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Application of an Ordinal Optimization Algorithm
to the Wafer Testing Process

Shin-Yeu Lin and Shih-Cheng Horng

Abstract—In this correspondence, we have formulated a stochastic
optimization problem to find the optimal threshold values to reduce the
overkills of dies under a tolerable retest level in wafer testing process.
The problem is a hard optimization problem with a huge solution space.
We propose an ordinal optimization theory-based two-level algorithm to
solve for a vector of good enough threshold values and compare with those
obtained by others using a set of 521 real test wafers. The test results
confirm the feature of controlling the retest level in our formulation, and
the pairs of overkills and retests resulted from our approach are almost
Pareto optimal. In addition, our approach spends only 6.05 min in total
in a Pentium IV personal computer to obtain the good enough threshold
values.

Index Terms—Genetic algorithm (GA), neural network, ordinal opti-
mization (OO), overkill, retest, stochastic optimization, wafer probing.

I. INTRODUCTION

The wafer fabrication process is a sequence of hundreds of different
process steps, which results in an unavoidable variability accumulated
from the small variations of each process step. Thus, to avoid incurring
the significant expense of assembling and packaging chips that do not
meet specifications, the wafer probing in the manufacturing process
becomes an essential step to identify flaws early.

Wafer probing establishes a temporary electrical contact between
test equipment and each individual die (or chip) on a wafer to de-
termine the goodness of a die. In general, an 8-in wafer may consist
of 600 to 15 000 dies, and each die is a chip of integrated circuits.
Although there exist techniques such as the statistical process control
(SPC) [1], [2] for monitoring the operations of the wafer probes, the
probing errors may still occur in many aspects and cause some good
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dies being over killed; consequently, the profit is diminished. Thus,
reducing the number of overkills is always one of the main objectives
in wafer testing process. The key tool to identify or save overkills is
retest, which is an additional probing on the problematic die. However,
retest is a major factor for decreasing the throughput. Thus, the overkill
and the retest possess inherent conflicting factors, because reducing the
former can gain more profit, however, at the expense of increasing the
latter, which will degrade the throughput. Consequently, to save more
overkills using less retests is a goal of the wafer testing process.

Deciding whether to go for a retest is a decision problem. In current
wafer testing processes, this decision is made based on whether the
number of good dies and the number of bins1 in a wafer exceed the
corresponding threshold values. Manually adaptive adjustments of the
threshold values based on engineering judgment, three-sigma limit [3],
or a looser six-sigma limit are currently used in some semiconductor
manufacturing companies. The purpose of this correspondence is using
a systematic approach to determine these threshold values. We first
formulate a stochastic optimization problem on the threshold values.
Since the formulated stochastic optimization problem consists of a
huge decision-variable space as will be seen in Section III, this
makes the problem become a hard optimization problem. Thus, to
cope with the enormous computational complexity, we propose an
ordinal optimization (OO) theory-based two-level algorithm to solve
the formulated problem for a good enough solution.

II. PROBLEM STATEMENTS AND MATHEMATICAL FORMULATION

A. Testing Procedures

In this section, we employ typical testing procedures used in a local
world-renowned wafer foundry. Fig. 1 shows the flow chart of the real
and simulated testing procedures. All the solid blocks represent the real
testing procedures, while the dashed blocks are added for the purpose
of computer simulation. The operation of the real testing procedures is
briefly described in the following.

For every wafer, the wafer probing is performed twice, as shown
in the solid square marked by I in Fig. 1. The second probing applies
only to those dies failed in the first one. A die is considered to be
good if it is good in either probing. If a die is detected to have
bins in both tests, the bin detected in the second probing is taken as
the bin of that die. We let gj(gj) denote the number of good (bad)
dies in wafer j, and let bjk denote the number of dies of bin k in
wafer j. Assume there are K types of bins in a wafer, then gj =
∑K

k=1
bjk and gj = TDj − gj , as shown in the square marked by II

in Fig. 1, where TDj denotes the total number of dies in wafer j.
Following the two times of wafer probing and the calculation of gj

and gj , a two-stage checking on the number of good dies is performed
to determine the necessity of carrying out a retest, i.e., an additional
wafer probing. The mechanism of the two-stage checking described in
the part of the testing procedures enclosed in the dotted contour can
be summarized below. We let gW min denote the threshold value for
the lower bound of the number of good dies in a wafer to determine
whether to pass or hold the wafer; we let nk max, k = 1, . . . ,K, denote
the threshold value for the upper bound of the number of dies of
bin k in the hold wafer to determine whether to perform a retest. If
gj ≥ gW min, we pass wafer j, as shown in the diamond-shape block
marked by III.a and the square marked by III.c; otherwise, we will hold
this wafer and check its bins. For the hold wafer j, if bjk ≤ nk max for
all k, then wafer j will be passed, as shown in the diamond-shape

1A bin denotes a type of circuitry defect in a die. There are various types of
bins, and a die of any type of bin is considered to be a bad die.
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Fig. 1. Flow chart of the real and simulated wafer testing procedures.

block marked by III.b and the square marked by III.c. However, if the
hold wafer j consists of any bin k with bjk < nk max, retests will be
performed for all dies of bin k in wafer j to check for possible probing
errors, as shown in the diamond-shape block and square marked by
IV.b and IV.d. Then, the overkills will be saved when there are probing
errors, as shown in the square marked by V. For bin k in the hold
wafer j with bjk ≤ nk max, we pass it, as shown in the diamond-
shape block and square marked by IV.b and IV.c. This threshold value
checking process will continue until all bins are checked as indicated
in the diamond-shape blocks and squares marked by IV.e, IV.f, IV.g,
and IV.h.

B. Computer Simulation of the Testing Procedures

1) Simulation Model for the Two-Times Wafer Probing: Since we
cannot perform the real wafer probing in the computer, for the purpose
of simulation, we need to build up a simulation model for the two times
wafer probing. We let Bk denote the discrete random variable for the
number of dies of bin k in a wafer. Since P (Bk = n) can be provided
by the real data, we can randomly generate the value of Bk for a wafer
based on the discrete probability mass function P (Bk = n).

Each die of bin k can be either an actual bin caused by manufactur-
ing errors or an overkill caused by testing errors. Thus, we can treat
the overkills in Bk as a binomial random variable with probability
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pk, which represents the probability of overkills in dies of bin k and
can be provided by real data. We let V o

k denote the random variable
for the number of overkills in Bk. Then, once the value of Bk is
randomly generated, we can randomly generate the value of V o

k based
on a binomial probability distribution with probability pk.

2) Simulation of the Testing Procedures: We let bjk and vo
jk denote

the values generated from the random variables Bk and V o
k for wafer

j, respectively. The two times wafer probing in Fig. 1 will be replaced
by the random generator of Bk and V o

k shown in the dashed square
marked also by I in Fig. 1. The dashed squares in Fig. 1 except for the
one mentioned above are for calculating the number of overkills and
retests resulted from the simulated testing procedures. In contrast to
vo

jk, we let vjk denote the number of overkills for bin k of wafer j after
completing the testing procedures and let rjk denote the corresponding
number of retests. In the testing procedures, although we may pass
the wafer when the threshold value test is a success, there may be
overkills. We let Vj and Rj denote the total number of overkills
and retests in wafer j, respectively. Thus, for the passed wafer j,
Vj =

∑K

k=1
vo

jk, and Rj = 0, as shown in the dashed square marked
by VIII in Fig. 1. The same logic applies to the passed bin k of the
hold wafer j that vjk = vo

jk and rjk = 0, as shown in the dashed
square marked by VI in Fig. 1. However, for any retested bin, the
probability of any unidentified overkill is extremely small, because
the dies had been probed three times, which include two times wafer
probing before any retest. Thus, for any retested bin k, rjk = bjk and
we assume vjk = 0, because the overkills are saved, as shown in the
dashed square marked also by V in Fig. 1; the solid square marked
by V will be replaced by this dashed square in the simulated testing
procedures. Once all the threshold value tests for all bins of the hold
wafer j are completed, we can compute Vj and Rj , as shown in
the dashed square marked by VII in Fig. 1. The resulting values of
Vj and Rj of wafer j will be used to calculate E[V ] =

(1/L)
∑L

j=1
Vj and E[R] = (1/L)

∑L

j=1
Rj , which represent the

average overkills and retests per wafer, respectively, and L denotes
the total number of tested wafers.

C. Problem Formulation

From Fig. 1, we see that if we increase gW min while decreasing
nk max, which is setting more stringent threshold values, there will be
more retests and less overkills. This shows a conflicting nature between
the overkills and retests. Thus, to reduce overkills under a tolerable
level of retests, we will set minimizing the average number of overkills
per wafer, E[V ], as our objective function while keeping the average
number of retests per wafer, E[R], under a satisfactory level. Thus, our
problem for determining the threshold values can be formulated as the
following constrained stochastic optimization problem:

min
x∈X

E[V ]

subject to {simulated wafer testing procedures in Fig. 1}
E[R] ≤ rT (1)

where x ≡ [gW min, nk max, k = 1, . . . ,K] denotes the vector of
threshold values, which is the vector of decision variables; X denotes
the decision variable space; rT denotes the tolerable average number
of retests per wafer.

Remark 1: a) The value of rT can be determined by the decision
maker based on the economic situation. When the chip demand is
weak, the throughput, in general, is not critical in the manufacturing
process; therefore, we can allow a larger rT so as to save more overkills
to gain more profit. On the other hand, if the chip demand is strong,
then the throughput is more important, and we should set the value

of rT smaller. Taking the chip demand into account is a distinguished
feature of the proposed formulation.

b) It is possible to pursue the relationships between the number of
retests and the throughput. Then, if we can derive the profit in terms
of the throughput and the overkill, we can formulate an unconstrained
optimization problem to maximize the profit. However, the relation-
ships between the profit and throughput are very complicated due to
the status of chip demand. For instances, when the chip demand is
strong, larger throughput implies higher profit; on the other hand, if the
chip demand is weak, larger throughput will cause inventory problem,
which will hurt the profit. Therefore, the current formulation is simple
and direct for a decision maker.

Since the constraint on E[R] shown in (1) is a soft constraint in
a sense, we can use a penalty function to relax that constraint and
transform (1) into the following unconstrained stochastic optimization
problem:

min
x∈X

E[V ] + P × (E[R] − rT)

subject to {simulated wafer testing procedures in Fig. 1} (2)

where P denotes a continuous penalty function for the constraint
E[R] ≤ rT.

III. TWO-LEVEL OO ALGORITHM

The size of the decision variable spaceX in (2) is huge; for example,
for an 8-in wafer, which consists of, say, 2500 dies, the possible
ranges of the integer values gW min and nk max are [1, 2500] and
[1, 2500], respectively. Consequently, for the number of bin types
K = 12, the size of X will be more than 1030. The evaluation
of the performance of each vector of decision variables requires a
lengthy stochastic simulation of the testing procedures. Therefore, any
global searching techniques for solving the simulation optimization-
type problem (2) will be very computationally expensive. To cope
with the computational complexity of this problem, we propose an OO
theory-based two-level algorithm to solve for a good enough solution
with high probability instead of searching the best for sure.

The existing searching procedures of OO can be summarized in the
following [4].

1) Uniformly or randomly select N , say 1000, vectors of decision
variables from X .

2) Evaluate and order the N vectors using an approximate model,
then pick the top s, say 35, vectors to form the estimated good
enough subset.

3) Evaluate and order all the s vectors obtained from 2) using the
exact model, then pick the top k (≥ 1) vectors.

The basic idea of the OO theory is based on the following observation.
The performance order of the decision variables is likely preserved
even evaluated using a crude model. Thus, the OO approach can reduce
the searching space using cheaper evaluation to save computational
time as indicated in 2), and the best vector of decision variables
obtained in 3) is proved in [4] to be a good enough, top 5%, solution
among N (= 1000) with probability 0.95.

From the above description, we see that the quality of the good
enough solution heavily depends on the quality of the randomly
selected N vectors of decision variables. Thus, to improve the existing
OO searching procedures, we can apply the OO theory to select N
roughly good vectors of decision variables from X , to ensure the
top 5% solutions among N to be the good enough solutions of X .
This is what we called the first-level OO approach for replacing the
existing searching procedure 1). Combining first level approach with
the existing searching procedures 2) and 3) forms a two-level OO
algorithm.
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A. Constructing a Metamodel for (2)

The very first step for choosing N roughly good vectors from X
should be constructing a metamodel or surrogate model for the
considered stochastic simulation optimization-type problem. There
are various techniques to approximate the relationships between the
inputs and outputs of a system such as the linear regression, response
transformation regression, projection-pursuit regression, and artificial
neural network (ANN) [5], etc. Among them, ANN is considered to
be a universal function approximator [6] due to its genetic, accurate,
and convenient property to model complicated nonlinear input–output
relationships. The ANN not only approximates the continuous func-
tions well [7], [8], but is also used to construct metamodels for discrete
event simulated systems in [9] and [10]. Since what we care here
is the performance order of the solution rather than the performance
value as considered in [9] and [10], we can trade off the accuracy of
the ANN-based metamodel with the training time by using a simple
ANN with a reasonable size of training data set. Two simple feed
forward two-layer ANNs are employed here. One is to approximate
the relationships between x ∈ X and the corresponding E[V ], and the
other is for x ∈ X and E[R]. In these two ANNs, there are 16 neurons
with a hyperbolic tangent sigmoid function in the first layer, and one
neuron with linear function in the second layer. We obtain the set of
training data for the two ANNs by the following two steps.

1) Narrow down the decision-variable space X by excluding the
irrational threshold values and denote the reduced decision
variable space by X̂ .2

2) Uniformly select M vectors from X̂ and compute the corre-
sponding outputs E[V ] and E[R] using a stochastic simulation
of the testing procedures shown in Fig. 1.

As indicated above, M need not be a very large value. The objective
value of (2) can be computed based on the values of E[V ] and
E[R]. Thus, we can obtain M pairs of decision variables and the
corresponding objective values for (2). To speed up the convergence of
the back propagation training, we employed the Levenberg–Marquardt
algorithm [11] and the scaled conjugate gradient algorithm [12] to
train the ANNs for E[V ] and E[R], respectively. Stopping criteria of
the above two training algorithms are when any of the following two
conditions occurs.

1) Sum of the mean-squared errors is smaller than 10−5.
2) Number of epochs exceeds 500.

Once these two ANNs are trained, we can input any vector x to the two
ANNs to estimate the corresponding E[V ] and E[R], which will be
used to compute the objective value of (2). This forms our metamodel
to estimate the objective value of (2) for a given vector of decision
variables x.

B. Using GA to Select N Roughly Good Vectors of Decision
Variables From X̂

By the aid of the above ANN model, we can search N roughly good
vectors of decision variables from X̂ using heuristic global searching
techniques.

Since the searching techniques of genetic algorithms (GAs), evolu-
tion strategies (ES), and evolutionary programming (EP) [13] improve
a pool of populations from iteration to iteration, they should best fit
our needs. For the sake of explanation and easier implementation, we
employ the GA [14, Ch. 14] as our searching tool.

2The threshold values, gW min and nk max, should lie in a reasonable range
determined by the corresponding average values of gj and bjk collected from
a wafer foundry, respectively.

The coding scheme of the GA we employed to represent all the
vectors in X̂ is rather straightforward, because each component of the
vector x is an integer. We start from I , say 5000, randomly selected
vectors from X̂ as our initial populations. The fitness of each vector
is set to be the reciprocal of the corresponding objective value of (2)
computed based on the outputs of the two ANNs. The members in the
mating pool are selected from the pool of populations using roulette
wheel selection scheme. Seventy percent of the members in the mating
pool are randomly selected to serve as parents for crossover. We use a
single-point crossover scheme and assume the mutation probability to
be 0.02. We stop the GA when the iteration number exceeds 30. After
the applied GA converges, we rank the final I populations based on
their fitness and pick the top N populations, which are the N roughly
good vectors of decision variables.

Remark 2: Although there exists in-depth analysis of the approx-
imation errors for an ANN to approximate continuous functions [7],
[8], the accuracy of approximating the input and output relationships of
a discrete event simulated system is usually addressed using empirical
results [9], [10]. Thus, it is not surprising that we do not get any
analytical result for the quality of the N vectors selected above.
However, similar to the study in [4], we assume various magnitudes of
modeling noise of uniform distribution to represent the approximation
errors caused by the proposed ANN-based metamodel and make the
following simple experiments to compare the quality of the N vectors
selected by GA based on the ANN model with those selected in ran-
dom from the solution space. We let U [−0.1, 0.1] denote the uniform
distribution of a random noise ranging from −0.1 to 0.1 to be added
to the normalized performance, i.e., the normalized objective value,
of the exact model. The normalized performance for all solutions in
a solution space is equally spaced ranging from 0 to 1, with 0 as
the top performance. In [4], a normalized ordinal performance curve
(OPC) is used to describe the performance structure of all the solutions
in a solution space. Assume |X| = 1030, N = 1000, we carried out
a Monte Carlo study for vast number of OPCs similar to that in
[4] for an assumed noise distribution and pick the top N vectors
using GA. We found the following results. For the modeling noise
distribution,U [−0.01, 0.01],U [−0.1, 0.1], andU [−0.5, 0.5], the top
5% solutions in N , which are selected by GA, is at least a top 10−6%,
top 10−3%, and top 10−2% solution in X with probability 0.95,
respectively. However, the top 5% solutions inN , which are selected in
random, is at best, i.e., assuming no modeling noise, a top 5% solution
in X only. Therefore, we have greatly improved the quality of the N
vectors by replacing the existing searching procedure 1).

C. Using an Approximate Model for Selecting the Estimated
Good Enough Subset

Starting from the N vectors of decision variables obtained in
Section III-B, we will proceed with 2) of the OO searching procedure
to compute the objective value of (2) for each vector using an approx-
imate model. As indicated in [15], this approximate model can be a
stochastic simulation with moderate number of test wafers, which is
to carry out the testing procedures shown in Fig. 1 for Ls, say 300,
wafers. We will then order the N vectors of decision variables based
on the obtained estimated objective values of (2) and choose the top s
vectors that form the estimated good enough subset.

D. Using the Exact Model to Determine the Good Enough Solution

We will compute the objective value of (2) for each of the s vectors
in the estimated good enough subset using the exact model that is
a stochastic simulation with sufficiently large number of test wafers
that makes the estimated objective value sufficiently stable. This exact
model is similar to the approximate model mentioned above however
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TABLE I
GOOD ENOUGH VECTOR OF THRESHOLD VALUES AND THE

AVERAGE OVERKILL PERCENTAGE OF THE CONSIDERED

PRODUCT FOR THREE DIFFERENT rT’s

replacing Ls by Le(
 Ls) wafers. Then, the vector associated with
the smallest objective value of (2) among s is the good enough solution
that we seek.

IV. TEST RESULTS AND COMPARISONS

Our simulations are based on the following data collected from
a practical product of a local world-renowned wafer foundry.
The product is made in 6-in wafers. Each wafer consists of
203 dies. There are 12 bins in the wafers of this product. The
probability mass function P (Bk = n), k = 1, . . . , 12, and the
probability of the number of overkills in bin k, pk, k = 1, . . . , 12,
are given. The yield rate of this product is 68%. The decision-variable
space X = {x(= [gW min, nk max, k = 1, . . . ,K])|gW min ∈[1, 203],
nk max ∈ [1, 203], k = 1, . . . , 12}. We used the sigmoid-type
function as our penalty function P in (2), i.e., P = η(1/1 +
e−(E[R]−rT)), for E[R] > rT and 0 otherwise, where
η (∼= 0.1594) is a normalized coefficient such that η =
(maxi∈{1,...,M}E[Vi]/maxi∈{1,...,M}E[Ri]).

We set X̂ = {x(= [gW min, nk max, k = 1, . . . ,K])|gW min ∈
[50, 203], nk max ∈ [1, 6 µk], k = 1, . . . , 12}, where µk is the mean
of the number of dies of bin k. The parameters in the proposed
two-level algorithm are set as follows: Ls = 300, Le = 10 000,
M = 1000, I = 5000, N = 1000, and s = 35. We have simulated
three cases of different rTs, which are 10, 30, and 50. It should be
noted that all the test results shown in this section are simulated in a
Pentium IV PC using Borland C++.

The good enough vector of threshold values and the average overkill
percentage for the three cases of rT we obtained from the two-level
algorithm are shown in Table I. The CPU time consumed in each case
plus the training time is approximately 6.05 min. From Table I, we
can observe that when rT increases, the values of gW min increase,
as shown in row 2, and the values of leading nk max, k = 5 and 6,
which account for most of the retests decrease, as shown in rows 7
and 8, respectively. This indicates that if we allow more retests (that
is increasing rT), we can set more stringent threshold values (that are
increasing gW min and decreasing the leading nk maxs), so as to save
more overkills (that is the decreased average overkill percentage), as
indicated in the last row of Table I.

Fig. 2. Resulted (E[V ], E[R]) pairs of the 521 test wafers based on the vector
of threshold values determined by the two-level algorithm, the random gener-
ator, the three-sigma limit, and the six-sigma limit. (Color version available
online at http://ieeexplore.ieee.org.)

To demonstrate the real-world performance of the vector of
threshold values obtained by the two-level algorithm for the three
cases shown in Table I, we use 521 real test wafers, whose num-
ber of dies of all bins, bjk, j = 1, . . . , 521, k = 1, . . . , 12, and
overkills before retest, vo

jk, j = 1, . . . , 521, k = 1, . . . , 12, are known.
The corresponding results of the pair of the average overkills per
wafer, E[V ](= (1/521)

∑521

j=1
Vj), and the average retests per wafer,

E[R](= (1/521)
∑521

j=1
Rj), for these 521 test wafers are shown in

Fig. 2 as the points marked by “�,” “∗,” “◦” with the corresponding rT
shown on the top right corner of the figure. We also use 2000 randomly
selected vectors of threshold values to test the same 521 wafers; the
resulted pairs of E[V ] and E[R] are shown as the points marked
by “•” in Fig. 2. We see that for E[R] ≤ 10, the E[V ] resulted by
the good enough vector of threshold values obtained by the two-level
algorithm is almost the minimum compared with those resulted by the
randomly selected vectors of threshold values. Similar conclusions can
be drawn for the cases of rT = 30 and 50. Since reducing overkills
and retests have conflicting nature, the considered unconstrained sto-
chastic optimization problem (2) possesses Pareto optimal solutions.
From Fig. 2, we can see that the results we obtained for the cases
of rT = 10, 30, and 50 are almost on the boundary of the region
resulted from the randomly generated vectors of threshold values; this
implicit boundary represents the (E[V ], E[R]) pairs resulted by the
Pareto optimal vectors of threshold values. We also use the three-
sigma limit and the six-sigma limit to determine the threshold values
such that g3σ

W min = µg − 3σg , n3σ
k max = µk + 3σk, k = 1, . . . , 12,

and g6σ
W min = µg − 6σg , n6σ

k max = µk + 6σk, k = 1, . . . , 12, where
µg and σg , the mean and standard derivation of the number of good
dies in a wafer, and µk and σk, the mean and standard derivation
of the number of dies of bin k, are obtained from the data set of
521 test wafers. Using these threshold values to test the same set of
521 test wafers, the resulted (E[V ], E[R]) pairs from the three-sigma
limit and the six-sigma limit are also shown in Fig. 2 marked by “�”
and “♦,” respectively. For E[R] ≤ 10, we can see that our method
will save 22% and 24% more overkills than the three-sigma limit and
the six-sigma limit, respectively. Considering the vast number of dies
manufactured per month, the increased profit due to saving overkills
will be too large to neglect. Furthermore, both the three-sigma limit
and the six-sigma limit do not generate the Pareto optimal solution for
(2), and they cannot control the level of retests like ours. We have
also used typical GA and simulated annealing (SA) [13] algorithm
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to solve (2) for the case of rT = 10. As indicated at the beginning
of Section III, the global searching techniques are computationally
expensive in solving (2). We stop the GA and SA when they consumed
50 times of the CPU time consumed by the two-level algorithm, and
the objective values of (2) they obtained are still 5.4% and 8.1% more
than the final objective value obtained by the two-level algorithm,
respectively. Using the threshold values they obtained to test the 521
wafers, the resulted (E[V ], E[R]) pairs are marked by “+” and “∆”
in Fig. 2. We found that using two-level algorithm, we can save 6.2%
and 8.6% more overkills than using the GA and SA for E[R] ≤ 10,
respectively. In addition, both GA and SA do not generate the Pareto
optimal solution, because the best so far solution they obtained for 5 h
of CPU time are still far away from the optimal solution of (2).

V. CONCLUSION

The proposed formulation for reducing overkills and retests is not
limited to the testing process of a foundry; it can easily adapt to any
general testing procedures. The proposed OO theory-based two-level
algorithm is not limited to the problem considered in this correspon-
dence. In fact, it can be used to solve any hard optimization problem
that requires lengthy computational time to evaluate the performance
of a decision variable.
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A Polynomial Deadlock Avoidance Method for a Class of
Nonsequential Resource Allocation Systems

Joaquín Ezpeleta and Rüdiger Valk

Abstract—This correspondence introduces a deadlock-avoidance algo-
rithm for a class of manufacturing systems with the following charac-
teristics: 1) Production orders are allowed to have assembly operations
(which give the nonsequential nature to the resource allocation system
model) but not disassembly operations, 2) the use of system resources
must be conservative (resources are neither created nor destroyed), and
3) actions related to the granting of resources are controllable. The pro-
posed solution represents a sufficient condition for a given system state to
be safe and is based on an adaptation of the well-known Banker’s approach
for deadlock avoidance. The time complexity of the proposed solution is
proved to be polynomial with the size of the Place/Transition net model.

Index Terms—Assembly systems, Banker’s algorithm, deadlock avoid-
ance, Place/Transition nets (Petri nets), resource allocation system (RAS).

I. INTRODUCTION

A resource allocation system (RAS) is a system composed of a set of
processes which, in their execution, must compete for the set of system
resources. The complexity of dealing with deadlocks strongly depends
on the system structure. Depending on whether the involved processes
have a concurrent or a sequential nature, whether runtime decisions for
a process to choose a given path in its execution are allowed or not, and
whether the model point of view considers that a process is allowed to
use one or more system resources at a given moment, different classes
of systems, whose specific characteristics allow the development of
specific solutions, appear.

In the case of RAS, where the set of involved processes have a se-
quential nature, many different solutions that adopt different points of
view (deadlock avoidance, prevention, and detection recovery) can be
found. A good (noncomprehensive) list of solutions include [1]–[14].

Less attention has been paid to the case of assembly/disassembly
systems. Adopting a Place/Transition net (Petri net) perspective,
Roszkowska and Wojcik [15] propose a deadlock avoidance solution
for a class of assembly systems where production orders are modeled
by means of marked graphs and where one resource is allowed at
each production step. From a supervisory control point of view,
Fanti et al. [16] propose a solution for the same problem in the subclass
of assembly systems, where processes have a tree structure and one
resource is used at each processing step, based on an adaptation of
some previous techniques applied to sequential RASs. Hsieh [17]
concentrated on the same class of processes as that in [16] but allowed
a more general way of resource usage (i.e., maintaining the constraint
of resources to be granted/freed one unit at a time).

Xie and Jeng [10] adopt a Petri-net-based structural point of view
and give a liveness characterization based on siphons for a class of
systems where production orders are modeled by means of marking
graphs and where a multiset of resources is allowed at each production
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