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In the manufacturing industry, many product characteristics are of one-sided
specifications. The well-known process capability indices CPU and CPL are often
used to measure process performance. Most capability research works have assumed
no measurement errors. Unfortunately, such an assumption is not realistic even
if the measurement is conducted using highly sophisticated advanced measuring
instruments. Therefore, conclusions drawn regarding process capability are not
reliable. In this paper, we consider the estimation and testing of CPU and CPL with
the presence of measurement errors, to obtain adjusted lower confidence bounds and
critical values for true process capability, which can be used to determine whether the
factory processes meet the capability requirement when the measurement errors are
unavoidable. Copyright c© 2005 John Wiley & Sons, Ltd.

KEY WORDS: confidence bound; critical value; gauge measurement errors; process capability indices; one-
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1. INTRODUCTION

Process capability indices have been widely used in the manufacturing industry to provide quantitative
measures on process potential and performance (see Borges and Ho1, Chen and Hsu2, Chen and
Chen3, Ding4, Hoffman5, Kotz and Johnson6, Nahar et al.7, Noorossana8, Pearn and Lin9, Perakis

and Xekalaki10, Spiring et al.11, Wu and Pearn12, Pearn and Wu13, Zimmer et al.14 and many others). In the
manufacturing industry, many product characteristics are of one-sided specifications. The process capability
indices CPU and CPL are often used to measure process performance (Kane15), and have been defined as

CPU = USL − µ

3σ
, CPL = µ − LSL

3σ

where LSL is the lower specification limit, USL is the upper specification limit, µ is the process mean and σ is
the process standard deviation. If the quality characteristic of the manufacturing process is normally distributed,
the process yield ρ% can be expressed by ρ% = �(3CI), where � is the cumulative distribution function of
the standard normal distribution, and CI = CPU or CPL. It is clear that the relationship between the index CI
and process yield is one-to-one. Thus, the index CI provides an exact measure of process yield. Table I displays
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Table I. The corresponding process yield
and NCPPM for CI

CI Process yield ρ% NCPPM

1.00 0.998 650 1020 1350
1.33 0.999 966 9634 33
1.50 0.999 996 6023 3.4
1.67 0.999 999 7278 0.272
2.00 0.999 999 9990 0.001

some commonly used capability values of CI, the corresponding process yield and non-conformity units in parts
per million (NCPPM).

In current practice, a process is called ‘inadequate’ if CI < 1.00, ‘marginally capable’ if 1.00 ≤ CI < 1.33,
‘satisfactory’ if 1.33 ≤ CI < 1.50, ‘excellent’ if 1.50 ≤ CI < 2.00 and ‘super’ if 2.00 ≤ CI. Montgomery16

recommended some minimum quality requirements on CI. For existing processes, the capability must be no
less than 1.25, and for new processes, the capability must be no less than 1.45. For existing processes on safety,
strength, or critical parameters, the capability must be no less than 1.45, and for new processes on safety,
strength, or critical parameters, the capability must be no less than 1.60. Using the index CI, the practitioners
can evaluate their process capability and make decisions.

In practice, no measurement is free from errors even if the measurement is conducted using highly
sophisticated advanced measuring instruments. Any variation in the measurement process has a direct impact
on capability estimation and judgment about the true process capability. Clearly, conclusions about process
capability based on the empirical index values are not reliable. To analyze the effects of measurement errors
on true process capability, Mittag17 and Levinson18 discussed the behavior of theoretical process capability
indices in the presence of measurement errors. Bordignon and Scagliarini19 performed some statistical analysis
in estimating CP and CPK .

In this paper, we consider the one-sided process capability indices CPU and CPL. We first develop
the relationship between the true process capability and the empirical process capability. We then show
that the empirical confidence bound of capability estimation severely underestimates the true capability.
When performing capability testing, both the α-risk and the power of the test decrease substantially with the
presence of measurement errors. To estimate the capability accurately and improve the power with given α-risk,
adjusted confidence bounds and critical values are provided. An application example on TFT-LCDs (thin-film-
transistor liquid crystal displays) is also presented.

2. EMPIRICAL PROCESS CAPABILITY

Suppose that X ∼ N(µ, σ 2) is the relevant quality characteristic of a manufacturing process, and M ∼
N(0, σ 2

M) is a random variable describing the measurement errors. Assuming that X and M are mutually
independent, instead of measuring the true variable X, the empirical data Y ∼ N(µY = µ, σ 2

Y = σ 2 + σ 2
M) is

observed and measured. The empirical process capability indices CY
PU and CY

PL are obtained after substituting
σY for σ . We first define the degree of error contamination τ (see Mittag17),

τ = σM

σ

to obtain the following relationship between the empirical process capability index CY
I and the true process

capability index CI:

CY
I

CI
= 1√

1 + τ 2

Copyright c© 2005 John Wiley & Sons, Ltd. Qual. Reliab. Engng. Int. 2006; 22:771–785
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Table II. Process capability with τ = 0(0.1)1.0 for various CI

τ

CI 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.50 0.50 0.49 0.48 0.46 0.45 0.43 0.41 0.39 0.37 0.35
1.00 1.00 0.98 0.96 0.93 0.89 0.86 0.82 0.78 0.74 0.71
1.33 1.32 1.30 1.27 1.23 1.19 1.14 1.09 1.04 0.99 0.94
1.50 1.49 1.47 1.44 1.39 1.34 1.29 1.23 1.17 1.11 1.06
1.67 1.66 1.64 1.60 1.55 1.49 1.43 1.37 1.30 1.24 1.18
2.00 1.99 1.96 1.92 1.86 1.79 1.71 1.64 1.56 1.49 1.41
2.50 2.49 2.45 2.39 2.32 2.24 2.14 2.05 1.95 1.86 1.77

where CY
PU or CY

PL is denoted here as CY
I . Since the variation of the empirical data we observe is greater than

the variation of the original data (without measurement errors), the denominator of the index CI becomes larger,
and we would understate the true capability of the process if we calculate the process capability based on the
empirical data from Y .

In Table II, we tabulate some empirical process capabilities with τ = 0(0.1)1.0 for various true process
capabilities CI = 0.50, 1.00, 1.33, 1.50, 1.67, 2.00 and 2.50. If τ = 1.0, then for CY

I = 0.35 the true
process capability is CI = 0.50, and for CY

I = 1.77 the true process capability CI = 2.50. The empirical process
capability is more likely to diverge from the true capability when the measurement error increases. It is obvious
that the gauge accuracy is less important if the required process capability is only marginally capable, and
becomes more critical as the true capability requirement gets more stringent.

3. ESTIMATING EMPIRICAL PROCESS CAPABILITY

Since the process parameters µ and σ are unknown, we therefore cannot evaluate the actual process capability.
However, given sample data taken from the process, we could estimate process capability. Denoting by
{Xi, i = 1, . . . , n} the random sample of size n from the quality characteristics X, the natural estimators of
CPU and CPL are

ĈPU = USL − X̄

3S
, ĈPL = X̄ − LSL

3S

where X̄ =∑n
i=1 Xi/n and S = [∑n

i=1(Xi − X̄)/(n − 1)]1/2 are conventional estimators of µ and σ . Chou and
Owen20 showed that under the normality assumption, the estimators ĈPU and ĈPL are distributed as ctn−1(δ),
where c = (3

√
n)−1, and tn−1(δ) is a non-central t distribution with n − 1 degrees of freedom and non-centrality

parameter δ = 3
√

nCPU and δ = 3
√

nCPL, respectively. By adding the well-known correction factor,

bn−1 =
√

2

n − 1
�

(
n − 1

2

)
�

(
n − 2

2

)−1

to ĈPU and ĈPL, such as C̃PU = bn−1ĈPU and C̃PL = bn−1ĈPL, Pearn and Chen21 showed that C̃PU and C̃PL
are uniformly minimum variance unbiased estimators (UMVUEs) of CPU and CPL. Thus, given a sample
{Yi, i = 1, . . . , n}, the estimators of CPU and CPL are

C̃Y
PU = bn−1

USL − Ȳ

3SY

, C̃Y
PL = bn−1

Ȳ − LSL

3SY

Based on the same argument as used in Chou and Owen20 and Pearn and Chen21, the estimator C̃Y
I (C̃Y

PU or
C̃Y

PL) is distributed as dtn−1(δ
Y ), where d = bn−1(3

√
n)−1 and tn−1(δ

Y ) is a non-central t distribution with
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Table III. τ0 values for n = 5(5)100

n τ0 n τ0 n τ0 n τ0

5 1.439 30 0.279 55 0.199 80 0.163
10 0.587 35 0.255 60 0.189 85 0.157
15 0.431 40 0.237 65 0.181 90 0.153
20 0.356 45 0.222 70 0.174 95 0.149
25 0.310 50 0.209 75 0.168 100 0.145

n − 1 degrees of freedom and non-centrality parameter δY = 3
√

nCI/
√

1 + τ 2. The mean, the variance and the
mean squared error of the estimator C̃Y

I are

E(C̃Y
I ) = CI√

1 + τ 2

Var(C̃Y
I ) =

{
�((n − 1)/2)�((n − 3)/2)

[�((n − 2)/2)]2
− 1

}
(CI)

2

1 + τ 2
+ �((n − 1)/2)�((n − 3)/2)

9n[�((n − 2)/2)]2

MSE(C̃Y
I ) =

(
1√

1 + τ 2
− 1

)2

(CI)
2 +

{
�((n − 1)/2)�((n − 3)/2)

[�((n − 2)/2)]2
− 1

}
(CI)

2

1 + τ 2

+ �((n − 1)/2)�((n − 3)/2)

9n[�((n − 2)/2)]2

For τ > 0, C̃Y
I is a biased estimator of CI, and the bias (1/

√
1 + τ 2 − 1)CI decreases in τ . Since

�((n − 1)/2)�((n − 3)/2)/[�((n − 2)/2)]2 − 1 is positive, then Var(C̃Y
I ) < Var(C̃I). To compare MSE(C̃Y

I )

with MSE(C̃I), we consider the function f (CI, n, τ ) = MSE(C̃Y
I )/MSE(C̃I). By some reduction, we have

f (CI, n, τ ) = 1 if and only if

τ = 2�((n − 2)/2)
√

�((n − 1)/2)�((n − 3)/2) − [�((n − 2)/2)]2

2[�((n − 2)/2)]2 − �((n − 1)/2)�((n − 3)/2)

or τ = 0. Denote the right-hand side of the above formula by τ0 and we have f (CI, n, τ ) > 1 if τ > τ0 and
f (CI, n, τ ) < 1 if τ < τ0 exclusive of 0. This represents that MSE(C̃Y

I ) > MSE(C̃I) if τ > τ0, MSE(C̃Y
I ) <

MSE(C̃I) if τ < τ0 exclusive of 0, and MSE(C̃Y
I ) = MSE(C̃I) if τ = τ0 or 0.

Table III lists the τ0 values for n = 5(5)100. Figures 1(a) and (b) display the surface plots of the ratios
γ = f (CI, n, τ ) with n = 5(1)100 and τ in [0, 1] for CI = 1.00, and 1.33. The value τ0 is greater than 0.5 for
small n (n ≤ 10), and greater than 0.2 for n ≤ 50. When 50 < n ≤ 100, τ0 is between 0.7 and 0.2. For large
n, γ is greater than 1 for almost every value of τ , and γ increases if τ increases. The maximum values of γ

are 14.239, and 15.347, respectively, and the minimum values of γ are 0.806 (1/1.241), and 0.797 (1/1.255),
respectively. The maximum values of γ occur at n = 100 and τ = 1, and the minimum values of γ occur at
n = 5 and τ = 0.788. The difference between MSE(C̃Y

I ) and MSE(C̃I) with γ > 1 is more significant than that
with γ < 1.

4. EMPIRICAL LOWER CONFIDENCE BOUND

The lower confidence bounds present a measure on the minimum capability of the process based on the
sample data. Let k1 = 3C̃PU/bn−1 and k2 = 3C̃PL/bn−1, and we have USL = X̄ + k1S and LSL = X̄ − k2S.

Copyright c© 2005 John Wiley & Sons, Ltd. Qual. Reliab. Engng. Int. 2006; 22:771–785
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(a) (b)

Figure 1. Surface plot of γ with n = 5(1)100 and τ in [0, 1] for: (a) CI = 1.00; (b) CI = 1.33

A 100θ% lower confidence bound CU for CPU satisfies P(CPU ≥ CU) = θ . It can be written as

P(CPU ≥ CU) = P

(
USL − µ

3σ
≥ CU

)

= P

(
Z − 3

√
nCU

S/σ
≥ −3C̃PU

bn−1

√
n

)
= P(tn−1(δU = −3

√
nCU) ≥ t1) = θ

Similarly, a 100θ% lower confidence bound CL for CPL satisfies P(CPL ≥ CL) = θ . It can be shown as
P(tn−1(δL = 3

√
nCL) ≤ t2) = θ , where Z is distributed as N(0, 1), t1 = −k1

√
n and t2 = k2

√
n. To find the

exact 100θ% lower confidence bounds, Pearn and Shu22 provided an algorithm and a Matlab program to
solve the above equations. With measurement errors, we use C̃Y

I to estimate CI but not C̃I. Thus, tY1 =
−(3C̃Y

PU/bn−1)
√

n and tY2 = (3C̃Y
PL/bn−1)

√
n, instead of t1 and t2, are substituted into the equations to obtain

the confidence bounds. Denote the bounds originated from tY1 and tY2 as CY
U and CY

L . The confidence coefficient
by the confidence bound CY

U (denoted by θY ) we obtained is

θY = P(CPU ≥ CY
U) = P

(
USL − µY

3σY

√
1 + τ 2 ≥ CY

U

)

= P

(
Ȳ + kY

1 SY − µY

3σY

≥ CY
U√

1 + τ 2

)
= P

(
Z − 3

√
nCY

U/
√

1 + τ 2

SY /σY

≥ −kY
1

√
n

)

= P

(
Z − 3

√
nCY

U/
√

1 + τ 2

SY /σY

≥ −3C̃PU
√

n

bn−1

)
= P

(
tn−1

(
δY

U = −3
√

nCY
U√

1 + τ 2

)
≥ tY1

)

where kY
1 = 3C̃Y

PU/bn−11 , and θY can be also obtained by the confidence bound CY
L , expressed as

θY = P

(
tn−1

(
δY

L = 3
√

nCY
L√

1 + τ 2

)
≤ tY2

)

Figures 2(a) and (b) plot θY versus τ with n = 25(25)100 and C̃I = 1.00, and 1.33, for 95% confidence
intervals (since E(C̃Y

I ) = E(C̃I/
√

1 + τ 2), we consider the cases with C̃Y
I = C̃I/

√
1 + τ 2). Since C̃Y

I is smaller
than C̃I in the presence of measurement errors, and CY

U (or CY
L ) is smaller than CU (or CL), it is necessary that θY

is always greater than θ . Severely underestimating the true process capability may result in high production cost,
losing the power of competition. For instance, suppose that a process has a 95% lower confidence bound, 1.256,

Copyright c© 2005 John Wiley & Sons, Ltd. Qual. Reliab. Engng. Int. 2006; 22:771–785
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(a) (b)

Figure 2. Plots of θY versus τ with n = 25(25)100 (from top to bottom) for 95% confidence intervals and: (a) C̃I = 1.00;
(b) C̃I = 1.33

with n = 50, which has met the threshold of an ‘excellent’ process. However, the bound may be calculated as
1.073 with measurement errors τ = 0.6. The coefficient increases to 0.998, but the process may be determined
as a ‘capable’ process rather than a ‘satisfactory’ process.

5. CAPABILITY TESTING BASED ON EMPIRICAL DATA

We usually use statistical testing to determine whether our processes meet the capability requirement. The null
hypothesis is H0 : CI ≤ c (process is not capable), and the alternative hypothesis is H0 : CI > c (process is
capable) of testing, where c is our required process capability. The critical value is used to determine whether
the null hypothesis should be rejected. If the point estimator of the process capability is greater than the critical
value, we reject the null hypothesis and conclude that the process is capable. Otherwise, we would believe that
the process is incapable. Suppose that the nominal size of our statistical testing is α (type I error), the critical
value c0 can be determined by

α = P(C̃I ≥ c0 | CI = c)

c0 = bn−1

3
√

n
tn−1,α(δ = 3

√
nc)

where tn−1,α(δ) is the upper αth quantile of tn−1(δ) distribution. The power of the test can be calculated as

π(CI) = P(C̃I > c0 | CI) = P(3
√

nC̃I > 3
√

nc0 | CI)

= P(tn−1(δ = 3
√

nCI) > tn−1,α(δ = 3
√

nc))

However, in the presence of measurement errors, the α-risk (denoted by αY ) and the power (denoted by πY ) are

αY = P(C̃Y
I ≥ c0 | CI = c) = P(3

√
nC̃Y

I ≥ 3
√

nc0 | CI = c)

= P

(
3
√

n

bn−1
C̃Y

I ≥ 3
√

n

bn−1
c0

∣∣∣∣ CI = c

)
= P

(
tn−1(δ

Y = 3
√

nCY
I ) ≥ 3

√
n

bn−1
c0

∣∣∣∣ CI = c

)

= P

(
tn−1

(
δY = 3

√
n

c√
1 + τ 2

)
≥ tn−1,α(δ = 3

√
nc)

)
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(a) (b)

Figure 3. Surface plot of αY with n = 5(1)100, τ ∈ [0, 1], α = 0.05, for (a) c = 1.00; (b) c = 1.33

(a) (b)

Figure 4. Plots of πY versus τ , with n = 50, α = 0.05, for (a) c = 1.00, CI = 1.00(0.20)2.00; (b) c = 1.33, CI =
1.33(0.20)2.33 (from bottom to top)

πY (CI) = P(C̃Y
I > c0 | CI) = P(3

√
nC̃Y

I > 3
√

nc0 | CI)

= P

(
3
√

n

bn−1
C̃Y

I >
3
√

n

bn−1
c0

∣∣∣∣ CI

)
= P

(
tn−1(δ

Y = 3
√

nCY
I ) >

3
√

n

bn−1
c0

∣∣∣∣ CI

)

= P

(
tn−1

(
δY = 3

√
n

CI√
1 + τ 2

)
> tn−1,α(δ = 3

√
nc)

)

Earlier discussions indicate that we underestimate the true process capability using C̃Y
I instead of C̃I.

The probability that C̃Y
I is greater than c0 would be less than that of using C̃I. Thus, the α-risk using C̃Y

I to
estimate CI is less than the α-risk if using C̃I to estimate CI. The power, if using C̃Y

I to estimate CI, is also less
than the power if using C̃I. That is, we have αY ≤ α and πY ≤ π . Figures 3(a) and (b) are the surface plots of
αY with n = 5(1)100 and τ ∈ [0, 1] for CI = 1.00, 1.33 and α = 0.05. Figures 4(a) and (b) are the plots of πY

versus τ with n = 50 and α = 0.05 for c = 1.00, 1.33 and CI = c(0.20)c + 1. Note that for τ = 0, αY = α and
πY = π in those figures.

Copyright c© 2005 John Wiley & Sons, Ltd. Qual. Reliab. Engng. Int. 2006; 22:771–785
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In Figures 3(a) and (b), αY decreases as τ or n increases, and the decreasing rate is more significant with large
c values. We find that for large τ values αY is smaller than 1 × 10−5. In Figures 4(a) and (b), πY decreases as τ

increases, but increases as n increases. Decrement of πY by τ is more significant for large c values. Because of
measurement errors, πY may decrease significantly. For instance, in Figure 4(a) the πY value (c = 1.00, n = 50)
for CI = 1.40 is πY = 0.920 if there is no measurement error (τ = 0). However, when τ = 1.0, πY decreases to
0.042 and the decrement of the power is 0.878.

6. MODIFIED LOWER CONFIDENCE BOUNDS AND CRITICAL VALUES

We have shown that the coefficients increase owing to underestimating the lower confidence bounds. We have
also shown that both the α-risk and the power of the test decrease in measurement error. The probability of
passing non-conforming product units decreases, but the probability of correctly judging a capable process as
incapable also decreases. Since the lower confidence bound of the process capability is severely underestimated,
and the power becomes much weaker, the producers cannot firmly state that their processes meet the capability
requirement even if their processes are sufficiently capable. Good product units would be incorrectly rejected
in this case (rejected products are either scrapped or require rework). Unnecessary cost to the producers
may accompany those incorrect decisions. Improving the gauge capability and training the operators by
proper education are some ways to reduce the measurement errors. Nevertheless, measurement errors may
be unavoidable in most manufacturing processes. Thus, in this section, we adjust the confidence bounds to
give a more precise estimation of process capability, and revise critical values to improve the power for testing
hypothesis.

Suppose that the desired confidence coefficient is θ , the adjusted confidence interval of CPU with confidence
interval bound C∗

U, and can be established as

θ = P(CPU ≥ C∗
U) = P

(
USL − µY

3σY

√
1 + τ 2 ≥ C∗

U

)

= P

(
Ȳ + kY

1 SY − µY

3σY

≥ C∗
U√

1 + τ 2

)
= P

(
Z − 3

√
nC∗

U/
√

1 + τ 2

SY /σY

≥ −kY
1
√

n

)

= P

(
Z − 3

√
nC∗

U/
√

1 + τ 2

SY /σY

≥ −3C̃PU
√

n

bn−1

)
= P

(
tn−1

(
δ∗

U = −3
√

nC∗
U√

1 + τ 2

)
≥ tY1

)

Similarly, the adjusted confidence interval of CPL with confidence interval bound C∗
L, can be established as

θ = P

(
tn−1

(
δ∗

L = 3
√

nC∗
L√

1 + τ 2

)
≤ tY2

)

To find the exact 100θ% lower confidence bounds, an S-plus program has been developed to solve the
equations. Figures 5(a) and (b) are comparisons among CU, CY

U, and C∗
U for C̃PU = 1.00, 1.33 with n = 50,

where CU is the 95% lower confidence bound of C̃PU, CY
U is the 95% lower confidence bound of C̃Y

PU, and C∗
U

is the adjusted 95% lower confidence bound for C̃Y
PU. Note that, in this case, the probability that the interval

with the bound CY
U contains the actual CPU value is greater than that of the interval with the bound CU or C∗

U,
while the probability that the interval with the bound CU or C∗

U contains the actual CPU value is just 0.95.
From Figures 5(a) and (b), we see that the lower confidence bounds remained underestimated, even if we adjust
the formula to calculate the bounds. However, the magnitude of underestimation using adjusted confidence
bounds is significantly reduced.

In order to improve the power of the test, we consider the revised critical values c∗
0 satisfied c∗

0 < c0.
Thus, the probability that C̃Y

I is greater than c∗
0 is greater than the probability that C̃Y

I is greater than c0.
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(a) (b)

Figure 5. Plots of CU, C∗
U and CY

U (from top to bottom) versus τ with n = 50 and for: (a) C̃PU = 1.00; (b) C̃PU = 1.33

Both the α-risk and the power increase when we use c∗
0 as a new critical value in the testing. Suppose that

the α-risk using the revised critical value c∗
0 is α∗, the revised critical c∗

0 must satisfy

α∗ = P(C̃Y
I ≥ c∗

0 | CI = c) = P(3
√

nC̃Y
I ≥ 3

√
nc∗

0 | CI = c)

= P

(
3
√

n

bn−1
C̃Y

I ≥ 3
√

n

bn−1
c∗

0

∣∣∣∣ CI = c

)
= P

(
tn−1(δ

Y = 3
√

nCY
I ) ≥ 3

√
n

bn−1
c∗

0

∣∣∣∣ CI = c

)

= P

(
tn−1

(
δY = 3

√
n

c√
1 + τ 2

)
≥ 3

√
n

bn−1
c∗

0

)

To ensure that the α-risk is within the preset magnitude, we let α∗ = α, thus c∗
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√
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Figures 6(a) and (b) plot π∗ versus τ with n = 50 and α = 0.05 for c = 1.00, 1.33, and CI = c(0.20)c + 1.
From those figures, we see that the powers corresponding to the adjusted critical values c∗

0 remain decreasing
in measurement error, but the decrements originating from the new critical values c∗

0 are very small. We have
improved a certain degree of power. For instance, if we compare the πY values in Figure 4(a) (c = 1.00, n = 50)
for CI = 1.40 with the π∗ values in Figure 6(a) (c = 1.00, n = 50) for CI = 1.40, we see that πY = 0.042 and
π∗ = 0.885 with τ = 1.0. In this case, using the adjusted critical values c∗

0 the power is improved by 0.843.
Tables IV–VII provide the revised critical values for some commonly used capability requirements. Using these
tables, the practitioner may select the proper critical values for capability testing.
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(a) (b)

Figure 6. Plots of π∗ versus τ , with n = 50, α = 0.05, for: (a) c = 1.00, CI = 1.00(0.20)2.00; (b) c = 1.33, CI =
1.33(0.20)2.33 (from bottom to top)

Table IV. Critical values for CI = 1.00, with n = 10(10)100, τ = 0.1(0.1)1.0

τ

n 1 − α 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

10 0.950 1.534 1.512 1.479 1.436 1.386 1.332 1.276 1.221 1.166 1.114
0.975 1.707 1.684 1.647 1.599 1.544 1.484 1.423 1.361 1.301 1.243
0.990 1.948 1.921 1.879 1.825 1.763 1.695 1.625 1.555 1.487 1.422

20 0.950 1.336 1.318 1.288 1.251 1.207 1.159 1.110 1.061 1.013 0.967
0.975 1.429 1.409 1.378 1.338 1.291 1.241 1.189 1.137 1.086 1.037
0.990 1.548 1.527 1.494 1.450 1.400 1.346 1.290 1.234 1.179 1.127

30 0.950 1.263 1.245 1.217 1.181 1.140 1.095 1.048 1.001 0.956 0.912
0.975 1.330 1.312 1.283 1.245 1.201 1.154 1.105 1.056 1.009 0.963
0.990 1.416 1.396 1.365 1.325 1.279 1.229 1.178 1.126 1.076 1.027

40 0.950 1.222 1.205 1.178 1.143 1.102 1.058 1.013 0.968 0.923 0.881
0.975 1.277 1.259 1.231 1.194 1.152 1.107 1.060 1.013 0.967 0.922
0.990 1.345 1.327 1.297 1.259 1.215 1.167 1.118 1.069 1.021 0.974

50 0.950 1.195 1.178 1.152 1.117 1.078 1.035 0.990 0.946 0.902 0.860
0.975 1.242 1.225 1.197 1.162 1.121 1.076 1.030 0.984 0.939 0.896
0.990 1.301 1.282 1.254 1.217 1.174 1.128 1.080 1.032 0.985 0.940

60 0.950 1.176 1.159 1.133 1.099 1.060 1.018 0.974 0.930 0.887 0.846
0.975 1.218 1.200 1.173 1.139 1.098 1.055 1.009 0.964 0.920 0.878
0.990 1.269 1.251 1.223 1.187 1.145 1.100 1.053 1.006 0.961 0.917

70 0.950 1.161 1.145 1.119 1.085 1.047 1.005 0.961 0.918 0.875 0.835
0.975 1.199 1.182 1.155 1.121 1.081 1.038 0.994 0.949 0.905 0.863
0.990 1.245 1.228 1.200 1.165 1.124 1.079 1.033 0.987 0.942 0.899

80 0.950 1.149 1.133 1.107 1.074 1.036 0.994 0.951 0.908 0.866 0.826
0.975 1.184 1.167 1.141 1.107 1.068 1.025 0.981 0.937 0.894 0.852
0.990 1.227 1.209 1.182 1.147 1.107 1.063 1.017 0.972 0.927 0.884

90 0.950 1.140 1.124 1.098 1.065 1.027 0.986 0.943 0.900 0.859 0.818
0.975 1.172 1.156 1.129 1.096 1.057 1.015 0.971 0.927 0.884 0.843
0.990 1.211 1.194 1.168 1.133 1.093 1.049 1.004 0.959 0.915 0.873

100 0.950 1.132 1.116 1.090 1.058 1.020 0.979 0.936 0.894 0.852 0.812
0.975 1.162 1.146 1.120 1.086 1.048 1.006 0.962 0.919 0.876 0.835
0.990 1.199 1.182 1.155 1.121 1.081 1.038 0.994 0.949 0.905 0.863
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Table V. Critical values for CI = 1.33, with n = 10(10)100, τ = 0.1(0.1)1.0

τ

n 1 − α 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

10 0.950 2.018 1.990 1.945 1.887 1.820 1.748 1.673 1.598 1.524 1.453
0.975 2.244 2.212 2.163 2.099 2.025 1.944 1.861 1.778 1.697 1.619
0.990 2.557 2.521 2.464 2.392 2.308 2.216 2.122 2.028 1.936 1.847

20 0.950 1.762 1.737 1.698 1.647 1.588 1.525 1.459 1.393 1.328 1.266
0.975 1.881 1.855 1.813 1.759 1.696 1.629 1.559 1.489 1.420 1.354
0.990 2.036 2.008 1.962 1.904 1.837 1.764 1.688 1.613 1.539 1.468

30 0.950 1.667 1.643 1.606 1.558 1.502 1.441 1.379 1.316 1.255 1.196
0.975 1.754 1.729 1.690 1.639 1.581 1.517 1.452 1.386 1.322 1.260
0.990 1.864 1.838 1.796 1.743 1.681 1.614 1.544 1.475 1.407 1.342

40 0.950 1.614 1.591 1.555 1.508 1.454 1.395 1.334 1.274 1.214 1.157
0.975 1.685 1.661 1.623 1.574 1.518 1.457 1.394 1.331 1.269 1.209
0.990 1.773 1.748 1.708 1.658 1.598 1.534 1.468 1.402 1.337 1.275

50 0.950 1.579 1.557 1.521 1.476 1.423 1.365 1.305 1.246 1.187 1.131
0.975 1.640 1.617 1.580 1.533 1.478 1.418 1.357 1.295 1.234 1.176
0.990 1.715 1.691 1.653 1.603 1.546 1.484 1.420 1.355 1.292 1.232

60 0.950 1.555 1.532 1.497 1.452 1.400 1.343 1.285 1.226 1.168 1.113
0.975 1.608 1.585 1.549 1.503 1.449 1.390 1.330 1.269 1.210 1.153
0.990 1.675 1.651 1.613 1.565 1.509 1.448 1.385 1.323 1.261 1.202

70 0.950 1.536 1.514 1.479 1.435 1.383 1.327 1.269 1.211 1.154 1.099
0.975 1.584 1.562 1.526 1.480 1.427 1.369 1.310 1.250 1.191 1.135
0.990 1.644 1.621 1.584 1.536 1.481 1.422 1.360 1.298 1.237 1.179

80 0.950 1.521 1.499 1.465 1.421 1.369 1.314 1.256 1.198 1.142 1.088
0.975 1.566 1.543 1.508 1.463 1.410 1.353 1.294 1.235 1.177 1.121
0.990 1.620 1.597 1.561 1.514 1.459 1.401 1.340 1.279 1.219 1.161

90 0.950 1.509 1.487 1.453 1.409 1.358 1.303 1.246 1.189 1.133 1.079
0.975 1.550 1.528 1.493 1.448 1.396 1.339 1.281 1.222 1.165 1.110
0.990 1.601 1.578 1.542 1.495 1.442 1.384 1.323 1.263 1.204 1.147

100 0.950 1.498 1.477 1.443 1.399 1.349 1.294 1.237 1.180 1.125 1.071
0.975 1.537 1.515 1.481 1.436 1.384 1.328 1.270 1.212 1.155 1.100
0.990 1.584 1.562 1.526 1.480 1.427 1.369 1.310 1.250 1.191 1.135

7. APPLICATION EXAMPLE

TFT-LCDs (thin-film-transistor liquid crystal display) consist of a lower glass plate on which the TFT is formed,
an upper glass plate on which the color filter is formed, and the injected liquid crystal between both glass
plates (see Figure 7(a)). The TFT plays a critical role in transmitting and controlling electric signals, which
determines the amount of voltage applied to the liquid crystal. The liquid crystal controls light permeability
using different molecular structures that vary in accordance with the voltage. In this way, the desired color and
image is displayed as it passes through the color filter (see Figure 7(b)). The TFT-LCD consumes less energy
compared to a CRT (cathode-ray tube), is slimmer and weighs less. The TFT-LCD has emerged as the most
widely used display solution, because of its high reliability, viewing quality and performance, compact size and
environment-friendly features. Because of the heat resistance, non-conductance and simple processing steps,
non-alkali thin-film glass is the major material of manufacturing TFT-LCD. While manufacturing non-alkali
thin-film glass, flatness is one of the critical quality characteristics. If the flatness of glass is not in control, the
TFT-LCD products may result in a certain degree of chromatic aberration.

Consider a supplier in manufacturing TFT-LCD products in Taiwan, the production specifications of
flatness for a particular model of non-alkali thin-film glass are USL = 25 µm (0.0025 mm) and T = 0 µm.
A total of 60 observations were collected which are displayed in Table VIII. To determine whether the
process is ‘satisfactory’ (CPU > 1.33) with unavoidable measurement errors τ = 0.4, we propose the following
procedure. Step 1: determine the capability requirement c (normally chosen as 1.00, 1.33, 1.50) and the α-risk
(normally set to 0.01, 0.025 or 0.05). Step 2: calculate the value of the point estimator C̃I from the sample.
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Table VI. Critical values for CI = 1.50, with n = 10(10)100, τ = 0.1(0.1)1.0

τ

n 1 − α 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

10 0.950 2.270 2.237 2.187 2.121 2.046 1.963 1.878 1.793 1.710 1.630
0.975 2.522 2.487 2.430 2.358 2.274 2.183 2.089 1.995 1.903 1.814
0.990 2.873 2.832 2.768 2.686 2.591 2.487 2.381 2.274 2.169 2.069

20 0.950 1.982 1.954 1.910 1.852 1.786 1.714 1.639 1.565 1.491 1.421
0.975 2.116 2.086 2.038 1.977 1.907 1.830 1.751 1.671 1.594 1.519
0.990 2.289 2.257 2.205 2.140 2.063 1.981 1.895 1.810 1.726 1.646

30 0.950 1.876 1.849 1.807 1.752 1.689 1.621 1.550 1.479 1.410 1.343
0.975 1.973 1.945 1.901 1.844 1.777 1.706 1.632 1.557 1.485 1.415
0.990 2.096 2.066 2.020 1.959 1.889 1.813 1.735 1.656 1.579 1.505

40 0.950 1.817 1.791 1.750 1.697 1.636 1.569 1.501 1.432 1.365 1.300
0.975 1.896 1.869 1.826 1.771 1.707 1.638 1.567 1.495 1.425 1.358
0.990 1.995 1.966 1.921 1.864 1.797 1.725 1.650 1.575 1.501 1.431

50 0.950 1.778 1.753 1.713 1.661 1.601 1.536 1.469 1.401 1.335 1.272
0.975 1.846 1.820 1.778 1.724 1.662 1.595 1.525 1.456 1.387 1.322
0.990 1.930 1.902 1.859 1.803 1.738 1.668 1.596 1.523 1.452 1.383

60 0.950 1.750 1.725 1.686 1.635 1.576 1.512 1.445 1.379 1.314 1.251
0.975 1.811 1.785 1.744 1.691 1.630 1.564 1.496 1.427 1.360 1.295
0.990 1.884 1.858 1.815 1.761 1.697 1.629 1.558 1.486 1.417 1.350

70 0.950 1.729 1.705 1.665 1.615 1.557 1.493 1.428 1.362 1.298 1.236
0.975 1.784 1.758 1.718 1.666 1.606 1.541 1.473 1.406 1.339 1.276
0.990 1.850 1.824 1.782 1.729 1.666 1.599 1.529 1.459 1.391 1.325

80 0.950 1.713 1.688 1.649 1.599 1.542 1.479 1.414 1.349 1.285 1.223
0.975 1.763 1.737 1.698 1.646 1.587 1.522 1.456 1.389 1.323 1.260
0.990 1.823 1.797 1.756 1.703 1.642 1.575 1.507 1.438 1.370 1.305

90 0.950 1.699 1.675 1.636 1.587 1.529 1.467 1.402 1.338 1.274 1.213
0.975 1.745 1.720 1.681 1.630 1.571 1.507 1.441 1.375 1.310 1.248
0.990 1.802 1.776 1.735 1.683 1.622 1.556 1.488 1.420 1.353 1.289

100 0.950 1.688 1.663 1.625 1.576 1.519 1.457 1.393 1.328 1.265 1.205
0.975 1.731 1.706 1.667 1.617 1.558 1.495 1.429 1.363 1.299 1.237
0.990 1.784 1.758 1.718 1.666 1.606 1.541 1.473 1.406 1.339 1.276

Step 3: check the appropriate table listed in Tables IV–VII and find the corresponding critical value c∗
0 based on

α, τ and n. Step 4: conclude that the process meets the capability requirement if C̃I is greater than c∗
0. Otherwise,

we do not have enough information to conclude that the process is capable.
With the proposed procedure, we first determine that c = 1.33 and α = 0.05. Based on the sample data of

60 observations, we obtain the sample mean Ȳ = 11.93, the sample standard deviation SY = 2.85 and the
point estimator C̃Y

PU = 1.511. From Table VI, we find the critical value c∗
0 = 1.452 based on α, τ and n.

Since C̃Y
PU > c∗

0, we conclude that the process is ‘satisfactory’. Moreover, by inputting C̃Y
PU, τ , n and the desired

confidence coefficient θ = 0.95 into the computer program, we can obtain the 95% lower confidence bound of
this process capability as 1.385.

8. CONCLUSIONS

In this paper, we investigated the estimation and testing the one-sided process capability index CI with
measurement errors. We considered the estimator C̃Y

I rather than C̃I for estimating CI, using the sample data
contaminated by random measurement errors. The estimator C̃Y

I underestimates the true process capability, and
the bias decreases in τ , with Var(C̃Y

I ) < Var(C̃I), and MSE(C̃Y
I ) > MSE(C̃I) if τ > τ0, MSE(C̃Y

I ) < MSE(C̃I)

if τ < τ0. In estimating the capability, the confidence bounds are severely underestimated in the presence of
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Table VII. Critical values for CI = 2.00, with n = 10(10)100, τ = 0.1(0.1)1.0

τ

n 1 − α 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

10 0.950 3.011 2.968 2.900 2.813 2.711 2.601 2.487 2.373 2.261 2.153
0.975 3.345 3.297 3.221 3.124 3.012 2.889 2.763 2.636 2.513 2.393
0.990 3.807 3.752 3.667 3.556 3.428 3.290 3.146 3.002 2.862 2.726

20 0.950 2.632 2.594 2.535 2.458 2.369 2.273 2.173 2.072 1.974 1.880
0.975 2.808 2.767 2.704 2.622 2.527 2.425 2.318 2.212 2.107 2.007
0.990 3.036 2.992 2.924 2.835 2.733 2.622 2.508 2.393 2.280 2.172

30 0.950 2.492 2.456 2.400 2.327 2.242 2.151 2.056 1.961 1.868 1.779
0.975 2.620 2.582 2.523 2.446 2.358 2.262 2.162 2.063 1.965 1.871
0.990 2.782 2.742 2.679 2.598 2.504 2.402 2.297 2.191 2.088 1.989

40 0.950 2.414 2.380 2.325 2.254 2.172 2.084 1.992 1.900 1.810 1.723
0.975 2.518 2.482 2.425 2.351 2.266 2.174 2.078 1.982 1.888 1.798
0.990 2.648 2.610 2.550 2.473 2.383 2.286 2.186 2.085 1.987 1.892

50 0.950 2.364 2.330 2.276 2.207 2.127 2.040 1.950 1.859 1.771 1.686
0.975 2.453 2.418 2.362 2.290 2.207 2.117 2.024 1.930 1.839 1.751
0.990 2.563 2.526 2.468 2.393 2.307 2.213 2.115 2.018 1.922 1.830

60 0.950 2.328 2.294 2.241 2.173 2.094 2.008 1.920 1.831 1.744 1.660
0.975 2.406 2.372 2.317 2.247 2.165 2.077 1.985 1.893 1.803 1.717
0.990 2.503 2.467 2.411 2.338 2.253 2.161 2.066 1.970 1.877 1.787

70 0.950 2.300 2.267 2.215 2.147 2.069 1.984 1.897 1.809 1.723 1.640
0.975 2.371 2.337 2.283 2.214 2.133 2.046 1.956 1.865 1.777 1.691
0.990 2.458 2.423 2.367 2.296 2.212 2.122 2.028 1.935 1.843 1.755

80 0.950 2.278 2.245 2.193 2.127 2.049 1.965 1.878 1.791 1.706 1.624
0.975 2.343 2.310 2.257 2.188 2.108 2.022 1.933 1.843 1.756 1.671
0.990 2.423 2.388 2.333 2.263 2.181 2.091 1.999 1.907 1.816 1.729

90 0.950 2.260 2.228 2.176 2.110 2.033 1.950 1.863 1.777 1.692 1.611
0.975 2.321 2.287 2.235 2.167 2.088 2.003 1.914 1.825 1.738 1.655
0.990 2.395 2.360 2.306 2.236 2.155 2.067 1.975 1.884 1.795 1.709

100 0.950 2.245 2.213 2.162 2.096 2.020 1.937 1.851 1.765 1.681 1.600
0.975 2.302 2.269 2.217 2.149 2.071 1.986 1.898 1.810 1.724 1.641
0.990 2.371 2.337 2.283 2.214 2.133 2.046 1.956 1.865 1.777 1.691

(a) (b)

Figure 7. (a) Structure of TFT-LCD; (b) light passing through the color filter
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Table VIII. 60 observations for flatness (in µm)

14.40 4.47 11.18 8.29 9.38 8.73 11.64 6.59 12.55 12.83 14.40
12.18 14.73 12.22 10.42 11.56 14.37 11.76 8.06 10.03 5.45 12.18
14.40 15.28 9.60 15.01 12.36 14.69 10.71 6.96 8.88 16.30 14.40
15.53 15.22 12.02 12.95 10.50 15.09 11.23 8.33 13.76 12.19 15.53
9.93 9.14 10.41 15.34 12.94 10.24 14.44 12.54 10.40 13.47 9.93

13.22 16.93 18.41 11.19 15.09 9.40 12.22 12.17 13.80 12.60 13.22

measurement errors. When we use statistical testing to determine if the process meets the capability requirement,
we observe that the power of the test decreases in measurement errors. As the measurement errors are
unavoidable in most manufacturing industry, to obtain a more accurate confidence bound and improve the power
with appropriate α-risk, we must adjust the confidence bounds and the critical values. For practical purpose, we
tabulated some adjusted critical values for the engineers to use in their factory applications.
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