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Abstract—In this letter, a mechanism that will make negative
bias temperature instability (NBTI) be accelerated by plasma
damage in low-temperature polycrystalline silicon thin-film tran-
sistors (LTPS TFTs) is presented. The experimental results con-
firm that the mechanism, traditionally found in the thin gate-oxide
devices, does exist also in LTPS TFTs. That is, when performing
the NBTI measurement, the LTPS TFTs with a larger antenna
ratio will have a higher degree in degradation of the thresh-
old voltage, effective mobility, and drive current under NBTI
stress. By extracting the related device parameters, it was demon-
strated that the enhancement is mainly attributed to the plasma-
damage-modulated creating of interfacial states, grain boundary
trap states, and fixed oxide charges. It could be concluded that
plasma damage will speed up the NBTI and should be avoided for
the LTPS TFT circuitry design.

Index Terms—Low-temperature polycrystalline silicon thin-
film transistors (LTPS TFTs), negative bias temperature instabil-
ity (NBTI), plasma damage.

1. INTRODUCTION

ECENTLY, low-temperature polycrystalline silicon thin-

film transistors (LTPS TFTs) have attracted much re-
search interest due to its high potential of realizing system
on panel [1]. To achieve a good process repeatability and a
precise control of feature sizes, plasma process has been widely
used in the manufacture of ULSI and LTPS TFTs. However,
plasma damage has been reported to degrade the performance
and reliability in thin-film transistors TFTs [2]-[4].

Negative bias temperature instability (NBTI) has been
widely studied and was found to be an important reliability
issue for the pMOSFETs [5], [6]. Several researchers have
showed that the NBTI occurs in p-type-channel TFTs [7]-[12]
as well; however, the correlation between plasma damage and
NBTI in LTPS TFTs has not been explored.

This letter aims to investigate the effects of plasma damage
on the NBTI behaviors in LTPS TFTs; accordingly, p-type-
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channel TFTs with various antenna structures were designed,
and then, NBTI measurement was performed in this letter.

II. EXPERIMENTAL

The p-channel LTPS TFTs were fabricated on glass sub-
strates, in this letter. First, a 400-A amorphous-Si layer was
deposited and crystallized into poly-Si film by excimer laser
annealing. After defining the active region, the 1000-A SiO,
was deposited as a gate dielectric. Then, Mo, with a thickness of
3000 A, was deposited and patterned as the gate electrode. Fol-
lowing source/drain formation, a 5000-A SiO, was deposited
as interlayer dielectric and densified. Finally, a 5000-A Al was
deposited and patterned as metal pads. The channel length (L)
and width (W) of the devices mainly used were 10 and 20 pym,
respectively. The metal pads attached to the gate were designed
with an antenna-area ratio (AR) of 100, 500, and 1000. The
AR is defined as the ratio between the antenna and gate areas
on the active region (L x W). The schematic cross sectional
diagram of the test structure is shown in the inset of Fig. 1.
NBTI stress was performed at 150 °C, and a stress voltage of
—30 V was applied to the gate with the source/drain grounded.
All the measurements were taken at the stress temperature,
and the stress was periodically stopped to measure the basic
device characteristics. The delay time between the stress and
measurement was set at 1 s.

III. RESULTS AND DISCUSSION

Fig. 1 shows the NBTI-induced transfer characteristic degra-
dation for the LTPS TFTs with an AR of 100, 500, and 1000.
We found that NBTI stress makes the threshold-voltage (Vi)
shift to the negative direction and simultaneously degrades the
subthreshold swing (S); additionally, the effects are getting
worse for the devices with a larger AR. Therefore, it is rea-
sonable to suppose that the NBTI in LTPS TFTs is modulated
by plasma damage. The correlations can be further observed
from the threshold-voltage shift (AV}y,) versus the stress time
for the LTPS TFTs with different ARs, as shown in Fig. 2.
Fig. 2 significantly confirms that the device with a larger AR
does induce a greater AV, under NBTI stress. Compared with
the AV4y,, the drive current (Ion) degradation, revealed in the
inset of Fig. 2, presents the same trend that confirms plasma-
damage-enhanced NBTL
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Fig. 1. Transfer characteristics of the LTPS TFTs with an AR of 100, 500,

and 1000 before and after a 1000-s NBTI stress. The inset shows the schematic
cross sectional diagram of the test device structure used in this letter.
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Fig. 2. Dependence of the threshold-voltage shift and drive-current degrada-
tion (in the inset) on the stress time for the LTPS TFTs with an AR of 100, 500,
and 1000.

It is well known that the AV}, of pMOSFETs under NBTI
stress shows a power-law dependence on the stress time with an
exponent factor (n) of 1/3—1/4, which can be illustrated by the
diffusion-controlled electrochemical reactions. These reactions
are usually explained by the generation of fixed oxide charges
and interface states in MOSFETs, leading to the V;y shift
[13]-[15]. Our experimental results, displayed at the inset of
Fig. 3, also follow a similar dependence on the stress time.
Fig. 3 exhibits the extracted n values for the LTPS TFTs with
different ARs. It is interesting to note that the n value is larger
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Fig. 3. Exponent factors (n) of the LTPS TFTs with various ARs. The inset

shows the linear fit of the log—log plot of the threshold-voltage shift versus the
stress time of LTPS TFT's with an AR of 100, 500, and 1000 under NBTI stress.

-14 T r v - = v
AR=1000

16 |

®-jnital
+-stress

=
> |4
= .
18 k -8 3\\ 7.8X10""(1/cm?)
£ ° u

4N =1.5X10"%(1/cm?)
sl

0.2 0.4 0.6 0B

A S-VFB)Z v?

In [/ (Vs Veg)]

\ - N,,,=9-1X10""(1/cm’)
—®—inital 0
24 | - stress ‘\ .
_ \ _ 12 2
AR=100 Lo N, =1:3X10%(t/cm)
'26 L L L 1 L 1 i
0 0.2 0.4 0.6 0.8

UV, V) (VP

Fig. 4. Extraction of the grain boundary trap state density of LTPS TFTs with
an AR of 100 and 1000 (in the inset) before and after a 1000-s NBTI stress.

for the device with a larger AR, indicating that plasma damage
accelerates NBTI in LTPS TFTs. Accordingly, it proves that
plasma damage enhances NBTI in LTPS TFTs. The enhance-
ment is caused by the fact that the samples with plasma damage
generates more interfacial states and fixed oxide charges during
NBTI stress. Owing to the fact that the LTPS TFTs have a lot of
grain boundaries in the channel region, the NBTI mechanisms
of the LTPS TFTs will be different from that of MOSFETs.
Fig. 4 compares the grain boundary trap state density (Nirap)
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TABLE 1
COMPARISON OF PARAMETER VARIATION OF THE LTPS TFTS WITH
AN AR OF 100, 500, AND 1000 AFTER A 1000-s NBTI STRESS

Stress Condition: Vg =30V, 150°C
AR=100 | AR=500 | AR=1000
Aptegr(%) -6.7 7.9 9.0
AS (%) 523 64.2 787
AV (V) -0.84 -0.91 -1.02
Non (%) 258 283 325
ANyoo(%) 427 67.8 96.3

estimated by the Levinson and Proano method [16], [17]. By
taking the NBTI stress, the Vi, increases from 9.1 x 10! to
1.3 x 10" (cm™2) and from 7.8 x 10'* to 1.5 x 10** (cm~2)
for the device with an AR of 100 and 1000, respectively. The
overall generation of Ny,p, is enhanced for the device with a
larger AR; this signifies that plasma damage enhances NBTI not
only through the previously mentioned mechanisms but also by
accelerating the generation of grain boundary trap states during
NBTI stress.

Table I compares the parameter variation of the LTPS TFTs
that was stressed by NBTI for 1000 s; the AR of those devices
are 100, 500, and 1000, respectively. As AR increases, the
devices have a higher degree in degradation of the effective
mobility (fter), S, Vin, Nerap, and Ion. All the results confirm
that plasma damage enhances the quantity of NBTI in LTPS
TFTs. The enhancement could be induced by the fact that
the plasma damage degrades the quality of gate oxide, poly-
Si/SiOs interface, and grain boundaries; those consequences
were represented in the NBTI measurement rather than in the
initial quality verification.

IV. CONCLUSION

In this letter, we confirmed that plasma damage is a signifi-
cant factor for NBTI reliability in LTPS TFTs. The experimen-
tal results show that the consequence of plasma damage will
be represented under NBTI stress in LTPS TFTs. The plasma-
damage-correlated NBTT acceleration is mainly attributed to the
speeding up of generations in interfacial states, grain boundary
trap states, and fixed oxide charges. Therefore, to sustain the
LTPS TFTs with both high reliability and high yield, the
antenna structures must be carefully designed.
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