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Abstract Given a hypergraph with at most d positive edges, identify all positive
edges with the minimum number of tests each of which tests on a subset of nodes,
called a pool, and the outcome is positive if and only if the pool contains a positive
edge. This problem is called the group testing in hypergraphs, which has been found
to have many applications in molecular biology, such as the interactions between
bait proteins and prey proteins, the complexes of eukaryotic DNA transcription and
RNA translation. In this paper, we present a general construction for constructions of
nonadaptive algorithms for group testing in hypergraphs.
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1. Introduction

Given a set of n items with at most d positive ones, identify all positive items with less
number of tests; each test is on a subset of items, called a pool, and the test outcome
has two possibilities, positive and negative. The positive outcome means that the pool
contains at least one positive item and the negative outcome means that the pool does
not contain any positive item. This problem is called group testing. The group testing
has been studied since 1943 (Dorfman, 1943). It has applications in many areas, such
as medical testing, multi-channel, computer networks (Du and Hwang, 2006), and
especially in molecular biology, e.g., DNA library screening (D’ychkov et al., 2001;
Farach et al., 1997; Wu et al., 2004), physical mapping, contig sequencing, and gene
detection (Du and Hwang, 2006). Motivated from some applications in molecular
biology, a new model, group testing in complex have been promoted and has been
studied extensively (Macula et al., 2000, 2004; Torney, 1999; Triesch, 1996).

In the complex model of group testing, the positive outcome of a testing on a pool
is usually due to the combination effect of several items rather than an individual item.
That is, given n items and a collection of at most d positive subsets, the problem is to
identify all positive subsets with less number of tests. Each test is on a pool. The test
outcome is positive if and only if the pool contains a positive subset.

The group testing in complex is a special case of the group testing in hyper-
graph. The latter is as follows: Given a hpergraph H with at most d positive edges,
identify all positive edges with less number of tests. Each test is on a pool, i.e.,
a subset of nodes. The test outcome is positive if and only if the sub-hypergraph
induced by the pool contains a positive edge. In the complex model of group test-
ing, all items form the node set and all suspected subsets of nodes form the edge
set.

An algorithm for group testing is nonadaptive if all tests are arranged in a single
round, that is, no information on test outcomes is available for determining the pool of
another test. It has been very well-known that compared with sequential group testing,
the nonadaptive group testing usually takes a short time with a little more number
of tests. However, for applications in molecular biology, nonadaptive group testing is
promoted due to the time-consuming of each test.

An algorithm for nonadaptive group testing can be represented by a binary incidence
matrix. Its columns are labeled with all vertices and its rows are labeled with all
pools. The cell (i, j) contains an 1-entry if and only if the i th pool contains the j th
vertex. The binary incidence matrix M of a nonadaptive algorithm for group testing
in a hypergraph H is d(H )-disjunct if for any d + 1 edges E0, E1, . . . , Ed of H ,
there exists a row, or say a pool, containing E0, but not E1, . . . , Ed . A d(H )-disjunct
matrix can identify all positive edges in a sample with at most d positive edges in a
very simple way that an edge is negative if and only if it is contained in a negative
pool.

There exist several constructions of nonadaptive algorithms for group testing in
hypergraph (Du and Hwang, 2006). Each construction is usually for a certain class
of hypergraphs. In this paper we give a general construction of d(H )-disjunct matrix
for any hypergraph H by extending a construction of Du et al. (2004) for transversal
designs.
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2. Main results

A binary matrix M is said to be (d; c)(H )-disjunct for a hypergraph H if M is the
incidence matrix of H and for any d + 1 edges E0, E1, . . . , Ed of H , there exists
at least c rows, or say c pools, each containing E0, but not E1, . . . , Ed . Clearly, the
(d; 1)(H )-disjunctness is equivalent to the d(H )-disjunctness. A (d; c)(H )-disjunct
matrix can be used to identify d positive edges even if up to c − 1 test outcomes contain
errors. To seek generality, We will construct (d; c)(H )-disjunct matrices instead of
d(H )-disjunct matrices.

Consider a hypergraph H = (V, E) satisfying condition that there do not exist two
edges E and E ′ in H such that E ⊂ E ′ or E ′ ⊂ E . Let G F(q) be a finite field of
order q. For each vertex v ∈ V , we associate it with a polynomial pv of degree k − 1
over G F(q). Thus, each edge E in E would associate with a subset of polynomials of
degree k − 1 over G F(q), PE = {pv | v ∈ E}.

Let S be a subset of s elements in G F(q). First, we construct a s × |E | matrix
AH (q, k, s) with row labels in S and column labels in E . Each cell (x, E) contains a
subset of elements in G F(q), {pv(x) | vinE}.

Theorem 1. Let r denote the maximum cardinality of an edge in E . Suppose
s ≥ rd(k − 1) + c. Then AH (q, k, s) has the property that for any d + 1 columns
C0, C1, . . . , Cd, there exists at least c rows at each of which the entry of C0 does not
contain the entry of C j for all j = 1, 2, . . . , d.

Proof: Suppose to the contrary that such c rows do not exist. Then among any c
rows, there exists a row such that the entry of C0 contains the entry of C j for some
j ∈ {1, 2, . . . , d}. This means that there exist at least rd(k − 1) + 1 rows at each of
which the entry of C0 contains the entry of C j for some j ∈ {1, 2, . . . , d}. Thus, there
exists a j ∈ {1, 2, . . . , d} such that entries of C0 contain corresponding entries of C j

at least r (k − 1) + 1 rows. Let E0 and E j be edges associated with columns C0 and
C j , respectively. Then PE0

(x) ⊇ PE j (x) for at least r (k − 1) + 1 distinct values of x
where PE (x) = {p(x) | p ∈ PE }. Since |E0| ≤ r , for any u ∈ E j , there exists v ∈ E0

such that pu(x) = pv(x) for at least k distinct values of x . It follows pu = pv . Hence,
PE0

⊇ PE j . This means that E0 ⊇ E j , contradicting our assumption on H . �

Now, we construct a d(H )-disjunct matrix BH (q, k, s) from AH (q, k, s).
BH (q, k, s) has |V | columns labeled with all nodes of H . For each row x of AH (q, k, s)
and each entry F in row x , we construct a row with label < x, F > for BH (q, k, s)
as follows: Put an 1-entry in cell (< x, F >, v) if pv(x) ∈ F , and put a 0-entry in cell
(< x, F >, v), otherwise.

Theorem 2. Let r denote the maximum cardnality of an edge in E . Suppose s ≥
rd(k − 1) + c. Then BH (q, k, s) is (d; c)(H )-disjunct.

Proof: Consider d + 1 edges E0, E1, . . . , Ed of H . By Theorem 1, AH (q, k, s) has c
rows x1, x2, . . . , xc such that the entry F in cell (xi , E0) does not contain the entry at
cell (xi , E j ) for all j = 1, 2, . . . , d . This means that the row < xi , F > of BH (q, k, t)
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corresponds to a pool which contains E0, but not E j for all j = 1, 2, . . . , d. Therefore,
BH (q, k, s) is (d; c)(H )-disjunct. �

Suppose H has m edges and n vertices. For existence of AH (q, k, s), q, k, s and n
must satisfy the following conditions:

s ≤ q (1)

since there must exist at least s row labels, and

n ≤ qk (2)

since there must exist at least n column labels. By Theorem 2, for BH (q, k, s) to have
(d; c)(H )-disjunctness, it suffices to have

s ≥ dr (k − 1) + c. (3)

From (1), (2) and (3), we can obtain the following

Theorem 3. There exists a (d; c)(H )-disjunct matrix BH (q, k, t) with

q ≤ (2 + o(1))
d log2 n

log2(d log2 n)
.

Moreover, BH (q, k, t) has at most q(q + 1)r rows.

Proof: The proof is similar to an analysis in Du et al. (2004). �
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