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A Classification-Based Fault Detection and Isolation
Scheme for the Ion Implanter

Shin-Yeu Lin and Shih-Cheng Horng

Abstract—We propose a classification-based fault detection and
isolation scheme for the ion implanter. The proposed scheme con-
sists of two parts: 1) the classification part and 2) the fault detec-
tion and isolation part. In the classification part, we propose a hy-
brid classification tree (HCT) with learning capability to classify
the recipe of a working wafer in the ion implanter, and a k-fold
cross-validation error is treated as the accuracy of the classifica-
tion result. In the fault detection and isolation part, we propose a
warning signal generation criteria based on the classification accu-
racy to detect and fault isolation scheme based on the HCT to iso-
late the actual fault of an ion implanter. We have compared the pro-
posed classifier with the existing classification software and tested
the validity of the proposed fault detection and isolation scheme for
real cases to obtain successful results.

Index Terms—Classification, classification and regression tree
(CART), clustering algorithm, fault detection and isolation, ion im-
planter.

I. INTRODUCTION

AN ION implanter [1] is a bottleneck machine in the
semiconductor manufacturing process because of its

expensiveness; thus, ion implantation is a critical operation for
throughput. A damaged wafer due to the malfunction of the
ion implanter is not reworkable, hence it significantly affects
the yield. Therefore, a real-time fault detection to prevent
more wafer damage and a fault isolation to reduce the down
time of the ion implanter are crucial issues to the yield and
throughput of the semiconductor manufacturing process. There
are two categories of fault detection methods, the model-based
methods and model-free methods. The model-based methods,
which utilize the mathematical model of the plant, originated
from chemical process control, aerospace related research, and
other areas, have been developed in last three decades [2]–[9].
Model-free methods, which do not use the mathematical model
of the plant, range from physical redundancy, limit value
checking [10], to spectrum analysis [11], [12]. Among them,
the limit value checking method is widely used in practice.
There are also two types of fault isolation methods [13], [14],
the classification methods and inference methods. If a priori
knowledge is not available for the relationships between the
measured data patterns and faults, classification methods are
used. For example, a neural network, trained using a large set
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of abnormal data pattern and known fault pairs, can be used to
classify the corresponding fault of an abnormal data pattern. If
there is a priori knowledge for the relationships between faults
and measured data patterns, a rule-based expert system can be
used to inference the corresponding fault of an abnormal data
pattern.

Regarding fault detection, since there does not exist any
proper model for the ion implanter, the model-based fault
detection methods cannot apply. Thus, the limit value checking
method is currently employed in some semiconductor manu-
facturing companies. The structure of an ion implanter is shown
in Fig. 1 [1]. In general, the equipment supplier provides digital
equipment to monitor the proper operation of the scanning sub-
system of the machine. The well-trained engineers employ the
limit value checking method to investigate the SPC charts [15]
of the measured parameters for other major subsystems, such as
the ion source (filament), extraction electrode, mass analysis,
and acceleration subsystems, to monitor their operations.

The measured parameters can be, for example, filament
voltage, filament current, discharge voltage, etc. However,
there are several tens to hundreds of recipes1 for wafer fabrica-
tion in a semiconductor foundry each day. Although the setting
of a scanning subsystem is independent of the recipes, the other
four subsystems’ parameters may vary widely due to various
recipes. This induces the first drawback of the limit value
checking method, that is the difficulty of defining a threshold
to distinguish one recipe from the others. Since each recipe
involves a combined setting of the four subsystems, this induces
the second drawback of the limit value checking method, that
it cannot provide combination information of the measured
parameters of the four subsystems. In addition, the occurrence
of electrical spikes in the ion implanter will make the measured
parameters exceed the threshold and indicate a fault situation;
however, the electrical spikes are not actual machine faults.
This is the third drawback of the limit value checking method.
Regarding fault isolation, both classification methods and in-
ference methods require a fairly large set of the abnormal data
patterns with known faults to train a classifier and construct a
rule-based expert system, respectively. Collecting a large set of
abnormal data patterns with known faults in an ion implanter
is very difficult, because there are several hundreds of steps in
fabricating a chip and the chip failure is most probably known
when it is under test. To find out which step in the complete
manufacturing process causes the failure is already difficult,

1A recipe controls how settings are initialized or changed during a process
step. Examples include recipe numbers which index tables of set points in fur-
naces or written instructions to operators. A recipe is usually considered con-
stant during any one process step. In this paper, a recipe corresponds to a specific
product of integrated circuit.
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Fig. 1. Structure of ion implanter.

not mention the collection of a large set of abnormal data
patterns with known faults due to ion implantation. Thus, the
purpose of this paper is to propose an automatic (i.e., no need
for well-trained engineers) and effective tool to monitor the
above-mentioned four subsystems as a whole and generate a
warning signal once a machine fault occurs and isolate that
fault.

To overcome the first two drawbacks of the limit value
checking method, we should be able to identify the recipe of
the working wafer from the measured parameters of all the
four subsystems. This makes the data mining technique [16]
attractive. To overcome the third drawback of the limit value
checking method, we need to distinguish electrical spikes
from the actual machine faults. Motivated by the these con-
siderations, we propose a classification-based fault detection
and isolation scheme for the ion implanter. Viewing a recipe
as a class, we can classify the recipe of the working wafer
based on the corresponding measured parameters of the four
subsystems. Thus, the overall structure of the proposed fault
detection and isolation scheme can be shown in Fig. 2. Our
scheme starts by classifying the recipe of the working wafer
based on the measured parameters. If the classified recipe of
the working wafer matches its destined one, we assume there is
no fault and proceed with next wafer. This no-fault assumption
may cause only a few damaged wafers in the worst case. A
detailed analysis of this claim will be addressed in Section IV.
On the other hand, if the classified recipe does not match its
destined one, a double check of the recipe command should
be carried out. If the command is wrong, the operator will be
informed; otherwise, the warning signal generation criteria
will be tested. If the criteria is satisfied, we conclude that there
is a machine fault and a warning signal will be generated;
otherwise, we will proceed with next wafer. Once a warning
signal is generated, we will perform the fault isolation scheme
to isolate the fault. In short, the proposed fault detection and
isolation scheme consists of three major problems. The first
one is a classification problem, which is to classify the recipe of
a working wafer. The second one is a fault detection problem,
which is to determine whether there is a machine fault and
generate a warning signal if there is one. The third one is a fault
isolation problem to determine which subsystem has a fault.
In this paper, we propose a hybrid classification tree (HCT)
with good learning capability to deal with the classification
problem. The HCT combines a proposed clustering algorithm

Fig. 2. Proposed fault detection and isolation scheme for ion implanter.

with the classification and regression tree (CART) [17], [18]
to take advantage of the specific setting of a recipe during a
process step. Its good learning capability will enable it to work
on line. Since the operator should interrupt wafer processing
immediately when a fault is detected, a high standard in the
accuracy of fault detection is required to not unnecessarily
degrade the throughput. Thus, to account for the possible
inaccuracy caused by the HCT, we propose a warning signal
generation criteria to deal with the fault detection problem.
This criteria aims to minimize the probability of false alarm
when there is no fault as well as the probability of no alarm
while a fault exists; the former tries to eliminate the indicated
fault situations due to electrical spikes and classification errors,
while the latter tries to find out the hidden machine faults when
a classified recipe matches the destined one. However, we need
not worry about the latter one by the no-fault assumption men-
tioned previously. To cope with the fault isolation problem, we
propose an HCT-based fault isolation scheme. The basic idea of
this scheme is to find the parameter (or parameters) that causes
the classification errors. Unlike the existing methods, which
need to collect a fairly large set of measured data patterns with
known faults, as indicated, the proposed fault isolation scheme
almost spends no extra effort as will be seen in Section III-B.
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From here on, we will use the terminologies attribute and data
pattern in classification techniques to represent the parameter
and data of the measured parameters of the four subsystems of
the ion implanter, respectively.

We organize our paper in the following manner. In Sec-
tion II, we will present the HCT and its learning capability.
In Section III, we will analyze the probability of no alarm,
while a machine fault exists to verify the no-fault assumption,
and present the criteria for generating the warning signal. We
will also present the fault isolation scheme in this section. In
Section IV, we will apply the HCT to real data sets to obtain the

-fold cross-validation classification errors, based on which
we will demonstrate the validity of the proposed warning signal
generation criteria and the fault isolation scheme. We will also
investigate the learning capability of HCT by reporting the
computation time needed to update the classification rules of
HCT. In Section V, we conclude.

II. HCT

A. Introduction

There exist numerous classification techniques for classifica-
tion problems of continuous attributes such as the neural net-
work approach [19], [20], maximum-likelihood approach [21],
[22], fuzzy set theory-based approach [23], [24], decision tree
[25], [26], CART [17], [18], kernel-based learning algorithms
[27], and recent methods like random forests [28], multiple ad-
ditive regression trees (MART) [29], [30], and the boosting flex-
ible learning ensembles with dynamic feature selection tech-
nique [31]. Among them, the neural network approach is su-
perior in the aspects of free data distribution and free data im-
portance; however, they are computationally expensive and pro-
duce variable results due to the random initial weights. The max-
imum-likelihood approach was the most widely used method in
classifying remotely measured data; however, its performance
was degraded when the target classes could not be adequately
described by the statistical model. The fuzzy set theory-based
approach had been successfully applied to the pattern classifica-
tion problem; however, the computational complexity is raised
when the number of classes as well as the number of attributes
is large. A decision tree is mainly designed for classification
of discrete variables. However, CART can handle continuous
attributes. Compared with random forest, MART, and boosting
flexible learning ensembles with dynamic feature selection tech-
niques, the disadvantage of CART is inaccuracy due to its nature
of piecewise constant approximation. However, the biggest ad-
vantage of CART is its interpretability; whereas, the previously
mentioned three methods and the kernel-based learning algo-
rithms are thought to lack this feature. The interpretability is
the key feature of our HCT-based fault isolation scheme, how-
ever, at the expense of some classification accuracy. Fortunately,
the decrease in accuracy will be remedied by the warning signal
generation criteria by applying it to the fault detection of the ion
implanter, which will be presented in Section III-A.

The tree sizes of CART are closely related to the inter-
pretability and accuracy. A small tree can be easily interpreted,
while the interpretability of a large tree is questionable. On
the other hand, a larger tree is more accurate than the smaller

(a)

(b)

Fig. 3. (a) Separable recipes. (b) Nonseparable recipes.

one. Thus, to retain the interpretability of a small tree while
keeping the accuracy of a large tree, we intend to propose a
preprocessing step to reduce the tree size of CART to improve
the interpretability while keeping its classification accuracy.
In general, a recipe may contain various steps, and a recipe
step remains constant during the processing of one wafer;
however, different attributes (parameters) may be ramped
during the entire processing step. Nonetheless, some (not all,
as can be observed from the experimental results shown in
Fig. 10) attributes’ mean of each individual recipe step is still
a key to distinguishing the recipes. Thus, we can exploit this
property to fulfill the objective of preprocessing. To do this,
we propose a separation matrix-based clustering algorithm as
a preprocessing step for CART. This clustering algorithm will
classify the whole data set into a clustering tree and the classes
in the leaf clusters will be classified by the CART. Because both
the size and the number of classes of the leaf cluster are much
smaller than the original data set, the computational complexity
of CART can be improved.

B. Separation Matrices-Based Clustering Algorithm

Due to the previously mentioned property of a recipe during
a processing step, we can investigate the separability between
two recipes through the degree of overlapping of the attribute
values. For example, suppose the probability density function
of an attribute for the two recipes and is as shown in
Fig. 3(a). Then, these two recipes are separable based on that
attribute; while in the case of Fig. 3(b), the two recipes are not.
Throughout this section, we will use the terminology class in
classification techniques to represent recipe.

1) Chebyshev Inequality-Based Separation Matrices: We let
denote the separation index between classes and

based on attribute and define

if and are separable
based on attribute

otherwise.
(1)
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Fig. 4. Illustration of separation between C and C based on p .

Clearly, and for
any attribute . The value of is computed using the
Chebyshev inequality [32]. We let the random variable de-
note the th attribute of class and let and denote the
mean and standard deviation of , respectively. Let be a
positive real number such that , where

denotes the probability of the event , and is a small
real number representing low probability, which is usually set
to be 0.05. The value of corresponding to a given can be
calculated by setting using the Chebyshev in-
equality. Without loss of generality, we can assume .

We let , where is
as defined and is a very small positive real number to avoid the
denominator of the square term being zero or negative. is an
upper bound of based
on the Chebyshev inequality. If is sufficiently larger than

, will be very small, which implies the overlapping
of the classes and on attribute will be very small; conse-
quently, the classes and are more likely to be separable, as
illustrated in Fig. 4. Therefore, we can define a threshold value

, such that the separation index for classes and can be
calculated by

if
otherwise.

(2)

Now we can define as the separation matrix for all
classes based on attribute , whose th entry is .

2) Splitting Cluster Using Separation Matrices: We let Cr
denote the root cluster, which represents the whole data set.
Treating each class in Cr as a node, we can view
as an incidence matrix for all nodes in Cr based on attribute

. That means nodes and will be connected by an arc if
. The graph constructed based on a separation

matrix is called a separation graph, which may contain separate
connecting subgraphs. Each connecting subgraph represents a
cluster of nonseparable classes based on attribute , and the
number of disjoint subgraphs represents the number of disjoint
clusters that can be split from Cr using attribute . For ex-
ample, the separation graph constructed from the separation ma-
trix given in Fig. 5(a) is shown in Fig. 5(b), which
consists of two disjoint clusters or two separate connecting sub-
graphs and . The resulting clusters can be further split by
other attributes. For example, cluster in Fig. 5(b) can be fur-
ther split by attribute , whose is shown in Fig.
6(a), in the following manner. Collecting the rows and columns
of corresponding to the classes in cluster forms

(a)

(b)

Fig. 5(a). Separation matrix example [D(C ;C ) ]. (b) Separation graph ex-
ample resulting from separation matrix in (a).

(a)

(b)

(c)

Fig. 6(a). Separation matrix [D(C ;C ) ]. (b) Submatrix of [D(C ;C ) ]
corresponding to cluster in Fig. 5(b). (c) Clusters split from cluster using
submatrix shown in (b).

the submatrix shown in Fig. 6(b). Repeating the same process
of splitting Cr using , cluster can be split into
two clusters and , as shown in Fig. 6(c), by using the sub-
matrix shown in Fig. 6(b).

3) Choice of Attributes for Cluster Splitting and Construc-
tion of Clustering Tree: Because the separation matrix has al-
ready indicated a certain distribution of the attribute values of all
classes, we can employ a coarser partition like fuzzy intervals
to classify the disjoint clusters instead of treating each contin-
uous value as a discrete one like CART. In general, for a given
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(a)

(b)

Fig. 7(a). Separation matrix [D(C ;C ) ]. (b) Separation matrix
[D(C ;C ) ].

range of attribute values, finer fuzzy partition is needed to clas-
sify a cluster with a larger number of classes. In other words,
for a given fuzzy partition and the range of attribute values, the
classification will be more accurate for a cluster with a smaller
number of classes. Considering that any inaccurate cluster split-
ting will influence the accuracy of the subsequent cluster split-
ting along the tree path, we set the criteria for choosing the at-
tribute to split a cluster as minimizing the multiplication of the
average number of classes and the variation of the number of
classes in the resulted child clusters. This criteria implies that
the attribute which results in more child clusters and smaller
variation in the number of classes in the child clusters is pre-
ferred. For example, for the separation matrices of two attributes
shown in Fig. 7(a) and (b), suppose that we use the attribute to
split the cluster first; we obtain three child clusters. One consists
of one class, and the other two consist of three and four classes.
If we use attribute first, we will obtain four child clusters,
and each child cluster contains two classes. Based on the cri-
teria indicated, we would choose to split the cluster. To put
this criteria into a mathematical form, we let and Cr
denote the number of child clusters and the number of classes
in the th child cluster resulted from using attribute to split
the cluster Cr , respectively. Then, the criteria for choosing the
attribute for splitting Cr is

Cr

Cr Cr (3)

where the first term inside the big bracket represents the average
number of classes in the resulting child clusters and the second
term denotes the variance of the number of classes in the re-
sulting child clusters, where Cr Cr .

Now, our algorithm for choosing the splitting attribute to
build the clustering tree can be stated as follows.

Algorithm I: Choose the splitting attributes and build the
clustering tree

Step 0) Given the original data set Cr and the separation
matrices of all attributes. Set Cr as the root cluster
and define the set of yet split clusters (YSC) as
YSC Cr .

Step 1) For each cluster in YSC, obtain the corresponding
splitting attribute based on criteria (3). Use the
obtained attribute to split the cluster, and put the
resulting child clusters into YSC. Discard the
clusters that had been split and the clusters that
cannot be split using any attribute.

Step 2) If YSC , stop; otherwise, return to Step 1).

Fig. 8 shows a clustering tree built by using the separation
matrices of two attributes shown in Figs. 5(a) and 6(a) to split
the root cluster Cr . Algorithm I
uses three iterations to build the tree. The splitting attribute for
each cluster and the progression of YSC are also shown in this
figure.

We define the leaf cluster in the clustering tree as the terminal
cluster (TC). Each TC may contain one class only or several
classes, which cannot be split further using any attribute. For the
purpose of classifying a new data pattern into a TC, we need to
use the splitting attributes to construct the cluster splitting rules
for each cluster in the clustering tree based on the fuzzy rules
[33], [34] for a single attribute as presented in the following
section. It should be noted that the fuzzy rules employed here are
for single attribute; thus, we can circumvent the computational
complexity of the fuzzy set theory-based approach as indicated
in Section II-A.

4) Clustering Algorithm: The separation matrix-based
clustering algorithm consists of two parts: the training part and
the classification part. The training part, which is prepared for
the classification part, consists of three steps: 1) construction
of the separation matrices for all attributes; 2) determining the
cluster-splitting attribute and building the clustering tree; and
3) throughout the clustering tree, generate the fuzzy if–then
rules needed to classify a data pattern into a proper child cluster
based on a given set of training data patterns with known
TCs. Of three steps, 1) and 2) have been presented in previous
sections. The details of 3) as well as the classification part are
described as follows.

a) Fuzzy-rule generation procedures of clustering algo-
rithm: The fuzzy rules for splitting a non-TC cluster using the
corresponding splitting attribute in our clustering algorithm are
of the same type. Thus, for the sake of explanation, we will focus
on generating the fuzzy rules for one cluster in the clustering
tree. We let Cr denote a non-TC cluster and denote the corre-
sponding splitting attribute. We let , , denote the
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Fig. 8. Example of using Algorithm I to build clustering tree.

th attribute of data patterns, and , , from
known child clusters, CCr CCr . These data patterns
form the training data set for splitting Cr . The fuzzy rules for
splitting a cluster Cr are of the following type.

For , where denotes the number of
fuzzy partitioned intervals on the range of the th attribute
values

Rule Cr If is then the belongs to

CCr with where is the th partitioned

fuzzy interval, CCr is the consequent, i.e., one of

the child clusters, and is the grade of

certainty of rule Cr (4)

What need to be determined in the previous rule are CCr and
, and the procedures for determining them are called fuzzy

rules generation procedures for splitting one cluster, described
as follows.

Let be characterized by the nonnegative fuzzy member-
ship function . The membership function can be
triangular, Gaussian, or any other shape. In this paper, we con-
sider the triangular membership function. Then, can be
considered as the grade of compatibility of with respect to

. We define

Cr (5)

as the sum of grade of compatibility of child cluster CCr with
respect to . Then, the algorithm for generating fuzzy rules
for splitting cluster Cr can be stated as follows.

Algorithm II: Generation of the fuzzy rules for splitting
cluster Cr

Step 0) Given training data patterns , ,
with known child clusters Cr ,
of the to-be-split cluster Cr and the
corresponding splitting attribute . Set .

Step 1) Calculate the sum of the rade of compatibility
of child cluster CCr , , with
respect to by (5).

Step 2) Find the child cluster CCr such that

CCr Cr

CCr Cr CCr Cr (6)

then CCr is the consequent CCr in rule
Cr .

Step 3) Determine , the grade of certainty of rule
Cr , by

CCr Cr

Cr Cr (7)

where Cr

CCr CCr CCr Cr
denotes the average of the sum of grade of
compatibility of the rest of the child clusters
with respect to .

Step 4) If , stop; else, set , and return
to Step 1).

b) Training part of clustering algorithm: Combining the
construction of separation matrices, determination of the split-
ting attributes, building of the clustering tree, and the fuzzy rule
generation procedures, we are ready to summarize the training
procedures of the clustering algorithm using the training data
set.

Algorithm III: Training procedures of the clustering algo-
rithm

Step 0) Given a set of training data patterns with known
classes; compute and of each class and
each attribute ; compute the separation matrices

based on (2) for each attribute .

Step 1) Apply Algorithm I to obtain the splitting attributes
and build the clustering tree.

Step 2) Use Algorithm II to generate the fuzzy rules for
each cluster in the clustering tree.
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c) Classification part of clustering algorithm: Once the
fuzzy rules for splitting the clusters in the clustering tree are
generated, we can determine the child cluster to which the new
data pattern belongs at each cluster based on a fuzzy reasoning
method.

Let the new data pattern be and let be the th attribute
of corresponding to the splitting attribute at cluster Cr . We
define CCr , the weighting grade of certainty of with re-
spect to the child cluster CCr , as the sum of the multiplication
of the grade of compatibility of with respect to and the
grade of certainty of rule Cr over all trained rules the
consequent of which are CCr . We can express CCr mathe-
matically as CCr Cr CCr CCr .
Then, the classification procedures for the new data can be stated
as follows.

Classification Procedures: The child cluster CCr ,
with respect to which the weighting grade of certainty of

is maximum, is the concluded cluster of , that is,
CCr CCr CCr .

Now, the classification procedures for classifying a new data
pattern into a TC can be stated.

Algorithm IV: Classification procedures of the clustering al-
gorithm

Step 0) Given a new data pattern ,
where denotes the total number of attributes;
set Present Cluster PCr Cr .

Step 1) Use , where corresponds to the attribute
used for splitting the PCr, and the classification
procedures stated above to classify into a child
cluster of PCr, we denote this child cluster by
CPCr. If the CPCr is not a TC, set PCr CPCr
and repeat this step; otherwise, stop.

C. CART for TC

The TCs resulting from the training part of the separation
matrix-based clustering algorithm may consist of one or more
classes. Since the number of classes and the size of the cor-
responding data set in each TC should be much smaller than
Cr , it will be computationally much easier to apply CART to
classify the TCs and the resulting tree size of each TC will be
much smaller. Therefore, our clustering algorithm helps reduce
the computational complexity and the tree size of CART when
applied to Cr alone.

The CART is a well-developed classification tool. The details
of this classification technique can be found everywhere [17],
[18]. Similar to the proposed clustering algorithm, CART also
consists of training and classification parts. The training part of
CART is to build a classification tree and the splitting rules in
each node. In brief, the construction of a CART classification
tree and splitting rules centers on three major elements: 1) the
splitting rule; 2) the goodness-of-split criteria; and 3) the criteria
for choosing an optimal or final tree for analysis. Regarding 1),
there are three major splitting rules in CART. The one we em-
ployed here is the Gini’s criteria [17]. This criteria starts the
tree-building process by partitioning the TC into binary nodes
based upon a very simple question of the form: “is ?”

where is an attribute and is a real number. Regarding 2), the
CART uses a computation-intensive algorithm that searches for
the best split at all possible split points for each attribute that
decreases the Gini’s impurity measure [17] most. CART will
recursively apply this splitting rule to split nonterminal child
nodes at each successive stage. In order to reduce the complexity
of the built tree which is measured by the number of its terminal
nodes, CART uses a pruning process to find an optimal tree, as
pointed out in 3). The computational complexity of the training
part of CART mainly lies in the exhaustive search for the best
split required in 2). Once the classification tree and the split-
ting rules are obtained, the classification procedure of CART is
simply asking whether to determine which of the binary
child nodes the new data pattern belongs to throughout the clas-
sification tree.

D. Classification of New Data Pattern

Once the training part of the HCT, which combines the
training parts of the clustering algorithm and CART, is com-
pleted, we are ready to use the classification procedures of both
clustering algorithm and CART to classify a new data pattern,
as required in the first two blocks in Fig. 2.

E. Learning Capability

The learning capability of a classifier is very important in cur-
rent application, because for every 14 min, 24 wafers (or a lot)
of the same recipe will be ion implanted. Thus, new data pat-
terns arrive with a high frequency. For the sake of explanation,
we can assume the recipe of the working wafer is one of the
recipes under work, because only a slight modification is needed
for the case of a new recipe. The learning of HCT after the new
data pattern joins in consists of two parts. The first part is for the
clustering algorithm and the second part is for CART. Learning
of the clustering algorithm consists of three updating steps: 1)
updating the separation matrices; 2) updating the attributes used
to split clusters as well as the clustering tree; and 3) updating the
fuzzy rules for splitting clusters. Learning of CART is just to up-
date the best split for each node in the classification tree.

1) Learning of Clustering Algorithm: Since the new lot of
wafers is of the same recipe, the new data patterns will be used
to update the mean and variance of each attribute of the corre-
sponding class. Denoting the class index of the new data pattern
by , we will update and for all , which will be used to
update the separation indexes for all , all . Sup-
pose the updated do not change for all and all ,
then the separation matrices remain the same; consequently, the
splitting attributes for clusters and the clustering tree also remain
the same as can be observed from Algorithm I. This implies that
if the separation matrices are unchanged after the new data pat-
tern joins in, the updating step 2) can be skipped. In fact, and

will only slightly deteriorate when the new data patterns join
in because of the large amount of training data set. This implies
that the updated separation matrices may change only when the
amount of accumulated new data patterns are large enough. On
the other hand, suppose changes for any and
and causes the corresponding separation matrices to be changed
in updating step 1); we need to proceed with updating step 2) by
performing Algorithm I (i.e., Step 1 of Algorithm III) to update
the splitting attributes and the clustering tree.
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To update the fuzzy rules indicated in the updating Step 3), we
also consider two cases. In the case of unchanged separation ma-
trices, which implies the clustering tree and splitting attributes
remain the same, we only need to update the fuzzy rules for the
clusters in the tree path of the clustering tree, in which the new
data pattern belongs. To do so, we let Cr be a non-TC cluster
in this tree path and let CCr be the child cluster of Cr in this
tree path. To update the rules Cr in (4) is to update the re-
sult and grade of certainty after the new data patterns join in.
To update the consequent, we need to update CCr Cr
first. To do so, we need to add an extra term of the nonnegative
membership function of the new data pattern on the right-hand
side of (5). The updated CCr Cr will be larger than
the original one. Thus, according to Step 2) of Algorithm II, the
consequent will not be changed. Subsequently, we can use the
updated CCr Cr to update the corresponding
by (7). Thus, in this case, updating fuzzy rules is an easy task
because the length of a tree path in the clustering tree is usually
short. In the case where the clustering tree or any splitting at-
tributes change due to the changed separation matrices, we need
to perform Step 2) of Algorithm III, which is Algorithm II, to
update the fuzzy rules. Of course, this is more complicated than
in the previous case. However, no matter what case, it will not
affect HCT to work in real time and online as will be demon-
strated in Section IV.

2) Learning of CART: Following previous discussions, there
are also two cases for updating the splitting rules of CART. The
first case is a subsequent situation of the unchanged separation
matrices such that the TCs of the clustering tree do not change.
Since the number of training data patterns is very large, the best
split point of each attribute in each node of the CART will alter,
at most, slightly when new data patterns join in. Therefore, we
need not exhaustively search for the split point of each attribute.
Instead, we can search for the split point only within a window
of the original best split point of each attribute. The window
is set to be discrete points at the best split point of each
attribute. This will, of course, save a lot of computation time.
In addition, we need only update the splitting rules for just one
TC, to which the new data pattern belongs. The other case is
when the separation matrices change and cause the clustering
tree changes. In this case, we will rerun the CART for all TCs.
As indicated at the end of previous section, this will not affect
HCT to work in real time and online.

III. WARNING SIGNAL GENERATION AND FAULT ISOLATION

A. Warning Signal Generation

In general, the ion implanter will be stopped whenever there
is a warning signal so as not to damage the subsequent wafers.
However, this reaction will be justified only when the warning
signal is absolutely correct; otherwise, the throughput will be
degraded. Thus, to minimize the probability of false alarms
should be one of the objectives. On the other hand, thousands
of wafers may be damaged if any fault is not detected. Thus,
to minimize the probability of overlooking a fault is another
objective. In general, a matched classification result implies: 1)
the machine is in normal condition or 2) the actual implantation
has been wrong due to a machine fault but a misclassification

makes the classified recipe match the destined one. Case 2)
indicates a fault situation that cannot be observed from the
matched result. We let denote the misclassification rate of
recipe , which can be calculated by

(8)

where denotes the prior probability of recipe and
denotes the misclassification rate of classifying recipe to be
recipe . If Case 2) occurs to recipe , then the probability of a
series of such events occurring is . This indicates the prob-
ability of an undetected machine fault will be extremely small,
provided that is small and is large. This also implies that
the matched recipe will eventually mismatch, provided that the
matched result is due to a misclassification. Real values of for
all based on HCT will be given through the tests presented in
Section IV. This addresses the comment cited in Section I that
we need not check the existence of a machine fault when the
classified recipe matches the destined one, and the cost of such
a reaction is at most damaged wafers, where is a positive in-
teger that makes extremely small. This also indicates when
the classified recipe matches the destined one, we can continue
for the next wafer as shown in Fig. 2. Thus, using the classifica-
tion accuracy of the HCT as the basis of generating a warning
signal, our objective can be simplified to minimizing the prob-
ability of a false alarm.

There are two causes of false alarms. One is the electrical
spike and the other is the classification error. Both cases will
cause the classified recipe to mismatch the destined one and re-
quire the checking of warning signal generation criteria as in-
dicated in Fig. 2. To minimize the probability of a false alarm
due to an electrical spike, we should distinguish an electrical
spike from a machine fault. The electrical spike is only tem-
porary, which may affect one or two wafers only, while the ma-
chine fault will last until it is fixed. Thus, an easier way to distin-
guish them is checking whether a series of classification errors
occur. In other words, if there are more than, say, four consec-
utive classification errors, the causes of the errors should not be
the electrical spikes. Similar reasons apply to the classification
errors. We let denote the classification error rate, which is de-
fined as (number of misclassified wafers/number of test wafers)

100% of recipe obtained using k-fold cross validation. Then,
the probability of the occurrence of consecutive classification
errors is , which decreases sharply when increases. Thus,
an easier way to distinguish the classification error from the ma-
chine fault is also checking whether a series of classification er-
rors occur. To achieve this, we can predetermine a very small
positive real number , a probability indication of an event that
is almost not possible to occur. Then, if , we can con-
clude that the cause of the mismatched recipe is not classifica-
tion errors. Thus, we can state our warning signal generation
criteria as follows.

Let the classification error rate of recipe be obtained using
k-fold cross validation denoted by , and let denote the
number of consecutive working wafers; then, the proposed
criteria for generating a warning signal is as follows.
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Assume the classified recipe of the th wafer
matches the destined one, while the

wafers do not; the warning signal will be generated
at the wafer provided that the following two
conditions hold:

(9)

and

(10)

where denotes the destined recipe of the wafer,
denotes the of the wafer, is a very small positive
real number, and denotes the maximum number of con-
secutive wafers that can be affected by the electrical spikes.

If (9) holds, we can exclude the possibility of false alarm
due to classification errors. If (10) holds, we can exclude the
possibility of false alarm due to the electrical spikes.

B. Fault Isolation

To eliminate the machine fault, we need to isolate the fault
first. In general, when there is a fault in a subsystem, the attribute
(or attributes) corresponding to that subsystem may become ab-
normal. Thus, the basic idea of our fault isolation scheme is to
find the attribute(s) that causes the classification errors, and this
can be easily done in a single-tree classifier like CART and HCT,
which is their biggest advantage, the interpretability. In fact, the
tree structure of HCT is much simpler than CART, because it
largely reduces the tree size of CART by using the clustering
tree to separate the whole data set into several TCs. Thus, if the
misclassified recipe and the destined recipe belong to different
TCs, we can use the clustering tree to find the faulty attribute.
If they belong to the same TC, we will use the corresponding
CART to find the faulty attribute. Considering that the machine
fault may occur abruptly or develop gradually, and there may
be single or multiple faulty attributes, we will find the faulty at-
tribute(s) for each misclassified wafer by the aid of its tree path
and the tree paths of several latest correctly classified wafers of
the same destined recipe. Thus, once a warning signal is gener-
ated, our fault isolation scheme will proceed as follows.
Step 1) Collect the consecutive misclassified wafers that

cause the warning signal, i.e.,
such that (9) and (10) hold.

Step 2) Collect the latest correctly classified wafers,
which have the same destined recipes as the
wafers in Step 1).

Step 3) For each of the wafers in Step 1) and each of
the wafers in Step 2), we will find the faulty
attribute(s) that causes the misclassification as fol-
lows.
3.1) Suppose the two wafers belong to different

TCs, say and , we will use the
clustering tree to find the faulty attribute by
tracing the tree paths backward from the cor-
responding TCs. These two paths will meet
at a node whose splitting attribute will be the

Fig. 9. Using clustering tree to find faulty attribute.

faulty attribute. As illustrated in Fig. 9, the
faulty attribute is .

3.2) Suppose the two wafers belong to the same
TC and they lie in two different terminal
nodes of the corresponding CART, we can
find the faulty attribute in a similar manner as
in Step 3.1) by using the classification tree of
CART.

Step 4) List all the different faulty attributes found from the
searches in Step 3) and calculate the corre-

sponding probability, based on the frequency of oc-
currences. Indicate the corresponding subsystem of
the faulty attributes and calculate the corresponding
probability by adding the probabilities of the faulty
attributes in this subsystem.

IV. TEST RESULTS OF HCT, WARNING SIGNAL GENERATION,
AND FAULT ISOLATION

A. Test Results of HCT

In general, there are quite a few attributes that can be mea-
sured from the ion implanter; however, not all attributes are
helpful in classification. According to the domain knowledge,
the following 12 attributes, and , are recom-
mended: filament voltage, filament current, discharge voltage,
discharge current, extraction electrode voltage, extraction elec-
trode current, acceleration/deceleration voltage, magnetic field
strength, high-voltage power supply current, beam current,
beam-line pressure, and chamber pressure, respectively. These
12 attributes cover the four subsystems of the ion implanter.
Table I shows the units and related subsystems of the above 12
attributes. We have made all the tests on a 26-recipe case and a
42-recipe case. Due to the page limitation, we will present the
complicated 42-recipe case only.

A data set of the 42-recipe case and each recipe consists
of a thousand to 10 000 wafers supported from a local world-
renowned foundry. We use them to test the classification ac-
curacy of the proposed classifier HCT and to demonstrate the
validity of the warning signal generation criteria and fault isola-
tion scheme. It takes 1 s to measure a 12-attribute data pattern.
The ion implantation time for a wafer is around 10 s. Thus, ten
data patterns are taken while a wafer is under work. The wafer
changeover time is 26 s, on average. Each lot contains 24 wafers,
and the setup time for a new lot is 13 min. For all the measured
data patterns in this case, we randomly divide them by wafer
base into ten parts. We take nine parts as training data set and
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TABLE I
UNITS AND RELATED SUBSYSTEMS OF 12 ATTRIBUTES

Fig. 10. Cluster splitting tree of 42-recipe case.

one part as test data set. We set in (2), the number of
fuzzy partitioned intervals , and a triangle nonnegative
membership function for in Algorithm II. Applying Algo-
rithm III to the training data set, the resulting clustering tree and
the splitting attributes are shown in Fig. 10, where each cluster
is denoted by a block, and the recipes contained in a cluster are
shown inside the parenthesis in each block. The attribute used
for a splitting each cluster is indicated at the outgoing branch in
the clustering tree. The corresponding fuzzy rules for each split-
ting attribute are also obtained. There are five TCs, and each TC
consists of more than one recipe except for the one consisting of
recipe 23 only. Subsequently, we apply CART to the four TCs
and build the classification tree and splitting rules for each TC.
We then use the part of the test data to test the trained HCT using
Algorithm IV of the clustering algorithm and the classification
tree and splitting rules of CART. Since each wafer corresponds
to ten measured data patterns, and each test data pattern will be
classified to a recipe, a majority voting scheme is used to con-
clude the classified recipe of the wafer corresponding to the ten

test data patterns. Repeating this process for ten times by circu-
lating the training data set and test data set, Table II shows the
resulting tenfold cross-validation classification error rate of all
recipes in this test. We also indicate the tenfold cross-validation
classification error rate using the software See5 [35] and CART
[17] in this table. From this table, we can calculate the sum of
classification error rates of the proposed HCT with
is around 0.2955%; while the sum of classification error rates
using See5 and CART are 0.53% and 0.6427%, which are 80%
and 117% more than that of HCT, respectively. Thus, HCT ob-
tains a very successful classification result.

Remark: From the test results shown in Table II, we see that
the superiority of HCT over CART and See5 is mostly due to
the zero classification errors of recipe 14. What causes the clas-
sification errors of recipe 14 in CART or See5 is the overlap-
ping of the attribute data between recipes 14 and 20. Thus, some
test data patterns of recipe 14 may be classified to be recipe
20 in CART or See5. Fortunately, in HCT, recipes 14 and 20
have been classified into different TCs as can be observed from
Fig. 10. This drastically reduces the possibility of classifying
recipe 14 to be 20. However, in HCT, recipe 20 may still be clas-
sified into recipe 14, which can also be observed from Table III
in misclassification rate. Excluding recipe 14 from the data set,
we repeat the complete training and test process, and the results
show that the sum of classification error rates of HCT, CART,
and See5 are 0.173, 0.248, and 0.182, respectively. Indeed, the
three sums of classification errors are closer; however, HCT is
still the best among them. Furthermore, we also apply the three
classifiers to the 26-recipe case that we mentioned at the begin-
ning of this section, and the sum of classification error rates of
HCT, CART and See5 are 0.225, 0.577, and 0.405, respectively.

For this 42-recipe case, we also obtain the misclassification
rate defined in (8) for the three classifiers as shown in Table III.
The largest misclassification rate of HCT, ,

is 0.0043% and the sum of misclassification rates
is around 0.00737%. Taking , . This
demonstrates the analysis stated in Section III for the validity of
no-fault assumption, which states that if a machine fault exists,
the classified recipe will eventually mismatch the destined one.
Compared with CART and See5, the sum of misclassification
rates of HCT is better, and this is consistent with the results of
the classification error rate shown in Table II. To investigate the
training efficiency and the capability of real-time classification
of HCT as well as the effects of different values of , we have
applied HCT to the 42-recipe case with three other value of

. The resulting tenfold cross validation for the sum of classi-
fication error rates, the corresponding average training times,
and the classification time for classifying the recipe of a new
data pattern are shown in Table IV. From the fourth row of this
table, we can observe that when , the tenfold cross
validation for the sum of classification error rates of HCT is
better than that of See5 and CART. From the second row of the
table, we see that when , the training time required by
HCT is much shorter than that required by CART and See5. The
classification time needed for classifying a new data pattern is
much shorter than that of See5 and CART for all the indicated
values of ; in addition, it is also much shorter than the data
measurement time, which takes 1 s; thus, HCT can work in real
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TABLE II
CLASSIFICATION ERROR RATE OF 42-RECIPE CASE

TABLE III
MISCLASSIFICATION RATE � OF 42-RECIPE CASE

TABLE IV
TRAINING TIME, CLASSIFICATION TIME, AND TENFOLD CROSS VALIDATION FOR SUM OF CLASSIFICATION ERROR RATES FOR DIFFERENT VALUES OF p̂

time. This shows that HCT not only performs better than See5
and CART in the aspect of a tenfold cross validation for the
sum of classification error rates but also consumes less training
time and classification time when is properly chosen. In the
meantime, we found that as increases, the HCT becomes
less accurate and less computationally time consuming, as
expected. This also demonstrates why the clustering algorithm
helps reduce the computational complexity of CART.

B. Test Results of Learning Capability of HCT

We also test the learning capability of the proposed HCT by
adding the new data patterns to the training data set. We found
that when the accumulated amount of new data patterns is less
than 7%, on average, of the amount of training data of the same

TABLE V
UPDATING TIME OF HCT WHEN SEPARATION MATRICES CHANGE FOR

DIFFERENT p̂

recipe, the updated separation matrices remain the same. The
length of the window in updating the splitting rules of CART,

, is set to be 5. In the case of unchanged separation matrices,
the computation time for checking whether there is any change
in separation matrices, updating the fuzzy rules of the clustering
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Fig. 11. Classification tree of CART for TC .

algorithm, and the splitting rules for CART take only 0.1637 s
for each new data pattern when . This updating time is
shorter than measuring a new data pattern; thus, we can perform
the online update. In the case when separation matrices change,
updating the separation matrices and rerunning Steps 1) and 2)
of Algorithm III and the training part of CART for the resulting
TCs take only 21.741 s, which is even shorter than the wafer
changeover time, which takes 26 s. For different values of , the
updating times of HCT when separation matrices change are
shown in Table V. From the results, we see that we can update
the training part of HCT during the wafer changeover period.
This indicates that the learning capability of HCT enables it to
update in real time and online. It should be noted that the HCT’s
updating time being shorter than the training time is because up-
dating the separation matrices is much easier than constructing
from nothing.

C. Test Results of Warning Signal Generation and Fault
Isolation

To test the validity of the proposed warning signal generation
criteria and fault isolation scheme, we use six small sets of mea-
sured data patterns, which are also collected from the 42-recipe
case but not included in the previous data set for constructing
the HCT. Among them, the first two sets consist of abnormal

wafers caused by machine faults, and the other four sets con-
sist of abnormal wafers caused by electrical spikes. There are
50 wafers with destined recipe 39 in the first set and the ten ab-
normal wafers located from the 21st to the 30th wafers caused by
attribute . The second set consists of 40 wafers with destined
recipe 6 and the ten abnormal wafers located from the 31st to
the 40th wafers. The first abnormal wafer is caused by attribute

, and the remaining nine wafers are caused by both and
. The third set consists of 20 wafers, and the two abnormal

wafers are located at the 16th and 17th wafers caused by the at-
tribute , whose values are affected by electrical spikes. The
abnormal wafers caused by electrical spikes also occur to the
fourth, fifth, and the sixth sets of wafers; these three sets con-
sist of 30 wafers each, and the two abnormal wafers are located
at the 19th and 20th, 23rd and 24th, and 27th and 28th wafers
caused by attributes , , and , respectively. We randomly
pick six out of ten existing HCT test data sets and insert the pre-
vious six small sets of data patterns into the six test data sets,
one for each.

Setting , , and of each recipe as the
result shown in Table II, we apply the HCT associated with the
majority voting scheme to classify the six test data sets. In the
first test data set, the warning signal generation criteria, i.e., (9)
and (10), are satisfied at the fifth abnormal wafer of the first
small data set, because according to Table II.
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TABLE VI
MISCLASSIFIED ABNORMAL WAFERS CAUSED BY ELECTRICAL SPIKES

Thus and . This demonstrates
that our warning signal generation criteria has successfully de-
tected the fault. Now, we have according to Step 1)
of the fault isolation scheme. We also set , which de-
notes the 16th to the 20th wafers in the first small set of test
data. The five misclassified wafers are all classified to recipe 24,
while the previous five wafers are correctly classified to recipe
39. Since recipes 24 and 39 belong to different TCs, we apply
Step 3.1) of the fault isolation scheme and find that there are
only two traced-back tree paths, which are TC Cr Cr
and TC Cr , respectively, as can be observed from Fig. 10.
Thus, the faulty attribute causing the classification errors is
with probability 1.0, and the corresponding subsystem is the
mass analysis, which is also with probability 1.0. In the second
test data set, the warning signal generation criteria are satis-
fied at the fifth abnormal wafer, because ; thus,

and . Therefore, we have ,
and we also set . The five misclassified wafers are all
classified to recipe 7, while the previous five wafers are all cor-
rectly classified to recipe 6. Since recipes 6 and 7 belong to the
same TC, TC , as can be observed from Fig. 10, we need to
apply Step 3.2) to perform fault isolation. The CART for this TC
is shown in Fig. 11. The latest five correctly classified wafers
lie in the same terminal node for recipe 6 as indicated by
in Fig. 11. However, there are two different terminal nodes for
the five misclassified wafers as indicated by in Fig. 11. This
is because the first abnormal wafer consists of one faulty at-
tribute only, while the remaining four consist of two faulty at-
tributes, and . Note that the number inside the parenthesis
beside denotes the number of misclassified wafers lying in
this node. Applying Step 3.2) of the fault isolation scheme, the
traced-back tree paths for recipe 6 indicated by are shown
by the solid line and for recipe 7 indicated by are shown by
dashed lines in Fig. 11. The faulty attributes, which are the split-
ting attributes of the nodes where the traced-back paths meet, are

with probability 0.2 and with probability 0.8. The cor-
responding subsystem of both and is the mass analysis,
which is thus probability 1.0. For the third to the sixth sets of test
data, the details of the misclassified abnormal wafers are tabu-
lated in Table VI. From this table and Table II, we can easily find
that conditions (9) and (10) cannot hold simultaneously. Thus,
no warning signal is generated in any of these four cases.

V. CONCLUSION

The proposed classification-based fault detection and isola-
tion scheme is a general methodology. Modifying the warning
signal generation criteria to meet individual machine’s needs,

this fault detection scheme is not limited to the ion implanter.
The simplicity of the HCT-based fault isolation scheme made
HCT worthwhile, especially when its accuracy can be reme-
died by the warning signal generation criteria when applying
it to the ion implanter. Due to the efficient learning capability of
HCT and the 0.05-s classification time for classifying the recipe
of a working wafer, the proposed fault detection and isolation
scheme can work online and in real time.
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