 14 vehicles, including two vehicles specifically for frozen-
food delivery (coded FM-1 and FM-2), two specifically for low-temperature food delivery (coded
LM-1 and LM-2), and the rest 10 normal trucks for normal-product delivery. Among these 10
normal-product freight vehicles, four were large-sized (coded L-1 to L-4) with the corresponding
loading capacity of 350 · 187 · 180 cm3; another four were medium-sized (coded M-1 to M-4)
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with the corresponding loading capacity of 285 · 163 · 165 cm3; and the others were small-sized
(coded S-1 and S-2) with the loading capacity of 125 · 65 · 40 cm3. For convenience in the vehic-
ular loading, three types of boxes used for loading products were utilized with volumes of
150 · 80 · 160 cm3 (large-size), 62 · 43 · 35 cm3 (medium-size), and 43 · 40 · 25 cm3 (small-size).
The potential combinations of the aforementioned vehicular loading capacities and package vol-
umes are summarized in Table 2. The original frequency of daily vehicle dispatch of the targeted
logistics company was three times a day, departing from the corresponding warehouse at 9:00,
13:00, and 17:00, respectively. The dispatched fleet size in each delivery mission depended primar-
ily on the volume of the ordered goods, but was subject to the maximum fleet size available. Here-
in, vehicular en-routing paths depended primarily on the experiences of the corresponding drivers
and their responses to the present road traffic conditions.

In order to generate a database used to illustrate the applicability of the proposed method, a
total of 136 order entries scheduled to be served in a given 1-day testing period were selected
as the input database following the order-processing criteria mentioned previously in the first
phase of the proposed approach (see Eqs. (1) and (2)). The corresponding geographical relation-
ships of these customers are depicted in Fig. 4, which graphically bounds these customers by two
service zones (i.e., the eastern and western delivery service zones), consistent with the existing
delivery service zones adopted by the targeted logistics company.

Following the second and third phases of the proposed logistics resource allocation system (i.e.,
customer grouping and ranking), the collected order entries have been reprocessed and then clas-
sified the customers into specific groups through the proposed algorithms. The numerical results
of customer grouping are summarized in Table 3, which also shows the clustered customer group
numbers and service priority.

After the aforementioned customer grouping and ranking determination phases, the corre-
sponding resource assignment mechanisms including container and vehicle assignments were con-
ducted by following the procedures of phases 4 and 5 (i.e., container and vehicle assignment) of
the proposed method. Here, the weights associated with the corresponding objective function of
the container assignment phase (i.e., -CR and -PC shown in Eq. (15)) are tentatively set to be 0.5;
and similarly, the weights introduced for the vehicle assignment (i.e., -VR, -OC and -DT shown in
Eq. (25)) are tentatively set to be 1/3 in this test scenario. Nevertheless, the setting of these weights
Table 2
Summary of vehicle loading combinations

Vehicular loading capacity (cm3) Box volume (cm3) Maximum number of boxes loaded by a vehicle

350 · 187 · 180 150 · 80 · 160 4
62 · 43 · 35 100
43 · 40 · 25 224

285 · 163 · 165 150 · 80 · 160 2
62 · 43 · 35 48
43 · 40 · 25 144

125 · 65 · 40 150 · 80 · 160 0
62 · 43 · 35 2
43 · 40 · 25 2



Fig. 4. Geographic distribution of customers.

462 J.-B. Sheu / Transportation Research Part E 42 (2006) 445–472
will be examined later in the following sensitivity analysis scenario to investigate their effects on
system performance. The corresponding resource assignment results obtained in this scenario are
summarized in Tables 4 and 5. Note that to simplify the structure of the real logistical distribution
network, only major streets in the real network were considered in estimating the time-varying
vehicular return possibility (r(k)) mentioned in Eq. (36) to determine the fleet size of available
vehicles at each given time step k.

Obtained from the above numerical results, two generalizations can be made. First, among the
three categories of normal-product freight vehicles, only large-sized and medium-sized vehicles are
assigned under the condition that the delivered customer orders are grouped using the proposed
vehicle assignment model. In contrast, small-sized vehicles are used for short-distance and miscel-
laneous goods delivery services in the present delivery strategy. Second, through the procedures of
dynamic customer order grouping and logistics resource assignment, different customer groups
(e.g., customer groups 1 and 3 shown in Table 5) can be consolidated, and then served with
the same vehicle without the need of efforts for extra vehicle loading and dispatching. Under such
operational conditions, the groups of customer orders loaded in a given vehicle can be readily
served in sequence in a given vehicle routing mission following the estimated group service
priority.

To quantitatively assess the relative performance of the proposed method with respect to the
improvements in logistics resource utilization, we compared the operational results obtained from
the proposed distribution strategy and the original strategy, using two major criteria defined in the
following:



Table 3
Results of customer grouping

Group number Group components (customers) Reservation temperature level Service zone Service priority

Group-1 1,3,8,10,11 Normal West 1
Group-2 6,25,30 Frozen West 2
Group-3 2,7,9,36 Normal West 3
Group-4 18,20,21,22,33 Normal East 4
Group-5 5,29,60,80 Low West 5
Group-6 37,38,41,43,44,46 Normal East 6
Group-7 48,50,53,54,55 Low East 7
Group-8 12,13,14,16,35 Normal West 8
Group-9 17,19,23,40,42 Frozen East 9
Group-10 45,49,51,52,104,105 Normal East 10
Group-11 4,15,24,26,27,28,31,65 Normal West 11
Group-12 56,57,58,59,61,81,82 Normal West 12
Group-13 32,34,39,47 Frozen East 13
Group-14 66,68,69,70,92,94,127,128 Normal East 14
Group-15 85,86,88,93 Low East 15
Group-16 74,75,76,78,79 Normal West 16
Group-17 62,63,64,83,84,116 Normal West 17
Group-18 71,72,73,98,99,102,103 Normal East 18
Group-19 87,89,95,96 Normal East 19
Group-20 91,97,129,130,131 Normal East 20
Group-21 67,121,123,125,126 Low West 21
Group-22 119,120,122,124 Normal West 22
Group-23 113,114,115,117,118 Normal West 23
Group-24 90,100,101,110,106 Normal East 24
Group-25 107,108,109,132,133,134 Normal East 25
Group-26 111,112,135,136 Normal East 26
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(1) TC, which represents the aggregate logistics resource operational costs spent in the given test
period; and

(2) AT, which represents the average lead time associated with each given customer.

Here TC aims to sum up the corresponding internal logistics resource operational costs, including
the packaging and loading costs associated with the corresponding resources as well as vehicle
routing costs; and AT, in contrast, is measured by averaging the time difference between when
an order is received and when the loading of the corresponding goods is completed for all the sam-
pled customers. Note that to facilitate the aforementioned model evaluation, only the static link
costs are considered in estimating the corresponding vehicle routing costs of TC. The comparison
results according to the aforementioned criteria are summarized in Table 6.

Overall, the results shown in Table 6 reveal that there is a certain improvement in the perfor-
mance of logistical resource utilization using the proposed dynamic resource allocation method-
ology. Two supportive generalizations made according to the corresponding numerical results are
summarized below.

First, as can be seen in Table 6, the relative improvement of the logistics system performance
results mainly from the reduction in the aggregate logistics resource operational costs. Based on



Table 4
Results of container assignment

Group number Reservation temperature level Service zone Type and number of containers
assigned

Large Medium Small

Group-1 Normal West 1 3 1
Group-2 Frozen West 3
Group-3 Normal West 1 2 1
Group-4 Normal East 2 2 1
Group-5 Low West 2 2
Group-6 Normal East 2 4
Group-7 Low East 2 3
Group-8 Normal West 2 3
Group-9 Frozen East 5
Group-10 Normal East 3 3
Group-11 Normal West 4 4
Group-12 Normal West 2 4 1
Group-13 Frozen East 1 3
Group-14 Normal East 5 3
Group-15 Low East 2 2
Group-16 Normal West 2 1 2
Group-17 Normal West 1 2 3
Group-18 Normal East 3 4
Group-19 Normal East 3 1
Group-20 Normal East 2 3
Group-21 Low West 2 3
Group-22 Normal West 2 2
Group-23 Normal West 2 2 1
Group-24 Normal East 2 3
Group-25 Normal East 4 2
Group-26 Normal East 1 3
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this numerical study, such a group-based vehicle dispatching coupled with appropriate resource
assignment strategies can be beneficial in enhancing the efficiency of en-route goods delivery, thus
contributing to a significant improvement in the corresponding operational costs as high as 27.4%.

Second, through appropriate pre-route customer classification and group-based logistics re-
source allocation strategies, grouped customers can be served more efficiently. The results pre-
sented in Tables 5 and 6 show that the resulting customer order grouping and vehicle
assignment may contribute to greater vehicle dispatching frequency without extra time and costs
in resource allocation. Accordingly, the corresponding group-based customer delivery services can
be completed with shorter lead times, relative to the original delivery schedule, thus contributing
to a relative improvement of 8.7% in terms of average lead time (AT). To a certain extent, this
implies that higher customer service quality can be achieved using the proposed logistics resource
allocation methodology.

In addition, several findings are summarized below for further discussion.

(1) Although the proposed logistics resource allocation method appears to satisfy customer
demands for shorter lead time to a certain extent, timeliness may remain as a significant issue



Table 5
Results of vehicle assignment

Group number Reservation temperature level Service zone Type and code of vehicles assigned for
delivery service

Large (L) Medium (M) Small (S)

Group-1 Normal West L-1
Group-2 Frozen West FM-1
Group-3 Normal West L-1
Group-4 Normal East L-2
Group-5 Low West LM-1
Group-6 Normal East M-2
Group-7 Low East LM-2
Group-8 Normal West L-3
Group-9 Frozen East FM-2
Group-10 Normal East L-2
Group-11 Normal West L-1
Group-12 Normal West L-3
Group-13 Frozen East FM-2
Group-14 Normal East M-2
Group-15 Low East LM-2
Group-16 Normal West L-1
Group-17 Normal West M-1
Group-18 Normal East L-2
Group-19 Normal East L-2
Group-20 Normal East L-4
Group-21 Low West LM-1
Group-22 Normal West M-3
Group-23 Normal West L-1
Group-24 Normal East M-4
Group-25 Normal East L-2
Group-26 Normal East M-4

Table 6
Comparison of system performance

Strategy Criteria

Aggregate resource operational costs TC (US$) Average lead time AT (day)

Proposed 1374 4.2
Existing 1892 4.6
Relative improvement (%) 27.4 8.7
Aggregate relative improvement (%) 18.1
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in time-based logistics control, requiring further investigation. For instance, to implement
just-in-time (JIT) inventory control strategies, the major request from customers may no
longer be shorter lead time, but the more exact goods delivery time. Sometimes earlier goods
delivery service may not be a benefit to those customers who implement JIT strategies due to
the induced inventory costs in this case, and vice versa.
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(2) Despite the measurements of TC and AT, both indicating certain improvements in logistics
resource operational costs and service time, respectively, it is likely that the performance of
logistical distribution operations can also be improved by integrating either advanced vehicle
routing technologies or advanced ITS-related technologies, including global positioning sys-
tems (GPS) and two-way communication devices.

(3) The measurements shown in Table 6 may also be beneficial in diagnosing the existing logis-
tics resource management performance of the targeted logistics company. Definitely, the
comparison results imply that there is a potential to improve the current logistics resource
allocation and vehicle dispatching strategies undertaken by the targeted logistics company.
Such improvements can then enhance the customer service quality not only to the down-
stream end-customers but also to its upstream contracted manufacturer who also plays
the role of a customer to the targeted logistics company.

Furthermore, it is worth mentioning that the computational efficiency could be another poten-
tial advantage of the proposed method. It has been observed that in the corresponding data pro-
cessing and computational procedures, such a group-based logistics resource allocation
methodology enables great time savings in algorithmic execution. For instance, as can be seen
in Table 3, the maximum number of customers to be served in a given group is 8, which does
not appear to be a burden in searching the optimal solutions for either logistics multi-resource
allocation or the induced vehicle routing problems.

In the following test scenario, simple sensitivity analyses are conducted to demonstrate the
generality of the numerical results. This test scenario mainly aims at two groups of parameters.
The first group involves the weights presented in the proposed composite objective func-
tions for container and vehicle assignment. The second group involves four selected operational
parameters, including the cluster threshold k2, the unit costs of packaging and vehicle operations
(i.e., cjg and dlg , respectively), and the expected delivery times associated with customer groups
(stg). Here, k2 is regarded as a clustering-oriented parameter which may influence the customer
group number in the study; and the others are supply-oriented parameters that may have the ef-
fects on the operational performance of allocating containers and vehicles. The corresponding
numerical results associated with these two groups of parameters are summarized in Tables 7
and 8, respectively, where all the results presented in these two tables are relative improvements
compared to the existing operational performance of the targeted logistics company. Conve-
niently, the aforementioned evaluation measures, i.e., TC and AT, remain used in this test sce-
nario. Here, all the preset parameters of the proposed method remain the same, except the
targeted parameters.

Based on the numerical results of Table 7, four major generalizations are summarized below.

(1) Compared to the weights associated with the container-assignment objective functions (i.e.,
-CR and -PC), the weights associated with the vehicle-assignment objective functions (i.e.,
-VR, -OC, and -DT) appear to have relatively significant effects on the improvement with
respect either to the aggregate operational costs (TC) or to the average lead time (AT). This
implies that dynamic vehicle assignment coupled with proper vehicle dispatching strategies
play a key role in logistics resource allocation, and determine the performance of city logis-
tics distribution operations.



Table 7
Results of sensitivity analyses with respect to weights

Targeted parameters System performance

Weights (container
assignment)

Aggregate operational costs TC

(relative improvement, %)
Average lead time AT

(relative improvement, %)

-CR -PC

1.00 0 1390 (26.5%) 4.3 (6.5%)
0.75 0.25 1385 (26.8%) 4.2 (8.7%)
0.50 0.50 1374 (27.4%) 4.2 (8.7%)
0.25 0.75 1356 (28.3%) 4.2 (8.7%)
0 1.00 1332 (29.6%) 4.2 (8.7%)

Weights (vehicle assignment)

-VR -OC -DT

1 0 0 1326 (29.9%) 4.5 (2.1%)
2/3 1/6 1/6 1359 (28.2%) 4.3 (6.5%)
1/3 1/3 1/3 1374 (27.4%) 4.2 (8.7%)
0 1 0 1273 (32.7%) 4.3 (6.5%)
1/6 2/3 1/6 1321 (30.2%) 4.2 (8.7%)
0 0 1 1417 (25.1%) 3.9 (15.2%)
1/6 1/6 2/3 1383 (26.9%) 4.0 (13.0%)
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(2) Relative to -CR, -PC seems to have a greater effect on the improvement of TC, as the value
of -PC increases. In contrast, the increase of -CR merely has a slight effect on the improve-
ment of AT, and meanwhile may not help to improve TC.

(3) Among these targeted weights, -OC and -DT may have more significant effects on the
improvement of TC and AT, respectively. As can be seen in Table 7, under the corresponding
extreme cases (i.e., -OC = 1 and -DT = 1), the evaluation measures TC and AT can be
improved up to 32.7% and 15.2%, respectively, relative to the existing operational
performance.

(4) Following the above generalizations, it is induced that saving the operational costs by about
US$144 may be equivalent to saving the lead time as high as 0.4 day (about 9.6 h), compared
to the aforementioned two extreme cases (i.e., the cases of -OC = 1 and -DT = 1). Corre-
spondingly, the logistics company manager may need to sustain the extra costs of about
US$15 to save 1 h in terms of the average lead time for higher customer service quality.
Accordingly, the logistics company manager can choose one of these two alternative strate-
gies depending on the corresponding business operational goal.

The numerical results shown in Table 8 may reveal the following three generalizations.

(1) An appropriate setting for the range of the clustering-oriented parameter k2 is needed since it
determines the number of customer order groups, which may further influence the perfor-
mance of dynamic resource allocation with respect to both the aggregate operational costs
and average lead time to customers. As can be seen in Table 8, when the value of k2 increases
by 40%, i.e., k2 = 0.98, the induced greater number of customer order groups does not lead



Table 8
Results of sensitivity analyses with respect to operational parameters

Targeted parameters System performance

Aggregate operational costs TC

(relative improvement, %)
Average lead time AT

(relative improvement, %)

Increment percentage of the cluster threshold k2 (%)

40 1574 (16.8%) 4.4 (4.3%)
20 1374 (27.4%) 4.2 (8.7%)
0 1374 (27.4%) 4.2 (8.7%)
�20 1429 (24.5%) 4.1 (10.9%)
�40 1429 (24.5%) 4.1 (10.9%)

Increment percentage of the unit packaging cost cjg (%)

40 1383 (26.9%) 4.2 (8.7%)
20 1379 (27.1%) 4.2 (8.7%)
0 1374 (27.4%) 4.2 (8.7%)
�20 1362 (28.0%) 4.2 (8.7%)
�40 1351 (28.6%) 4.2 (8.7%)

Increment percentage of the unit vehicle operational cost dlg (%)

40 1563 (17.4%) 4.2 (8.7%)
20 1479 (21.8%) 4.2 (8.7%)
0 1374 (27.4%) 4.2 (8.7%)
�20 1288 (31.9%) 4.2 (8.7%)
�40 1167 (38.3%) 4.2 (8.7%)

Increment percentage of the expected delivery times associated with customer groups stg (%)

50 1395 (26.3%) 4.6 (0%)
25 1389 (26.6%) 4.4 (4.3%)
0 1374 (27.4%) 4.2 (8.7%)
�25 1369 (27.6%) 4.1 (10.9)
�50 1364 (27.9%) 4.0 (13.0%)
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to relatively better performance, compared to the original setting (i.e., k2 = 0.7). Similarly,
the decrease of k2 by 40% may contribute to a fewer number of customer order groups; how-
ever it does not correspond to a positive effect on saving the aggregate operational costs.
Overall, the value of k2 set within the range between 0.5 and 0.7 may lead to a better perfor-
mance in the study case.

(2) Both the increments of the unit packaging and vehicle operational costs appear to merely
have the effects on the aggregate operational costs, and relatively, the induced effect associ-
ated with the unit vehicle operational cost appears to be greater than that of the unit pack-
aging cost.

(3) The increments in the expected delivery times appear to have relatively greater effects on
the average lead time than that on the aggregate operational costs. As can be seen in
Table 8, the average lead time can be improved up to 13% when the expected delivery
time associated with each given customer group is decreased by 40%. In contrast, the corre-
sponding effects on the aggregate operational costs appear to be less significant in this study
case.
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In addition, from the above numerical results, three managerial implications are provided
below.

First, the conduction of appropriate customer order grouping and resource assignment prior to
vehicle dispatching do improve the performance of city logistics systems in reducing the opera-
tional costs and average lead time. Motivated by the above concept as well as the numerical re-
sults, logistics managers can integrate such sequential procedures proposed in this study with any
existing logistics information systems to enhance the entire competitiveness of business operations
in time-based logistics control.

Second, as revealed in the corresponding sensitivity analysis, the reduction of the expected
delivery time associated with each customer group appears to have a significant effect on stimu-
lating the customer satisfaction with the improved average lead time. To achieve the above oper-
ational goal, the incorporation of novel route guidance technology with the proposed dynamic
resource allocation method is needed.

Third, considering the diversity of customer demands exhibited in differing logistics distribution
channels and the resulting complicated operational environments, the functionality of a dynamic
logistics resource allocation system should be flexible enough to be adjusted. For instance, aiming
at specific distribution channels and operational environments, respective customer attributes to-
gether with operational parameters can be specified, and then embedded in the proposed method
for further practical uses without any extra effort in system reformulation.
5. Concluding remarks

This paper has presented a comprehensive system framework, including order processing, cus-
tomer order grouping and ranking, container assignment and vehicle assignment, for dynamic
logistics multi-resource allocation. Through analyzing customers� order attributes, the proposed
method executes the proposed hybrid hard-and-fuzzy clustering algorithms together with cus-
tomer-group ranking logic rules to group customer orders by their delivery service priority, fol-
lowed by operating the functions of container and vehicle assignment in response to the variety
of grouped customer demands. In addition, the time-varying possibility of en-route vehicle return-
ing is considered in formulating the proposed vehicle assignment model.

In order to demonstrate the potential advantages of the proposed method, numerical studies on
the existing logistics resource allocation strategies of a targeted logistics company were conducted.
By comparing the performance of the proposed logistics resource allocation method with that of
the original strategies executed by the targeted logistics company, the numerical results revealed
that the overall logistics system performance could be improved by up to 27.4% and 8.7% in terms
of the aggregate resource operational costs and average lead time, respectively. Furthermore, it is
found that such improvement may mainly result from the proposed vehicle assignment model
coupled with the appropriate customer grouping strategies in quick response to grouped customer
orders. In addition, sensitivity analyses with respect to the corresponding weights of the objective
functions and several key operational parameters were conducted and discussed.

Nevertheless, there may still be a great potential for either improving or expanding the pro-
posed method by integrating more elaborate vehicle routing algorithms for quick-responsive
logistics distribution operations. Such an integrated customer group-based logistics distribution
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operation appears important to provide efficient goods delivery service in a large-scale logistics
network under time-varying traffic network conditions.

Furthermore, the case of crossover distribution based on product temperature may not be con-
sidered in the present study scope considering the differing lifecycles of products as well as pack-
aging requirements. Nevertheless, we would also like to leave the door open for future research to
deal specifically with the aforementioned crossover distribution case if the induced effects are
allowable in practical applications. In that case, the corresponding clustering criterion, the re-
quired reservation temperature level, may no longer be needed, and the resulting improvements
in system performance, particularly in terms of cost saving, as well as the induced effects may war-
rant more evaluation.

It is expected that the proposed dynamic logistics multi-resource allocation method can make
benefits available not only for developing advanced logistics distribution strategies, but also for
clarifying the importance of pre-route customer grouping in the operations of time-based logistics
control and management. On the basis of the present results, our future research will aim at incor-
porating advanced vehicle routing and ITS-related technologies into the architecture of the pro-
posed method to improve the performance of time-based demand-responsive logistics distribution
operations. Moreover, the applicability of the proposed method for logistics operations in more
real e-business operational cases is also of interest to us, and warrants further research.
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