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In the manufacturing industry, many product characteristics are of one-sided
specifications. The well-known process capability indices Cpy and Cpy, are often
used to measure process performance. Most capability research works have assumed
no measurement errors. Unfortunately, such an assumption is not realistic even
if the measurement is conducted using highly sophisticated advanced measuring
instruments. Therefore, conclusions drawn regarding process capability are not
reliable. In this paper, we consider the estimation and testing of Cpy and Cpy, with
the presence of measurement errors, to obtain adjusted lower confidence bounds and
critical values for true process capability, which can be used to determine whether the
factory processes meet the capability requirement when the measurement errors are
unavoidable. Copyright (© 2005 John Wiley & Sons, Ltd.
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1. INTRODUCTION

rocess capability indices have been widely used in the manufacturing industry to provide quantitative

measures on process potential and performance (see Borges and Ho!, Chen and Hsu’?, Chen and

Chen’, Ding*, Hoffman’, Kotz and Johnson®, Nahar et al.”, Noorossana®, Pearn and Lin’, Perakis
and Xekalaki'?, Spiring et al.'', Wu and Pearn!2, Pearn and Wu'3, Zimmer et al.'* and many others). In the
manufacturing industry, many product characteristics are of one-sided specifications. The process capability
indices Cpy and Cpr, are often used to measure process performance (Kane!?), and have been defined as
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where LSL is the lower specification limit, USL is the upper specification limit, u is the process mean and o is
the process standard deviation. If the quality characteristic of the manufacturing process is normally distributed,
the process yield p% can be expressed by p% = ®(3Cy), where & is the cumulative distribution function of
the standard normal distribution, and C1 = Cpy or Cpr. It is clear that the relationship between the index Ci
and process yield is one-to-one. Thus, the index C provides an exact measure of process yield. Table I displays
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Table I. The corresponding process yield

and NCPPM for Cy
C1 Process yield p% NCPPM
1.00 0.998 650 1020 1350
1.33 0.999 966 9634 33
1.50 0.999 996 6023 3.4
1.67 0.999 9997278 0.272
2.00 0.999 999 9990 0.001

some commonly used capability values of Cy, the corresponding process yield and non-conformity units in parts
per million (NCPPM).

In current practice, a process is called ‘inadequate’ if C1 < 1.00, ‘marginally capable’ if 1.00 < Cy < 1.33,
‘satisfactory’ if 1.33 < Cy < 1.50, ‘excellent’ if 1.50 < C1 < 2.00 and ‘super’ if 2.00 < C. Montgomery'(’
recommended some minimum quality requirements on Cj. For existing processes, the capability must be no
less than 1.25, and for new processes, the capability must be no less than 1.45. For existing processes on safety,
strength, or critical parameters, the capability must be no less than 1.45, and for new processes on safety,
strength, or critical parameters, the capability must be no less than 1.60. Using the index Ci, the practitioners
can evaluate their process capability and make decisions.

In practice, no measurement is free from errors even if the measurement is conducted using highly
sophisticated advanced measuring instruments. Any variation in the measurement process has a direct impact
on capability estimation and judgment about the true process capability. Clearly, conclusions about process
capability based on the empirical index values are not reliable. To analyze the effects of measurement errors
on true process capability, Mittag!” and Levinson'® discussed the behavior of theoretical process capability
indices in the presence of measurement errors. Bordignon and Scagliarini'” performed some statistical analysis
in estimating Cp and Cpg.

In this paper, we consider the one-sided process capability indices Cpy and Cpr. We first develop
the relationship between the true process capability and the empirical process capability. We then show
that the empirical confidence bound of capability estimation severely underestimates the true capability.
When performing capability testing, both the «-risk and the power of the test decrease substantially with the
presence of measurement errors. To estimate the capability accurately and improve the power with given a-risk,
adjusted confidence bounds and critical values are provided. An application example on TFT-LCDs (thin-film-
transistor liquid crystal displays) is also presented.

2. EMPIRICAL PROCESS CAPABILITY

Suppose that X ~ N(u, 0%) is the relevant quality characteristic of a manufacturing process, and M ~
N(O, Uz%/[) is a random variable describing the measurement errors. Assuming that X and M are mutually
independent, instead of measuring the true variable X, the empirical data ¥ ~ N(uy = u, o)% =o2+ 01%,[) is
observed and measured. The empirical process capability indices CgU and CgL are obtained after substituting
oy for o. We first define the degree of error contamination t (see Mittag”),
oM
r= -2
o

to obtain the following relationship between the empirical process capability index CIY and the true process
capability index Cr:

cf 1
Gt J1+12
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Table II. Process capability with T = 0(0.1)1.0 for various Cy

T
Cr 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

050 050 049 048 046 045 043 041 039 037 035
1.00 1.00 098 09 093 08 086 082 078 074 0.71
133 132 130 127 123 119 1.14 1.09 1.04 099 0%
1.50 149 147 144 139 134 129 123 1.17 111 1.06
1.67 166 1.64 1.60 155 149 143 137 130 124 1.18
200 199 196 192 186 179 171 164 156 149 1.4l
250 249 245 239 232 224 214 205 195 186 1.77

where Cf;U or Cf;L is denoted here as CIY . Since the variation of the empirical data we observe is greater than
the variation of the original data (without measurement errors), the denominator of the index Cy becomes larger,
and we would understate the true capability of the process if we calculate the process capability based on the
empirical data from Y.

In Table II, we tabulate some empirical process capabilities with 7 =0(0.1)1.0 for various true process
capabilities Cy=0.50, 1.00, 1.33, 1.50, 1.67, 2.00 and 2.50. If 7 =1.0, then for CIY =0.35 the true
process capability is C1 = 0.50, and for CIY = 1.77 the true process capability C; = 2.50. The empirical process
capability is more likely to diverge from the true capability when the measurement error increases. It is obvious
that the gauge accuracy is less important if the required process capability is only marginally capable, and
becomes more critical as the true capability requirement gets more stringent.

3. ESTIMATING EMPIRICAL PROCESS CAPABILITY

Since the process parameters u and o are unknown, we therefore cannot evaluate the actual process capability.
However, given sample data taken from the process, we could estimate process capability. Denoting by
{X;,i=1, ..., n} the random sample of size n from the quality characteristics X, the natural estimators of
Cpy and Cpy, are

. USL—X 4 X — LSL
Cpouy=——, Cpp=—
PU 3 PL 3
where X = Yo Xi/nand S =[>"7_(X; — X)/(n — 1)]'/2 are conventional estimators of 4 and o'. Chou and
Owen?? showed that under the normality assumption, the estimators C‘pU and épL are distributed as ct,,—1(5),
where ¢ = (3/n)~ ! and1,_;(8) is a non-central 7 distribution with n — 1 degrees of freedom and non-centrality
parameter § = 3./nCpy and § = 34/nCpL, respectively. By adding the well-known correction factor,

Y N A A
R 2 2
to épU and C’pL, such as C‘pU =b,_ 1é’pU and é‘pL =b,_ 1épL, Pearn and Chen?! showed that C’pU and é‘pL

are uniformly minimum variance unbiased estimators (UMVUEs) of Cpy and Cpr. Thus, given a sample
{Y;,i=1, ..., n}, the estimators of Cpy and Cp, are

USL—-Y - Y — LSL

C‘}gU = bn—l 3SY , CgL = bn—l 3SY

Based on the same argument as used in Chou and Owen?2® and Pearn and Chen?!, the estimator C‘IY (C‘gU or
@I’,/L) is distributed as dt,_(8Y), where d = 17,1_1(3\/5)_1 and t,—1(8Y) is a non-central ¢ distribution with
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Table III. 7 values for n = 5(5)100

n 70 n 70 n 70 n 70

5 1439 30 0279 55 0.199 80 0.163
10 0587 35 0255 60 0.189 85 0.157
15 0431 40 0237 65 0.181 90 0.153
20 0356 45 0222 70 0.174 95 0.149
25 0310 50 0209 75 0.168 100 0.145

n — 1 degrees of freedom and non-centrality parameter 87 = 3,/nCy/+/1 + 2. The mean, the variance and the
mean squared error of the estimator CIY are

~ C
Var(@Y) — {r«n — /AT =3)/2) 1} (C)?  T(n—1/2)T((n—3)/2)
b [T((n —2)/2)] 1+ 2 9n[T((n —2)/2)1?
v LV o [T=D/2T((=3)/2) | (C)?
MSE(CI)_(J—HTZ 1) (v +{ [[((n—2)/2)]? 1}1+r2

I'((n —1)/2)F((n —3)/2)
In[T ((n —2)/2)1?

For 7 >0, C~’IY is a biased estimator of Ci, and the bias (1/+/1+ 12— 1)Cy decreases in 7. Since
I'((n—1)/2)T'((n —3)/2)/[T((n — 2)/2)]*> — 1 is positive, then Var(CIY) < Var(Cy). To compare MSE(C‘IY)
with MSE(Cy), we consider the function f(Ci, n, T) = MSE(C})/MSE(C)). By some reduction, we have
f(C1, n, t) =1 if and only if

N 2)/2)yT((n = /2T ((n = 3)/2) — [[((n — 2)/2)]?
2[0((n = 2)/2)1 = T((n — 1)/2)T((n - 3)/2)

or T = 0. Denote the right-hand side of the above formula by 79 and we have f(Cy, n, ) > 1 if T > 19 and
f(C1,n, 7) < 1if T <79 exclusive of 0. This represents that MSE(C}) > MSE(Cy) if t > 79, MSE(CY) <
MSE(C)) if T < 79 exclusive of 0, and MSE(C}) = MSE(C)) if T = 79 or 0.

Table III lists the 79 values for n = 5(5)100. Figures 1(a) and (b) display the surface plots of the ratios
y = f(Cy, n, ) with n =5(1)100 and t in [0, 1] for C; = 1.00, and 1.33. The value 1y is greater than 0.5 for
small n (n < 10), and greater than 0.2 for n < 50. When 50 < n < 100, 19 is between 0.7 and 0.2. For large
n, y is greater than 1 for almost every value of 7, and y increases if 7 increases. The maximum values of y
are 14.239, and 15.347, respectively, and the minimum values of y are 0.806 (1/1.241), and 0.797 (1/1.255),
respectively. The maximum values of y occur at n =100 and t = 1, and the minimum values of y occur at
n =15 and T = 0.788. The difference between MSE(C‘IY ) and MSE(Cy) with y > 1 is more significant than that
with y < 1.

4. EMPIRICAL LOWER CONFIDENCE BOUND

The lower confidence bounds present a measure on the minimum capability of the process based on the
sample data. Let ky =3Cpy/b,—1 and kp =3CpL/b,—1, and we have USL= X + k1S and LSL=X — k;S.

Copyright © 2005 John Wiley & Sons, Ltd. Qual. Reliab. Engng. Int. 2006; 22:771-785
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Figure 1. Surface plot of y with n = 5(1)100 and 7 in [0, 1] for: (a) C; = 1.00; (b) C; = 1.33
A 1006 % lower confidence bound Cy for Cpy satisfies P(Cpy > Cy) = 0. It can be written as

USL —
P(Cpy=Cy)=P 372CU
o

Z —3/nCy - 3C~'1JU

=P
S/G bnfl

V| = P(ty-1(8u = =3/nCy) = 11) =6

Similarly, a 1000% lower confidence bound Cy, for Cpp, satisfies P(Cpr > CL) =6. It can be shown as
P(ty—1(8L =3/nCL) < 1) =0, where Z is distributed as N (0, 1), t; = —k;/n and 1, = ky+/n. To find the
exact 1000% lower confidence bounds, Pearn and Shu> provided an algorithm and a Matlab program to
solve the above equations. With measurement errors, we use C~‘IY to estimate Cp but not C‘l. Thus, tIY =
—(SCN‘E,/U /bp_1)/n and t2Y = (3C~‘1§L /bn—1)+/n, instead of ¢ and #,, are substituted into the equations to obtain
the confidence bounds. Denote the bounds originated from ¢} and 1" as C; and /. The confidence coefficient
by the confidence bound CS (denoted by 67) we obtained is

USL —
Y =P(Cpu>CH =P <37MY\/1+IZEC5>

oy
Y + ki Sy — uy cl Z —3/nC/V1+ 12 v
3oy V1412 Sy /oy
Z—-3nCl/V1+12 _ 3Cpuyn y  —3/nCY v
= Z — = P tn_l 8U E Z tl
Sy /oy b1 1+ 12
where k' = 3C~‘1§’U /bn—1,, and @ can be also obtained by the confidence bound C}, expressed as
3/nCY
oY =P |1, 5{:L <t
V1412

Figures 2(a) and (b) plot 0Y versus T with n = 25(25)100 and C‘l = 1.00, and 1.33, for 95% confidence
intervals (since E(C~‘IY) = E(C‘I/«/ 1 + t2), we consider the cases with C‘IY = C‘I/v 1 4 72). Since C~‘IY is smaller
than Cy in the presence of measurement errors, and Cé (or CI’; ) is smaller than Cy (or CL), it is necessary that 9
is always greater than 8. Severely underestimating the true process capability may result in high production cost,
losing the power of competition. For instance, suppose that a process has a 95% lower confidence bound, 1.256,
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Figure 2. Plots of 6Y versus T with n = 25(25)100 (from top to bottom) for 95% confidence intervals and: (a) C‘I =1.00;
(b) C; =1.33

with n = 50, which has met the threshold of an ‘excellent’ process. However, the bound may be calculated as
1.073 with measurement errors T = 0.6. The coefficient increases to 0.998, but the process may be determined
as a ‘capable’ process rather than a ‘satisfactory’ process.

5. CAPABILITY TESTING BASED ON EMPIRICAL DATA

We usually use statistical testing to determine whether our processes meet the capability requirement. The null
hypothesis is Hp : C1 < ¢ (process is not capable), and the alternative hypothesis is Hp : C1 > ¢ (process is
capable) of testing, where c is our required process capability. The critical value is used to determine whether
the null hypothesis should be rejected. If the point estimator of the process capability is greater than the critical
value, we reject the null hypothesis and conclude that the process is capable. Otherwise, we would believe that
the process is incapable. Suppose that the nominal size of our statistical testing is « (type I error), the critical
value ¢ can be determined by

a=P(Ci>co|Cr=c)

by, —
co = 3"7%,,1_1,“(5 =3/nc)

where #,_1 «(8) is the upper oth quantile of 7,1 (8) distribution. The power of the test can be calculated as

7(Cy) = P(C1 > co | C1) = P(3v/nC1 > 3/nco | Cr)
= P(ty—1(8 =3/nC1) > ty—1,6(8 = 33/nc))

However, in the presence of measurement errors, the a-risk (denoted by ) and the power (denoted by 7¥) are

C1=c>

af = P(CY = co| Cr=c) = PBVnC{ =3ncy| Cr=0)
3Jn ~y 3 3
=P< vn vn CI:C>=P<tn_1(5Y=3ﬁC{)zbﬁco

Cl >
1 =
bn—l bn—l n—1

€0

=P (r,H <6Y =3vn >ty 1a(8= 3ﬁc)>

)
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Figure 4. Plots of 7Y versus 7, with n =350, & =0.05, for (a) ¢ = 1.00, C1 = 1.00(0.20)2.00; (b) ¢ =1.33, C1=
1.33(0.20)2.33 (from bottom to top)

7' (C1) = P(C} > co| C) = PB/nCY >3/nco| C1)

3Jn =y 3 3
=P< ﬁc{> ﬁco C1>=P (t,1_1(8Y=3\/ﬁCIY)> \/ﬁco CI>
by_1 by_1 by—1
Ci
— Yy _ —
=P <tn_1 (5 _3ﬁm> > th—1.0(8 = wﬁc))

Earlier discussions indicate that we underestimate the true process capability using C~‘IY instead of Cy.
The probability that C’IY is greater than ¢y would be less than that of using Cy. Thus, the a-risk using C‘IY to
estimate C7 is less than the a-risk if using C~‘1 to estimate Cy. The power, if using C‘IY to estimate Cy, is also less
than the power if using Cr. That is, we have ¥ <« and 7¥ < 7. Figures 3(a) and (b) are the surface plots of

af with n = 5(1)100 and t € [0, 1] for C; = 1.00, 1.33 and « = 0.05. Figures 4(a) and (b) are the plots of 7Y

versus T with n =50 and o = 0.05 for ¢ = 1.00, 1.33 and C; = ¢(0.20)c + 1. Note that for T =0, af =« and

7Y = 7 in those figures.

Copyright © 2005 John Wiley & Sons, Ltd. Qual. Reliab. Engng. Int. 2006; 22:771-785
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In Figures 3(a) and (b), ¥ decreases as T or n increases, and the decreasing rate is more significant with large
c values. We find that for large 7 values oY is smaller than 1 x 1072, In Figures 4(a) and (b), 7Y decreases as t
increases, but increases as n increases. Decrement of 7! by 7 is more significant for large ¢ values. Because of
measurement errors, 7Y may decrease significantly. For instance, in Figure 4(a) the 7Y value (¢ = 1.00, n = 50)
for C1 = 1.40 is ¥ = 0.920 if there is no measurement error (t =0). However, when t = 1.0, 7Y decreases to
0.042 and the decrement of the power is 0.878.

6. MODIFIED LOWER CONFIDENCE BOUNDS AND CRITICAL VALUES

We have shown that the coefficients increase owing to underestimating the lower confidence bounds. We have
also shown that both the o-risk and the power of the test decrease in measurement error. The probability of
passing non-conforming product units decreases, but the probability of correctly judging a capable process as
incapable also decreases. Since the lower confidence bound of the process capability is severely underestimated,
and the power becomes much weaker, the producers cannot firmly state that their processes meet the capability
requirement even if their processes are sufficiently capable. Good product units would be incorrectly rejected
in this case (rejected products are either scrapped or require rework). Unnecessary cost to the producers
may accompany those incorrect decisions. Improving the gauge capability and training the operators by
proper education are some ways to reduce the measurement errors. Nevertheless, measurement errors may
be unavoidable in most manufacturing processes. Thus, in this section, we adjust the confidence bounds to
give a more precise estimation of process capability, and revise critical values to improve the power for testing
hypothesis.

Suppose that the desired confidence coefficient is 6, the adjusted confidence interval of Cpy with confidence
interval bound C {S, and can be established as

USL —
0 =P(Cpu=CH)=P (37’”\/1 +2> C{j)
oy

Y +kl'Sy — pny Cy Z = 3nCH/N1+ 12
3UY «/1_|_-[2 SY/UY

Z-3JnCi/N1+12 _ 3Cpu/n . —3/nC} v
=P > - =Pt \Sy=—F— )21
SY/JY bn—l 1+ -[2

Similarly, the adjusted confidence interval of Cpr, with confidence interval bound C;*, can be established as

3./nCf
9=P<tn_1 (8{:%)5%)
+7

To find the exact 1000% lower confidence bounds, an S-plus program has been developed to solve the
equations. Figures 5(a) and (b) are comparisons among Cy, CS, and C{kJ for épU =1.00, 1.33 with n =50,
where Cy is the 95% lower confidence bound of CPU, Cg is the 95% lower confidence bound of C‘gU, and C[*J
is the adjusted 95% lower confidence bound for C‘gU. Note that, in this case, the probability that the interval
with the bound C 6 contains the actual Cpy value is greater than that of the interval with the bound Cy or Cy5,
while the probability that the interval with the bound Cy or C{; contains the actual Cpy value is just 0.95.
From Figures 5(a) and (b), we see that the lower confidence bounds remained underestimated, even if we adjust
the formula to calculate the bounds. However, the magnitude of underestimation using adjusted confidence
bounds is significantly reduced.

In order to improve the power of the test, we consider the revised critical values c; satisfied cjj < co.

> —ki ﬁ)

Thus, the probability that CN‘IY is greater than c{j is greater than the probability that CN‘IY is greater than cy.
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Figure 5. Plots of Cy, C{"J and Cé (from top to bottom) versus T with n = 50 and for: (a) @pU =1.00; (b) @pU =1.33

Both the a-risk and the power increase when we use c¢;j as a new critical value in the testing. Suppose that
the a-risk using the revised critical value cjj is *, the revised critical ¢ must satisfy

a*=P(C] > ¢ | Cr=c)= PB/nC{ >3/ncl| Cr=c¢)

3V Ay 3 3
:P( ey 3V C1=C)=P <tn_1(5Y=3ﬁC{)z N Clzc)
by—1 by—1 bp—1
c 3/n
=P (tao1 (8" =3V )z c*)
(n 1( V1412 by ?

To ensure that the a-risk is within the preset magnitude, we let @ = «, thus ¢;j can be obtained as

bn—l
3/n

*__
CO—

Cc
tn_]’c{ <(SY == 3\/ﬁﬁ)
T

and the power 7* is
T (C) = P(C} > ¢l | 1) = PGBVnCY > 3y/nc | Cr)
3Jn =y 3 3
=P ( ﬁCIY > e C1> =P <tn_1(8Y =3nC)) > bﬁcg

C,
0
bn—l bn—l n—1

)

L) >ty (31’:3\/;#))
V1412 e V1412

Figures 6(a) and (b) plot 7* versus T with n = 50 and « = 0.05 for ¢ = 1.00, 1.33, and C; = ¢(0.20)c + 1.
From those figures, we see that the powers corresponding to the adjusted critical values ¢ remain decreasing
in measurement error, but the decrements originating from the new critical values c{; are very small. We have
improved a certain degree of power. For instance, if we compare the 7Y values in Figure 4(a) (c = 1.00, n = 50)
for C1 = 1.40 with the 7* values in Figure 6(a) (¢ = 1.00, n = 50) for C; = 1.40, we see that 7¥ =0.042 and
7* =0.885 with T = 1.0. In this case, using the adjusted critical values c; the power is improved by 0.843.
Tables IV—VII provide the revised critical values for some commonly used capability requirements. Using these
tables, the practitioner may select the proper critical values for capability testing.

=P (tn_l <5Y =3n
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780 W. L. PEARN AND M.-Y. LIAO

18 08

0.6 iy

o7 ——— 04

02 02

0" ""702 o4 ., 08 08 1 2 aa o, 06 0B i
(@ (b)

Figure 6. Plots of 7* versus 7, with n =50, o =0.05, for: (a) ¢=1.00, Cy=1.00(0.20)2.00; (b) ¢ =1.33, C| =
1.33(0.20)2.33 (from bottom to top)

Table IV. Critical values for C; = 1.00, with n = 10(10)100, t =0.1(0.1)1.0

T
n l -« 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

10 0950 1.534 1512 1479 1436 1386 1.332 1276 1221 1.166 1.114
0975 1.707 1.684 1.647 1599 1544 1484 1423 1361 1301 1.243
0990 1948 1921 1.879 1.825 1.763 1.695 1.625 1.555 1.487 1.422
20 0950 1.336 1318 1.288 1.251 1.207 1.159 1.110 1.061 1.013  0.967
0975 1.429 1409 1378 1338 1.291 1.241 1.189 1.137 1.086 1.037
0990 1.548 1.527 1494 1450 1400 1346 1290 1.234 1179 1.127
30 0950 1.263 1.245 1.217 1.181 1.140 1.095 1.048 1.001 0956 0.912
0975 1330 1.312 1.283 1.245 1.201 1.154 1.105 1.056 1.009 0.963
0990 1416 139 1365 1325 1279 1229 1.178 1.126 1.076  1.027
40 0950 1.222 1205 1.178 1.143 1.102 1.058 1.013 0968 0.923 0.881
0975 1.277 1259 1231 1.194 1152 1.107 1.060 1.013 0967 0.922
0.990 1.345 1.327 1.297 1259 1215 1.167 1.118 1.069 1.021 0.974
50 0950 1.195 1.178 1.152 1.117 1.078 1.035 0.990 0.946 0902 0.860
0975 1.242 1225 1.197 1.162 1.121 1.076 1.030 0.984 0.939 0.896
0990 1.301 1.282 1.254 1.217 1.174 1.128 1.080 1.032 0.985 0.940
60 0950 1.176 1.159 1.133 1.099 1.060 1.018 0974 0930 0.887 0.846
0975 1.218 1.200 1.173 1.139 1.098 1.055 1.009 0.964 0920 0.878
0990 1.269 1251 1.223 1.187 1.145 1.100 1.053 1.006 0.961 00917
70 0950 1.161 1.145 1.119 1.085 1.047 1.005 0.961 0918 0.875 0.835
0975 1.199 1.182 1.155 1.121  1.081 1.038 0994 0.949 0905 0.863
0990 1.245 1.228 1.200 1.165 1.124 1.079 1.033 0987 0942 0.899
80 0950 1.149 1.133 1.107 1.074 1.036 0994 0951 0.908 0.866 0.826
0975 1.184 1.167 1.141 1.107 1.068 1.025 0981 0.937 0.894 0.852
0.990 1.227 1209 1.182 1.147 1.107 1.063 1.017 0972 0927 0.884
90 0950 1.140 1.124 1.098 1.065 1.027 0986 0.943 0900 0.859 0.818
0975 1.172  1.156 1129 1.096 1.057 1.015 0971 0.927 0.884 0.843
0990 1.211 1.194 1.168 1.133 1.093 1.049 1.004 0.959 0915 0.873
100 0950 1.132 1.116 1.090 1.058 1.020 0.979 0936 0.894 0.852 0.812
0975 1.162 1.146 1.120 1.086 1.048 1.006 0962 0919 0.876 0.835
0990 1.199 1.182 1.155 1.121 1.081 1.038 0994 0949 0905 0.863
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Table V. Critical values for Cy = 1.33, with n = 10(10)100, 7 = 0.1(0.1)1.0

T

n l -« 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

10 0950 2018 1.990 1945 1.887 1.820 1.748 1.673 1598 1524 1453
0975 2244 2212 2163 2.099 2025 1944 1861 1.778 1.697 1.619
0990 2557 2521 2464 2392 2308 2216 2122 2028 1936 1.847
20 0950 1.762 1.737 1.698 1.647 1.588 1.525 1.459 1393 1328 1.266
0975 1.881 1.855 1813 1.759 1.696 1.629 1559 1489 1420 1.354
0990 2.036 2.008 1.962 1904 1.837 1.764 1.688 1.613 1.539 1.468
30 0950 1.667 1.643 1.606 1.558 1.502 1.441 1379 1316 1.255 1.196
0975 1754 1.729 1.690 1.639 1.581 1.517 1452 1386 1.322 1.260
0990 1.864 1.838 1.796 1.743 1.681 1.614 1544 1475 1407 1.342
40 0950 1.614 1.591 1.555 1.508 1454 1.395 1.334 1.274 1214 1.157
0975 1.685 1.661 1.623 1574 1518 1457 1394 1331 1269 1.209
099 1.773 1.748 1.708 1.658 1.598 1.534 1468 1.402 1.337 1.275
50 0950 1.579 1.557 1521 1476 1423 1365 1305 1246 1.187 1.131
0975 1.640 1.617 1580 1.533 1478 1418 1357 1295 1.234 1.176
0990 1715 1.691 1.653 1.603 1.546 1484 1420 1.355 1.292 1.232
60 0950 1.555 1.532 1497 1452 1400 1343 1.285 1.226 1.168 1.113
0975 1.608 1.585 1549 1503 1.449 1390 1330 1269 1210 1.153
0990 1.675 1.651 1.613 1.565 1.509 1.448 1385 1.323 1.261 1.202
70 0950 1536 1.514 1479 1435 1383 1.327 1269 1.211 1.154 1.099
0975 1.584 1.562 1.526 1480 1.427 1.369 1310 1250 1.191 1.135
0990 1.644 1.621 1584 1536 1.481 1422 1360 1298 1.237 1.179
80 0950 1.521 1.499 1465 1421 1369 1314 1256 1.198 1.142  1.088
0975 1.566 1.543 1508 1.463 1410 1353 1294 1235 1.177 1.121
0990 1.620 1.597 1.561 1.514 1459 1401 1340 1279 1219 1.161
90 0950 1.509 1.487 1.453 1409 1358 1303 1246 1.189 1.133 1.079
0975 1.550 1.528 1.493 1448 1.396 1.339 1.281 1.222 1.165 1.110
0990 1.601 1.578 1.542 1495 1442 1384 1323 1263 1204 1.147
100 0950 1.498 1477 1443 1399 1349 1294 1237 1.180 1.125 1.071
0975 1.537 1515 1481 1436 1.384 1328 1270 1212 1.155 1.100
0990 1.584 1.562 1.526 1480 1.427 1.369 1310 1250 1.191 1.135

7. APPLICATION EXAMPLE

TFT-LCDs (thin-film-transistor liquid crystal display) consist of a lower glass plate on which the TFT is formed,
an upper glass plate on which the color filter is formed, and the injected liquid crystal between both glass
plates (see Figure 7(a)). The TFT plays a critical role in transmitting and controlling electric signals, which
determines the amount of voltage applied to the liquid crystal. The liquid crystal controls light permeability
using different molecular structures that vary in accordance with the voltage. In this way, the desired color and
image is displayed as it passes through the color filter (see Figure 7(b)). The TFT-LCD consumes less energy
compared to a CRT (cathode-ray tube), is slimmer and weighs less. The TFT-LCD has emerged as the most
widely used display solution, because of its high reliability, viewing quality and performance, compact size and
environment-friendly features. Because of the heat resistance, non-conductance and simple processing steps,
non-alkali thin-film glass is the major material of manufacturing TFT-LCD. While manufacturing non-alkali
thin-film glass, flatness is one of the critical quality characteristics. If the flatness of glass is not in control, the
TFT-LCD products may result in a certain degree of chromatic aberration.

Consider a supplier in manufacturing TFT-LCD products in Taiwan, the production specifications of
flatness for a particular model of non-alkali thin-film glass are USL =25 um (0.0025 mm) and 7 =0 um.
A total of 60 observations were collected which are displayed in Table VIII. To determine whether the
process is ‘satisfactory’ (Cpy > 1.33) with unavoidable measurement errors T = 0.4, we propose the following
procedure. Step 1: determine the capability requirement ¢ (normally chosen as 1.00, 1.33, 1.50) and the o-risk
(normally set to 0.01, 0.025 or 0.05). Step 2: calculate the value of the point estimator Cy from the sample.

Copyright © 2005 John Wiley & Sons, Ltd. Qual. Reliab. Engng. Int. 2006; 22:771-785



782 W. L. PEARN AND M.-Y. LIAO

Table VI. Critical values for Cp = 1.50, with n = 10(10)100, 7 =0.1(0.1)1.0

T
n l—o 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

10 0950 2270 2237 2187 2121 2046 1963 1.878 1.793 1.710 1.630
0975 2522 2487 2430 2358 2274 2183 2.089 1995 1903 1.814
0.990 2873 2.832 2768 2686 2591 2487 2381 2274 2169 2.069
20 0950 1982 1954 1910 1.852 1.786 1.714 1.639 1.565 1.491 1421
0975 2116 2086 2038 1977 1907 1.830 1751 1.671 1594 1.519
0.990 2289 2257 2205 2140 2.063 1981 1.895 1.810 1.726 1.646
30 0950 1.876 1.849 1.807 1.752 1.689 1.621 1.550 1479 1410 1.343
0975 1973 1945 1901 1.844 1.777 1706 1.632 1.557 1485 1.415
0990 2.096 2.066 2020 1959 1.889 1.813 1.735 1.656 1.579 1.505
40 0950 1.817 1.791 1.750 1.697 1.636 1.569 1.501 1.432 1.365 1.300
0975 1.896 1.869 1.826 1.771 1.707 1.638 1.567 1495 1425 1.358
0990 1995 1966 1921 1.864 1.797 1.725 1.650 1.575 1501 1.431
50 0950 1.778 1.753 1713 1.661 1.601 1.536 1469 1401 1335 1.272
0975 1.846 1.820 1.778 1.724 1.662 1.595 1.525 1456 1387 1.322
0990 1930 1902 1.859 1.803 1.738 1.668 1.596 1.523 1.452 1.383
60 0950 1.750 1.725 1.686 1.635 1.576 1.512 1445 1379 1314 1.251
0975 1811 1.785 1.744 1.691 1.630 1.564 1.496 1427 1360 1.295
0990 1.884 1.858 1.815 1.761 1.697 1.629 1.558 1.486 1417 1.350
70 0950 1.729 1.705 1.665 1.615 1.557 1.493 1428 1362 1298 1.236
0975 1.784 1.758 1.718 1.666 1.606 1.541 1473 1406 1339 1.276
0990 1.850 1.824 1.782 1.729 1.666 1.599 1529 1459 1391 1.325
80 0950 1713 1.688 1.649 1599 1.542 1479 1414 1349 1285 1.223
0975 1763 1.737 1.698 1.646 1587 1522 1.456 1389 1323 1.260
0990 1.823 1.797 1756 1.703 1.642 1.575 1507 1438 1370 1.305
90 0950 1.699 1.675 1.636 1.587 1529 1.467 1402 1338 1274 1213
0975 1.745 1.720 1.681 1.630 1.571 1.507 1.441 1.375 1310 1.248
0990 1.802 1.776 1.735 1.683 1.622 1556 1.488 1420 1353 1.289
100 0950 1.688 1.663 1.625 1.576 1519 1457 1393 1328 1.265 1.205
0975 1731 1.706  1.667 1.617 1558 1495 1429 1363 1299 1.237
0990 1.784 1.758 1.718 1.666 1.606 1.541 1473 1406 1339 1.276

Step 3: check the appropriate table listed in Tables IV-VII and find the corresponding critical value c;j based on
a, T and n. Step 4: conclude that the process meets the capability requirement if Cy is greater than c;- Otherwise,
we do not have enough information to conclude that the process is capable.

With the proposed procedure, we first determine that ¢ = 1.33 and « = 0.05. Based on the sample data of

60 observations, we obtain the sample mean Y = 11.93, the sample standard deviation Sy =2.85 and the

point estimator CII,/U =1.511. From Table VI, we find the critical value cg =1.452 based on «, T and n.

Since C~‘1§U > ¢, we conclude that the process is ‘satisfactory’. Moreover, by inputting C~‘1§U, 7, n and the desired
confidence coefficient & = 0.95 into the computer program, we can obtain the 95% lower confidence bound of
this process capability as 1.385.

8. CONCLUSIONS

In this paper, we investigated the estimation and testing the one-sided process capability index Cy with
measurement errors. We considered the estimator CIY rather than Cj for estimating Cy, using the sample data

contaminated by random measurement errors. The estimator C’IY underestimates the true process capability, and
the bias decreases in 7, with Var(C}) < Var(Cy), and MSE(CY) > MSE(C)) if T > 79, MSE(CY') < MSE((y)
if 7 < 1p. In estimating the capability, the confidence bounds are severely underestimated in the presence of
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Table VII. Critical values for C1 = 2.00, with n = 10(10)100, t =0.1(0.1)1.0

T

n l—«a 0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9 1.0
10 0950 3.011 2968 2900 2813 2.711 2.601 2487 2373 2261 2.153
0975 3345 3297 3221 3.124 3.012 2889 2763 2.636 2513 2393
0.990 3.807 3.752 3.667 3.556 3428 3290 3.146 3.002 2.862 2726
20 0950 2.632 2594 2535 2458 2369 2273 2173 2072 1974 1.880
0975 2808 2.767 27704 2.622 2.527 2425 2318 2212 2107 2.007
0.990 3.036 2992 2924 2835 2733 2622 2508 2393 2280 2.172
30 0950 2492 2456 2400 2327 2242 2151 2056 1961 1.868 1.779
0975 2.620 2.582 2523 2446 2358 2262 2162 2.063 1965 1.871
0.990 2.782 2742 2679 2.598 2504 2402 2297 2.191 2.088 1.989
40 0950 2414 2380 2325 2254 2.172 2.084 1992 1900 1.810 1.723
0.975 2518 2482 2425 2351 2266 2174 2.078 1.982 1.888 1.798
0990 2.648 2.610 2550 2473 2.383 2286 2.186 2.085 1.987 1.892
50 0950 2364 2330 2276 2207 2.127 2040 1950 1.859 1.771 1.686
0975 2453 2418 2362 2290 2207 2117 2024 1930 1.839 1.751
0.990 2563 2.526 2468 2393 2307 2213 2115 2018 1922 1.830
60 0950 2328 2.294 2241 2173 2.094 2.008 1.920 1.831 1.744 1.660
0.975 2406 2372 2317 2247 2165 2.077 1.985 1.893 1.803 1.717
0.990 2503 2467 2411 2338 2253 2161 2066 1970 1.877 1.787
70 0.950 2.300 2267 2215 2.147  2.069 1.984 1.897 1.809 1.723 1.640
0975 2371 2337 2283 2214 2.133 2046 1956 1.865 1.777 1.691
0.990 2458 2423 2367 2296 2212 2.122 2.028 1.935 1.843 1.755
80 0950 2278 2245 2193 2,127 2.049 1965 1.878 1.791 1.706 1.624
0.975 2.343 2310 2257 2,188 2.108 2.022 1.933 1.843 1.756 1.671
0.990 2423 2383 2333 2263 2.181 2091 1999 1907 1816 1.729
90 0950 2260 2.228 2.176 2.110 2.033 1950 1.863 1.777 1.692 1.611
0975 2321 2287 2235 2167 2.088 2003 1914 1.825 1.738 1.655
0.990 2395 2360 2306 2236 2.155 2067 1975 1.884 1.795 1.709
100 0950 2245 2213 2162 2096 2.020 1937 1851 1.765 1.681 1.600
0.975 2302 2269 2217 2149 2071 1.986 1.898 1.810 1.724 1.641
0.990 2371 2337 2283 2214 2.133 2046 1956 1.865 1.777 1.691

Color Filter Amay
f Liquid Crystal
%_ | larizing | |
Back light Partitio anitilptla;lg 1 ] TFT Anay
Plasma’ Polatizing I R S
channel filter 1 },r m::-'"“l"'g Calor Filler = = =
Back plate with discharge LC transparent l )
electrode pattern electrade Back Light
(@) (b)

Figure 7. (a) Structure of TFT-LCD; (b) light passing through the color filter
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Table VIII. 60 observations for flatness (in pm)

14.40 447 1118 8.29 9.38 8.73 11.64 6.59 1255 12.83  14.40
12.18 1473 1222 1042 11.56 1437 11.76 8.06  10.03 545 1218
1440  15.28 9.60 15.01 1236 14.69 10.71 6.96 8.88 1630  14.40
1553 1522 12.02 1295 1050 15.09 11.23 833 1376 12.19 15.53
9.93 9.14 1041 1534 1294 1024 1444 1254 1040 13.47 9.93
1322 1693 1841 11.19 15.09 940 1222 1217 1380 12.60 13.22

measurement errors. When we use statistical testing to determine if the process meets the capability requirement,
we observe that the power of the test decreases in measurement errors. As the measurement errors are
unavoidable in most manufacturing industry, to obtain a more accurate confidence bound and improve the power
with appropriate «-risk, we must adjust the confidence bounds and the critical values. For practical purpose, we
tabulated some adjusted critical values for the engineers to use in their factory applications.
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