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Abstract

Based on the current spin density functional theory, a theoretical model of three vertically aligned semiconductor quantum dots is proposed and
numerically studied. This quantum dot molecule (QDM) model is treated with realistic hard-wall confinement potential and external magnetic
field in three-dimensional setting. Using the effective-mass approximation with band nonparabolicity, the many-body Hamiltonian results in a
cubic eigenvalue problem from a finite difference discretization. A self-consistent algorithm for solving the Schrödinger–Poisson system by using
the Jacobi–Davidson method and GMRES is given to illustrate the Kohn–Sham orbitals and energies of six electrons in the molecule with some
magnetic fields. It is shown that the six electrons residing in the central dot at zero magnetic field can be changed to such that each dot contains two
electrons with some feasible magnetic field. The Förster–Dexter resonant energy transfer may therefore be generated by two individual QDMs.
This may motivate a new paradigm of Fermionic qubits for quantum computing in solid-state systems.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

There is significant interest in quantum information process-
ing based on fermionic qubits using semiconducting materials
[1–10]. One of the proposals in this approach is to exploit elec-
tronic excitations of coupled quantum dots (QDs) that form an
artificial molecule (QDM) [6,7,9,10]. In particular, an energy
selective scheme to manipulating excitonic states of QDM, to-
gether with control over the Förster–Dexter resonant energy
transfer and biexciton binding energy, can be used to perform
quantum computation and to produce controlled exciton quan-
tum entanglement [7,11]. The resonant Förster–Dexter energy
transfer mechanism is also responsible for photosynthetic en-
ergy process in antenna complexes, biosystems that harvest
sunlight [12]. It has been recently shown that two individual
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closely spaced fluorescent molecules undergo a strong coherent
dipole–dipole coupling can produce entangled states [13]. We
propose and numerically investigate here a theoretical model of
three vertically aligned InAs/GaAs QDM whose dimensions are
commensurable with that of [9] in which a transmission elec-
tron micrograph of a QDM sample is illustrated.

Our QDM model consists of one large central dot and two
smaller dots situated above and beneath the central dot whose
geometrical dimensions are shown in Fig. 1 where the radius,
thickness, and separation of each dot are indicated by coor-
dinates. It has been demonstrated in [11,14] that there exists
Förster energy transfer from smaller to larger dots via electro-
static coupling. Our goal for this model system is to investigate
the detailed electronic properties of the QDM with N = 6 elec-
trons under the effects of an external magnetic field by using
the current spin density functional theory (CSDFT) [15,16].

For the many-body Hamiltonian of our QDM model, we ex-
tend the models used in [17–19], which are based on parabolic
one-band effective-mass envelope function approximation with
either infinite or quadratic confinement potentials, to a more
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Fig. 1. Three vertically aligned InAs/GaAs quantum dots with cylindrically symmetric domain in real space dimensions in nano meters that are used in numerical

implementation. The domain in 2D setting is denoted by Ω with the boundary ∂Ω consisting of the south (S), east (E), north (N), and west (W) sides.
realistic finite confinement potential with band nonparabolic-
ity that leads to an energy-dependent mass in the Hamiltonian
for electrons. The nonparabolicity is derived from a projection
from the eight-band Kane Hamiltonian into the 2 × 2 conduc-
tion space and hence gives more accurate results as shown in
[20–23].

The CSDFT applied to the QDM system with three-dimen-
sionality of the finite confinement and band nonparabolicity
poses a very challenging task for the numerical implementation.
The energy-dependent mass in the Hamiltonian results in a cu-
bic eigenvalue problem from, e.g., a finite difference discretiza-
tion. The Jacobi–Davidson (JD) method developed in [24,25] is
extended and incorporated into a self-consistent algorithm for
solving the Schrödinger–Poisson system that implements the
CSDFT in real space. We also give a detailed description of the
computational algorithm, the Poisson solver, and the approxi-
mation methods for the xc energy.

Numerical results on the Kohn–Sham (KS) orbitals and ener-
gies of six electrons in the molecule with some magnetic fields
are presented in detail. It is shown that the six electrons resid-
ing in the central dot at zero magnetic field can be changed to
such that each dot contains two electrons with some feasible
magnetic field. The Förster energy transfer may therefore be
generated by two individual QDMs. This may motivate a new
paradigm of Fermionic qubits for quantum computing in solid-
state systems, which will be reported in a coming paper.

2. The current spin density functional theory for the model
system

The density functional theory (DFT) introduced in the two
seminal papers [26,27] is perhaps the most successful approach
to compute the electronic structure of matter ranging from
atoms, molecules, to solids. Vignale and Rasolt developed an
extension of DFT that makes it possible to include gauge fields
in the energy functional [15,16] and has been widely used to
describe the electronic structure of quantum dots in magnetic
fields [17–19,28].

In CSDFT, the ground state energy of an interacting system
with electron number N and the total spin S in the local exter-
nal potential Vext(r) is a functional of spin density nσ (r), with
σ =↑,↓ (or ±1) denoting spin-up and spin-down, respectively,

E(n) = T (n) +
∫

n(r)
[
Vext(r) + 1

2
VH (r)

]
dr

(2.1)+ EB(n) + Exc(n),

where the total density n(r) = n↑(r) + n↓(r) and the spin
densities satisfy the constraint

∫
nσ (r)dr = Nσ with N↑ =

(N + 2S)/2, and N↓ = (N − 2S)/2 [28]. Assuming that the
ground state of the noninteracting reference system is nonde-
generate, the noninteracting kinetic energy is expressed as

(2.2)T (n) =
∑
j,σ

〈Ψjσ |Π
(

1

2m(r, εjσ )

)
Π |Ψjσ 〉,

where Π = −ih̄∇ + eA(r) denotes the electron momentum op-
erator, h̄ is the reduced Planck constant, e is the proton charge,
A(r) = B

2 (−y, x,0) is the vector potential induced by an ex-
ternal magnetic field B = curl A = Bẑ applied perpendicular to
the xy plane, and Ψjσ and εjσ are Kohn–Sham (KS) orbitals
and eigenvalues to be specified below. The effect of band non-
parabolicity leads to the mass depending on both energy and
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Table 1
Numerical values of all parameters used in this paper

Value Unit Formula Reference

e 1.60219 × 10−19 C
B T
h̄ 1.05459 × 10−34 Js
p(InAs) 1.20311 × 10−28 3m0p2/h̄2 [29]
p(GaAs) 1.25614 × 10−28

m0 9.10956 × 10−31 kg
Eg(InAs) 0.421 eV [29]
Eg(GaAs) 1.52 eV [29]
�(InAs) 0.48 eV [29]
�(GaAs) 0.34 eV [29]
V0 0.77 eV [29]
ε0 8.854187 × 10−12 F/m
εInAs 12.2 [20]
εGaAs 12.7
μB 9.2741 × 10−24 J/T
c 2.997925 × 108 m/s

position, which is defined by [20]

1

m(r, εjσ )
= p2

h̄2

[
2

εjσ + Eg(r) − Vext(r)

(2.3)+ 1

εjσ + Eg(r) − Vext(r) + 	(r)

]
,

where Eg(r) and �(r) are energy-band gap and spin-orbit split-
ting in the valence band, respectively, and p is the momentum
matrix element. These parameters are material (position) de-
pendent. We denote the spatial domain of the model, i.e. Fig. 1,
as Ω = Ω InAs ∪ ΩGaAs ⊂ R3, where the three InAs quantum
dots are embedded in the GaAs matrix. All numerical values of
the parameters used in this paper are listed in Table 1, which
also includes the corresponding units and cited references.

The hard-wall confinement potential Vext is induced by a dis-
continuity of conduction-band edge of the system components
and is given as

(2.4)Vext(r) =
{

0, in Ω InAs,

V0, in ΩGaAs.

The Hartree potential is defined as

(2.5)VH (r) = e2

4πε0ε(r)

∫
n(r′)

|r − r′| dr′,

where ε0 the permittivity of vacuum and ε(r) is the dielectric
constant of the background material.

The vector field A(r) adds extra terms to the energy func-
tional as follows

EB(n) = 1

2
gμBB

∫ [
n↑(r) − n↓(r)

]
dr

(2.6)+ e

∫
jp(r) · A(r)dr,

where g is the Landé factor, μB is the Bohr magneton, and

jp(r) = −ih̄

2m

∑
i,σ

[
Ψ ∗

jσ (r)∇Ψjσ (r) − Ψjσ (r)∇Ψ ∗
jσ (r)

]
is the paramagnetic current density.
The xc energy Exc(n) is defined as

(2.7)Exc(n) = Ex(n) + Ec(n) =
∫

n(r)εxc(n, γ )dr,

where the xc energy per particle εxc depends on the field B

internal structure of the wave function. It formally depends on
the vorticity

(2.8)γ (r) = ∇ × jp(r)
n(r)

∣∣∣∣
z

.

To minimize the total energy of the system, a functional deriva-
tive of E(n) is taken with respect to Ψ ∗

jσ under the constraint of
the orbitals Ψjσ being normalized. The resulting KS equations
are

(2.9)Hσ
KSΨjσ = εjσ Ψjσ

with the KS Hamiltonian Hσ
KS defined as

Hσ
KS = −Π

(
1

2m(r, εjσ )

)
Π + Vext(r) + VB(r)

(2.10)+ VH (r) + V σ
xc(r),

where

(2.11)VB(r) = σ
1

2
g(r, εjσ )μBB,

g(r, εjσ )

(2.12)

= 2

{
1 − m0

m(r, εjσ )

�(r)
3(εjσ + Eg(r) − Vext(r) + 2�(r)

}
,

and σ = ±1 referring to the orientation of the electron spin
along the z-axis. The xc potential

(2.13)V σ
xc(r) = δ[n(r)εxc(n, γ )]

δnσ
− e

n
jp · Axc,

where Axc is the xc vector potential defined by

(2.14)

eAxc = 1

n

(
∂

∂y

δ[n(r)εxc(n, γ )]
δγ

,− ∂

∂x

δ[n(r)εxc(n, γ )]
δγ

,0

)
.

We use the LSDA for calculating the xc energy. In CSDFT,
the LSDA has to be extended to include the orbital currents.
Following Vignale and Rasolt [16], the xc vector potential is
approximated as

(2.15)
e

c
Axc,σ ≈ −b

nσ (r)
∇ ×

[
∇ × jpσ (r)

nσ (r)

]
,

where

(2.16)−b = mkF

48π2

[
χL

χ0
L

− 1

]

with kF being the Fermi momentum and χL

χ0
L

the diamagnetic-

susceptibility ratio. The values of this ratio are tabulated in [30].
For the xc energy functional εxc in (2.13), we adopt the form

developed by Perdew and Wang [31] as

(2.17)εPW
xc (n, ζ ) = εx(rs, ζ ) + εc(rs, ζ ),
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where

(2.18)εx(rs, ζ ) = − 3

4πrs

[
9π

4

]1/3 [(1 + ζ )4/3 + (1 − ζ )4/3]
2

,

εc(rs, ζ ) = εc(rs,0) + αc(rs)
f (ζ )

f ′′(0)
(1 − ζ 4)

(2.19)+ [
εc(rs,1) − εc(rs,0)

]
f (ζ )ζ 4,

ζ = (n↑(r)−n↓(r))/n(r) is the spin polarization, rs = ( 3
4πn

)1/3

is the Wigner–Seitz radius, and the functions εc(rs,0), εc(rs,1),
and −αc(rs) are given in [31]. Note that the magnetic field de-
pendence on the correlation energy, which might affect the total
energies and spin configurations, is not taken into account in the
present formula.

3. Numerical methods and algorithms for the model
system

Since the three QDs and the magnetic field are cylindrically
symmetric, the wave function, the spin density, and the para-
magnetic current density can be represented as

(3.1)Ψq(r) = e−ilθφq(r, z), q ≡ {nlσ }

(3.2)nσ (r) = nσ (r, z) =
Nσ∑
q

∣∣φq(r, z)
∣∣2

,

(3.3)jp(r) = − h̄

m(r, z, εq)

N∑
q

l
∣∣φq(r, z)

∣∣2êθ ,

where n is the principal quantum number, l = 0,±1,±2, . . . ,
is the quantum number of the projection of angular momentum
onto the magnetic field axis, i.e. the z-axis and êθ is the az-
imuthal unit vector. The KS equations are then reduced to a 2D
problem in the (r, z) coordinates as

(3.4)Hlσ
KSφq(r, z) = εqφq(r, z),

where the KS Hamiltonian is now defined by

(3.5)Hlσ
KS = TS + TB + Vext + VB + VH + Vxc,

(3.6)TS(r, z) = − h̄2

2m(r, z, εq)

(
∂2

∂r2
+ 1

r

∂

∂r
− l2

r2
+ ∂2

∂z2

)
,

(3.7)TB(r, z) = e2B2r2

8m(r, z, εq)
+ h̄eBl

2m(r, z, εq)
.

In 2D setting, the solution domain for (3.4) is again expressed
by the same notation as that of 3D, that is, Ω = Ω InAs ∩
ΩGaAs ⊂ R2. We choose the domain ΩGaAs sufficiently large
so that the wave function is negligibly small at the bound-
ary of ΩGaAs. By symmetry, the domain Ω can be reduced to
Ω = {(r, z): 0 � r � rmax,−zmax � z � zmax} for sufficiently
large rmax > 0 and zmax > 0 as shown in Fig. 1.

The explicit formula for the potential Vxc(r) in (2.13) is ex-
tremely complex in 3D coordinates. Transforming it to the (r, z)

space is prohibitively lengthy and impractical. We use all the
original formulas (2.13)–(2.19) for calculating Vxc(r) in the 3D
space and then obtain the potential in the (r, z) coordinates, i.e.
Vxc(r, z) for (3.4).
Since we are dealing with the hard-wall confinement poten-
tial, the interface conditions of the wave function in (3.4) has to
be specifically imposed, namely,

(3.8)

{ 1
2m(r,z,εq )

Πφq(r, z) · n|Γ − = 1
2m(r,z,εq )

Πφq(r, z) · n|Γ + ,

φq(r, z)|Γ − = φq(r, z)|Γ + ,

where Γ denotes the interface between two materials, i.e. Γ =
Ω InAs ∩ ΩGaAs, n is an outward normal unit vector on the
boundary of ΩInAs, and Γ − and Γ + are the sets of limiting
points to the curve Γ from the interior and the exterior of ΩInAs,
respectively. The momentum operator Π is similarly defined
for the 2D case. The boundary conditions for (3.4) are

(3.9)

{
φq(r, z)|W− = φq(r, z)|W+ ,

φq(r, z) = 0, on S, E, N,

where W , S, E, and N denotes the west, south, east, and north
side boundaries of the domain Ω . Note that on the west side of
the boundary the values of the wave function are taken to be the
same for satisfying the continuity condition across W . In actual
implementation this condition is replaced by taking the values
of the two horizontal grid points adjacent to W as the same.
Moreover, to avoid numerical over-flow due to the term 1/r

in (3.6), we do not define unknowns at the grid points on W .
Note that the potential functions Vext(r) and VB(r) can be

directly reduced to the (r, z) space since these functions are
independent of the azimuthal coordinate. In real space approx-
imation, the Hartree potential VH (r) is usually calculated by
solving the Poisson equation [32]

(3.10)∇ · ε(r)∇VH (r) = − e2

4πε0
n(r).

By cylindrical symmetry, this equation can be written as

(3.11)

(
∂2

∂r2
+ 1

r

∂

∂r
+ 1

r2

∂2

∂θ2
+ ∂2

∂z2

)
VH (r, θ, z) = f (r, z),

(3.12)f (r, z) = − e2

4πε0εi

N∑
q

∣∣φq(r, z)
∣∣2

, for i = 1 or 2,

where ε1 = εInAs if (r, z) ∈ Ω InAs and ε2 = εGaAs if (r, z) ∈
ΩGaAs. By using the method of separating variables and substi-
tuting a solution of the form

(3.13)VH (r, θ, z) = VH (r, z)V (θ)

into (3.11), we have

V (θ)

(
∂2

∂r2
+ 1

r

∂

∂r
+ ∂2

∂z2

)
VH (r, z)

+ VH (r, z)
1

r2

∂2V (θ)

∂θ2
= f (r, z)

or

V (θ)r2

VH (r, z)

(
∂2

∂r2
+ 1

r

∂

∂r
+ ∂2

∂z2

)
VH (r, z)

(3.14)+ ∂2V (θ)

∂θ2
= r2

VH (r, z)
f (r, z).
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Obviously, by setting V (θ) = k where k is an arbitrary con-
stant, a function V

p
H (r, z) = kVH (r, z) satisfying the 2D Poisson

equation

(3.15)

(
∂2

∂r2
+ 1

r

∂

∂r
+ ∂2

∂z2

)
V

p
H (r, z) = f (r, z)

is a particular solution of (3.14) in view of a second or-
der nonhomogeneous ordinary differential equation with re-
spect to θ . The corresponding homogeneous general solution
is eikθV h

H (r, z) satisfying the Laplace equation

(3.16)

(
∂2

∂r2
+ 1

r

∂

∂r
+ ∂2

∂z2
− k2

r2

)
V h

H (r, z) = 0.

The general solution of the nonhomogeneous equation (3.14) is
therefore of the form

(3.17)
∑

k

eikθV h
H (r, z) + V

p
H (r, z).

In 2D setting, we also have similar interface conditions for Pois-
son’s problem (3.10), namely,

(3.18)

{
ε(r, z)∇V

p
H (r, z) · n|Γ − = ε(r, z)∇V

p
H (r, z) · n|Γ + ,

VH (r, z)|Γ − = VH (r, z)|Γ + .

Similarly, the boundary conditions for (3.10) are

(3.19)

{
V

p
H (r, z)|W− = V

p
H (r, z)|W+ ,

V
p
H (r, z) = 0, on S, E, N.

By imposing these boundary conditions to the general solu-
tion (3.17), we deduce that the particular solution V

p
H (r, z)

is in fact a general solution of (3.14) and thus of (3.11), i.e.
V h

H (r, z) = 0.
Note that for atomic systems the far side boundary condi-

tion of the Hartree potential is usually taken the values obtained
by using efficient multipole expansion techniques [33]. For our
model problem, the size of the domain is 180 × 180 nm2 which
in comparison with that of atomic systems is quite large and
hence the zero boundary condition for the potential on the far
side of the boundary is numerically feasible, see Section 4 be-
low for numerical evidence on the choice of the size.

We then use the standard finite difference method to approx-
imate our model problem. Since the mass in (2.3) and the Landé
factor of (2.12) are energy dependent, the KS equation (3.4) and
its interface and boundary conditions (3.8) and (3.9) will result
in a system of cubic eigenvalue equations

(3.20)
(
A0 + λA1 + λ2A2 + λ3A3

)
x = 0,

where the unknown eigenpair (λ,x) is an approximate solution
of (εq,φq) for some q . Starting from the Schrödinger equa-
tion, finite difference discretization, to the coefficient matrices
A0, A1, A2, and A3, a detailed derivation of a similar cubic
eigenvalue system is given in [24] for a single-particle quantum
dot model. Several Jacobi–Davidson methods are proposed and
compared in [25] for solving this type of eigenvalue problems.

Analogously, the Poisson equation (3.15) with its interface
and boundary conditions (3.18) and (3.19) leads to a system of
algebraic equations
(3.21)Ax = b,

where now the unknown vector x corresponds to the approxi-
mate values of VH (r, z) at the grid points.

We briefly describe our algorithm for the implementation of
the model system in CSDFT as follows:

Algorithm 1. A self-consistent method for the current spin den-
sity functional theory.

(1) Set VH = 0, Vxc = 0, and solve (3.20) for φ
(0)
q (r, z) with

σ =↑ and then with σ =↓ by using the cubic Jacobi–
Davidson method. Set k = 0. When B = 0, the first three
lowest energies correspond to n = 1 and l = 0,1,2. We
therefore must solve (3.20) six times. At each time, we
only seek for the smallest eigenpair. As for B = 15, the first
three lowest energies correspond to n = 1,2,3 and l = 0.
We thus solve (3.20) two times. At each time, we then seek
for the three smallest eigenpairs.

(2) Evaluate the electron densities n↑(r), n↓(r), n(r), and the
electron energies E

(k)
q . If the energies converge within an

error tolerance then stop. Otherwise, set k = k + 1.
(3) Solve (3.21) for the Hartree potential VH by using GMRES

[34].
(4) Evaluate Vxc via (2.13) and then solve (3.20) for the next

iterate φ
(k)
q (r, z). Go to (2).

There are several numerical issues deserved to be elaborated
due to the special formulation of the present model when com-
pared with the existing models of multielectronic systems of
QDs. The most prominent feature of the present model is the
nonparabolic dispersion relation used to define the effective
mass (2.3), the Landé factor (2.12), and the interface condi-
tion (3.8). As a result, the set of eigenvalues that interests us is
embedded in the interior of the spectrum of the eigenvalue prob-
lem (3.20) which is a nonsymmetric system. Moreover, with
some feasible magnetic fields, we expect to have degenerate
eigenstates due to the two identical smaller dots, i.e. the eigen-
value system is defective. In stead of using deflation scheme in
the JD solver [25], we extend the generalized Davidson method
of Crouzeix, Philippe, and Sadkane [35] to our cubic JD method
that allows us to compute several eigenpairs simultaneously and
to have a block implementation of Krylov subspaces and search
direction transformation. Our JD algorithm is summarized as
follows:

Algorithm 2. A cubic Jacobi–Davidson method.

(1) Choose an arbitrary orthonormal matrix V := [v1, . . . , vn]
and let K be a given integer that limits the dimension of
the basis of the subspace. Here n can be taken as 3 for six
electrons with spin-up and spin-down.

(2) Compute Wk = AkV and Mk = V ∗Wk , for k = 0,1,2,3,
where the matrices Ak are given in (3.20).

(3) For j = n, . . . ,K , do
(3a) Compute the eigenpairs of (θ3M3 + θ2M2 + θM1 +

M0)φ = 0 by solving the generalized linear eigen-
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value problem[ 0 I 0
0 0 I

M0 M1 M2

][
s

θs

θ2s

]

= θ

[
I

I

−M3

][
s

θs

θ2s

]

using the QZ algorithm [36].
(3b) Select the desired eigenpairs (θi, φi) with ‖φi‖2 = 1,

for i = 1, . . . , n.
(3c) For i = 1, . . . , n, compute the Ritz vectors ui = V φi ,

the residuals ri = A(θi)ui , and pi = A′(θi)ui , where
A(θi) := A0 + θiA1 + θ2

i A2 + θ3
i A3 and A′(θi) :=

A1 + 2θiA2 + 3θ2
i A3.

(3d) If ‖ri‖2 < Tol, for i = 1, . . . , n, then stop.
(3e) If K − j < n, then go to step (4).
(3f) For i = 1, . . . , n, do

• If ‖ri‖2 < Tol, then go to step (3f).
• Compute the correction t = −M−1

A ri + εM−1
A ,

where ε = u∗
i M

−1
A ri

u∗
i M

−1
A pi

and MA is a preconditioner (by

SSOR) of A(θi).
• Orthonormalize t against V by the modified Gram–

Schmidt (MGS) method.
• For k = 0,1,2,3, compute wk = Akt , Mk =[ Mk V ∗wk

t∗Wk v∗wk

]
.

• Expand V = [V, t] and Wk = [Wk,wk], for k =
0,1,2,3.

• Set j = j + 1.
(4) Use n Ritz vectors u1, . . . , un to create a new V :=

MGS(u1, . . . , un) and go to step (2) for restarting.

Note that the classical approach for dealing with the non-
linear matrix equation (3.20) is to transform the equation into
a generalized linear eigenvalue system with the matrix dimen-
sion of 3 times that of (3.20) and then solve the system by the
Lanczos or Arnoldi method. The matrix dimension of (3.20)
for the present QDM model is about 290 000. The JD method
described here instead solves the generalized linear eigenvalue
system in step (3a) in a much smaller subspace V . The ma-
trix dimension of the matrices Mi , i = 0,1,2,3, is about 50
in our numerical implementation. The matrix dimension of the
linearized system in step (3a) is thus about 150. The KS Hamil-
tonian (2.10) is based on the nonparabolic band structure ap-
proximation. If the Hamiltonian is based on the Kane’s original
form, the resulting eigenvalue problem will then be of linear
form but with the matrix dimension of 4 times that of (3.20).
The nonparabolic approximation thus reduces computational
efforts significantly at the cost of more delicate nonlinear eigen-
value systems.

4. Numerical results

For the proposed model, we first determine the size of the
domain in Fig. 1 by inspecting the rate of change of the first
three energy levels with respect to rmax = zmax. As shown in
Fig. 2. The effect of the domain size on the first three energies at B = 0.

Table 2
Energies for the nonparabolic and parabolic approximation at B = 0 in units
of eV

q = {nlσ } Nonparabolic Parabolic

{1,0,+1} 0.094673 0.086873
{1,1,+1} 0.102689 0.095749
{1,2,+1} 0.112039 0.106298

Fig. 2, the change of these energies around rmax = 180 nm and
beyond is relatively small. The following numerical results are
thus based on the domain with rmax = 180 nm.

We next present the important effect of the band nonpar-
abolicity. In Table 2, we observe that the energy differences
between the parabolic and nonparabolic dispersion relations
used in the Hamiltonian for zero magnetic field can be very
significant since the magnitudes are comparable with that of the
exchange energies as shown in Table 3. For the parabolic disper-
sion case, the effective mass in (2.2) is taken as m = 0.024m0.
In Tables 3 and 4, all energy components in (3.5) are separately
presented to indicate the magnitudes of the energies from vari-
ous effects. Here, the total ground-state energy E obtained via
the KS eigenvalues εq is defined by [16]

E =
N∑
q

Eq =
N∑
q

εq − 1

2

e2

4πε0ε(r)

∫ ∫
n(r)n(r′)
|r − r′| dr′ dr

−
∑
σ

∫
V σ

xc(r)n
σ (r)dr − e

c

∫
jp · Axc dr + Exc(n).

As stated above, our main concern for the present QDM
model is to show the state change of the electrons under the
influence of magnetic fields. The wave functions of the six
electrons originally occupying the lowest 3 energy states with
B = 0 as given in Table 3 are shown in the left panel of Fig. 3,
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Table 3
Energies at B = 0 in units of eV

q {1,0,+1} {1,1,+1} {1,2,+1}
Eq 0.094673 0.102689 0.112039
〈TS 〉 0.067484 0.075638 0.084511
〈TB 〉 0 0 0
〈Vext〉 0.019227 0.020536 0.022024
EB 0 0 0
1
2 〈VH 〉 0.015120 0.013653 0.012280
Ex −0.006772 −0.006753 −0.006398
Ec −0.000386 −0.000385 −0.000378

Table 4
Energies at B = 15 in units of eV E∗

q are energies based on the single-particle
Hamiltonian

q {1,0,+1} {2,0,+1} {3,0,+1} {1,0,−1} {2,0,−1} {3,0,−1}
E∗

q 0.103250 0.134668 0.134668 0.114840 0.146072 0.146072
Eq 0.113092 0.146387 0.147649 0.120784 0.153012 0.154220
〈TS 〉 0.078144 0.114168 0.113827 0.077302 0.113209 0.112880
〈TB 〉 0.008975 0.002510 0.002499 0.008889 0.002484 0.002473
〈Vext〉 0.017801 0.021184 0.021067 0.017713 0.021108 0.020994
EB −0.004436 −0.003913 −0.003877 0.004325 0.003832 0.003798
1
2 〈VH 〉 0.021932 0.026358 0.028058 0.021925 0.026359 0.028059
Ex −0.008884 −0.013414 −0.013418 −0.008877 −0.013419 −0.013422
Ec −0.000441 −0.000506 −0.000506 −0.000493 −0.000562 −0.000562

Fig. 3. Contour of KS orbitals at B = 0 (left panel) and B = 15 (right panel).

which clearly illustrates that the electrons are residing in the
central dot. For B = 15, we see that, corresponding to the
lowest 6 energy states as given in Table 4, each one of these
three dots contains two electrons for which their wave func-
tions are shown in the right panel of Fig. 3. Note that three-
dimensional wave functions can be easily illustrated from these
two-dimensional wave functions via the formula (3.1).

Accuracy of the exchange energies can be verified by the
ratio between the absolute values of 1

2 〈VH 〉 and Ex , which is
about 2 for two-electron atoms [37]. It has been theoretically
shown in [38] that this ratio is exactly equal to 2 for a two-
electron model for which the xc energy and xc potential can
be determined exactly in an external harmonic potential. From
Tables 3 and 4, the ratio is approximately 2.

Finally, we remark that the essential physics of this study,
namely the state change of electrons in QDM under the influ-
ence of magnetic field as such indicated by Fig. 3, can also be
simulated by means of a much simpler model, e.g., the single-
particle Hamiltonian with parabolic band structure (i.e., con-
stant effective mass approximation). However, the numerics of
the computed energies can be quite different from that of the
present model as shown by the numbers in the second and third
rows in Table 4. Moreover, we may obtain degenerate states
such as {2,0,+1} and {3,0,+1} under the single-particle pic-
ture, which obviously is incorrect. In addition to the effect of
the model in use, the state change is significantly governed by
the QDM dimensions as given in Fig. 1 so that we can attain
the electronic behavior as shown in Fig. 3. These dimensions
are also experimentally feasible [9].

5. Conclusion

A new mathematical model that incorporates the nonpar-
abolic energy dispersion relation and realistic hard-wall finite
confinement potential into the many-body Hamiltonian in the
current spin density functional theory in 3D setting is pro-
posed. It is used to study the electronic properties of a quantum
dot molecule that consists of three vertically aligned semicon-
ductor quantum dots (one large central dot and two smaller
identical dots) under the influence of magnetic fields. A new
Jacobi–Davidson method is given to solve the cubic eigenvalue
problem resulting from finite difference approximation due to
the nonparabolic nature of the effective mass. It is shown that
the effect of band nonparabolicity can be very significant in the
sense that the energy difference between the parabolic and non-
parabolic cases is comparable with that of exchange energies
in multielectronic system. Furthermore, we show that six elec-
trons residing in the large central dot at zero magnetic field can
be changed to such that each dot contains two electrons with
some feasible magnetic field.

This paper is intended to describe mathematical aspects of
the model and to present preliminary physical results only on
the Kohn–Sham orbitals and detailed energy components with
two different magnetic fields. Following this more realistic
and accurate model, there are many interesting physical phe-
nomena such as capacitance, optical and transport properties,
Wigner crystallization, Aharonov–Bohm oscillation, and quan-
tum Hall effect can be further investigated for semiconductor
nanostructures in three dimensional space. In particular, with an
additional electric control, we expect to have an energy selec-
tive mechanism to manipulating excitonic states of two closely
spaced QDMs so that a strong coherent dipole–dipole coupling
can be achieved and hence the Förster–Dexter resonant energy
transfer between QDMs can be realized to motivate a new para-
digm of Fermionic qubits for quantum computing in solid-state
systems.
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