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Abstract—Diagnosing counterexamples with error traces has acted as one of the most critical steps in functional verification.

Unfortunately, error traces are normally very lengthy such that designers need to spend considerable effort to understand them. To

alleviate the designers’ burden for debugging, we present a SAT-based algorithm for reducing the lengths of error traces. The

algorithm performs the paradigm of the binary search algorithm to halve the search space recursively. Furthermore, it applies a novel

theorem to guarantee gaining the shortest lengths for the error traces. Based on the optimum algorithm, we develop two robust

heuristics to handle real designs. Experimental results demonstrate that our approaches greatly surpass previous work and, indeed,

have promising solutions.

Index Terms—Verification, simulation, diagnosis, error checking, satisfiability.

Ç

1 INTRODUCTION

EMPLOYING assertions [1], [2] to ensure functional correct-
ness on hardware designs has increasingly become a

dominant methodology to surmount today’s verification
obstacles. Assertion-based verification (ABV) benefits not
only from enhancing design observability, but also from
reducing debugging time. In general, the ABV process is
comprised of three phases: writing assertions, detecting
violation of assertions, and debugging errors. To efficiently
discover the counterexamples of the assertions, ABV
operates different kinds of verification technologies to
collaborate. As a rule, these technologies include random/
pseudorandom simulation, symbolic fixed-point computa-
tion [3], and SAT-based bounded model checking [4].

Once the verification engines detect a counterexample,

designers need to diagnose it to find the causes of the error.

In ABV, a counterexample is simply an error trace that lists

a set of states in a design. Such a set of states forms a

specific path that ends at a state violating an assertion.

Ideally, designers can quickly locate the faulty portions of

the design by simulating the error trace and viewing the

waveform. In practice, however, an error trace may be fairly

lengthy such that understanding a counterexample con-

tinues to be a very difficult task, usually requiring

considerable effort.
In this paper, we present an algorithm that is intended to

reduce the lengths of error traces. The benefits for compacting

error traces are twofold. First, since human effort is, so far, the

chief approach to debugging counterexamples, we believe

that the compact error traces will greatly assist designers in

reasoning through the errors easily. Second, after compacting

an error trace, designers may obtain another different

counterexample for the same assertion. Through the addi-
tional counterexample, designers may thus learn more
information about the bugs and thus improve the efficiency
for diagnosing functional errors.

1.1 Problem Formulation

Given a synchronous sequential design with a global reset
signal, we define a state of the design as a combination of
the values of all sequential elements. Theoretically, each
state contains specific information about the design.

Assume an initial state in a design is the state while the
reset signal is active. Then, we define an error trace as a
sequence of distinct states starting at the initial state and
ending at an error state, where the error state is a state that
has some properties violating an assertion. The length of an
error trace is the number of edges from the initial state to
the error state. Since the states in an error trace are distinct,
the length of an error trace is simply the number of states
minus one. Given an original error trace with the length n,
the goal of the error trace compaction problem is to find
another error trace with the same error state and having a
shorter length n0 < n.

Fig. 1 illustrates an example of error traces. Fig. 1a
pictures the state transition diagram, and Fig. 1b shows that
the original error trace takes 13 cycles in Fig. 1a, that is,
n ¼ 13, from the initial state S0 to the error state S14.
Clearly, based on Fig. 1a, we can identify several compact
error traces whose lengths are smaller than 13. Fig. 1c and
Fig. 1d show two examples of compact error traces, where
Fig. 1d is the shortest one in the design.

1.2 Previous Work

Previous work has seldom addressed the error trace
compaction problem. In the VLSI testing area, many
proposed approaches focus on compacting test vectors [5],
[6]. They attempt to compact the lengths of test vectors
while keeping the fault coverage unchanged. Nevertheless,
the major intention of the error trace compaction problem is
to reduce the lengths of the error traces while preserving the
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same error states. Hence, the work of test compaction is
orthogonal to our goal.

In [7], Chen and Chen present two algorithms, named
CET1 and CET2, for compacting error traces. They suppose
that the counterexamples are all generated by random/
pseudorandom simulation and, thus, the error traces must
consist of many redundant states. Based on such assump-
tion, CET1 and CET2 first attempt to find unique states in an
original error trace. Then, CET1 begins to build a connected
graph among those unique states. To fulfill this manipula-
tion, it applies BDDs-based one-cycle image computation to
each state. After the connected graph is ready, CET1 then
performs Dijkstra’s shortest path algorithm [8] to obtain the
shortest error trace in the graph. Similarly to CET1, CET2
still uses Dijkstra’s algorithm. However, CET2 embeds the
procedure of building connected graph into Dijkstra’s
approach. Such a step benefits CET2 by avoiding building
unnecessary state connections. Consequently, the lengths of
compact error traces are the same in both CET1 and CET2,
while CET2 gains more runtime efficiency.

The major flaw in CET1 and CET2 is that they only apply
limited distinct states to create the connected graph and,
therefore, the solution space is confined to those states.
Specifically, the results obtained by CET1 or CET2 are only
the local optimum solutions. If the unique states in the
original error trace are insufficient, then both algorithms
may possibly gain no improvement after the compaction.

1.3 Our Approach

Instead of identifying the shortest path among the limited
distinct states, we present a SAT-based algorithm that takes
the binary search paradigm to find the global optimum
solution. In general, a binary search oriented algorithm
contains two traits: First, the algorithm must have a specific

partitioning criterion such that it can halve the solution
space at each recursion; second, the algorithm must have a
particular termination condition to end the search. In our
approach, we apply two theorems to meet both require-
ments. For the partitioning criterion, Theorem 1 provides a
hint to check if the length of the shortest path for an error
trace is larger or smaller than the half of the original length.
Based on this theorem, our algorithm can eliminate half of
the solution space and then search the rest iteratively. For
the termination condition, Theorem 2 elaborates on how to
determine the shortest path between two distinct states in a
design. With the theorem, our algorithm can cease the
binary checking process and then obtain the shortest length
for the error state.

By elegantly utilizing Theorem 1 and Theorem 2, our
algorithm not only compacts error traces effectively but also
identifies the optimum solutions. Through the manipula-
tion of the method, designers may earn numerous profits to
increase their debugging performance.

1.4 Paper Organization

The remainder of this paper is organized as follows: We state
preliminaries in Section 2. In Section 3, we elaborate two
theorems and then present our optimum algorithm. To
demonstrate the effect of our approach, we present experi-
mental results in Section 4. Moreover, we develop two robust
heuristics for handling real designs in Section 5. Finally, we
give the conclusions and future work in Section 6.

2 PRELIMINARIES

We model a synchronous sequential design as a finite state
machine (FSM) M. Assume each M has a reset input that
can transfer any states in M into the initial state. The state
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trace, and (d) another compact error trace with the shortest length.



transition graph of an FSM, STGðMÞ, is a directed graph
ðV ;EÞ, where each vertex v 2 V corresponds to a state in M
and each edge e 2 E corresponds to a state transition
between two states. A self-transition state is a state that has
an edge transfer from the state to itself. Apparently, the
initial state in M is a self-transition state.

Given an STGðMÞ, we define the following two

functions that will be used in our algorithm. We implement

both procedures by the SAT-solvers.

Definition 1. The procedure WALKðk; u; vÞ is a query function,

where k is a natural number, and u; v 2 V in the STGðMÞ.
WALKðk; u; v) is true when there exists a succession of

k directed edges in STGðMÞ, starting at vertex u and ending

at vertex v. Otherwise, it is false.

Definition 2. The procedure PATHðk; u; vÞ is a query function,

where k is a natural number, and u; v 2 V in the STGðMÞ.
PATHðk; u; vÞ is true when there exists a succession of

k directed edges in STGðMÞ, starting at vertex u and ending

at vertex v, and all vertices on these edges are distinct.

Otherwise, it is false.

As an example, consider the STGðMÞ depicted in Fig. 1a.

The function WALKð4; S0; S2Þ is true because the following

state transition exists: S0 ! S0 ! S0 ! S0 ! S2. However,

PATHð4; S0; S2Þ is false since there do not exist four distinct

states from S0 to S2. On the other hand, both functions

WALKð3; S0; S14Þ and PATHð3; S0; S14Þ are true due to the

transition S0 ! S1 ! S15 ! S14.

3 OPTIMUM ERROR TRACE COMPACTION

ALGORITHM

In this section, we detail how we come up with our error

trace compaction algorithm. Since the algorithm attempts to

apply the binary search paradigm, we first present two

theorems to satisfy the requirements for the paradigm.

Then, we give the entire pseudocode for our algorithm and

prove the reason why the algorithm acquires the optimum

solution.

3.1 Halving the Solution Space

Given an original error trace with the length n, are there any

methods to know if the length of the shortest path from the

initial state to the error state is either between 1 and n=2 or

between ððn=2Þ þ 1Þ and n? Theorem 1 [9] provides a hint

on the question.

Theorem 1. Given an STGðMÞ with two vertices u; v 2 V . If u

is a self-transition state, then the following equation holds:

WALKðk; u; vÞ $ PATHð1; u; vÞ [ PATHð2; u; vÞ [ . . .

[ PATHðk; u; vÞ:

Correspondingly, the negation of both sides also holds:

:WALKðk; u; vÞ $ :PATHð1; u; vÞ \ :PATHð2; u; vÞ \ . . .

\ :PATHðk; u; vÞ:

Proof. Based on the basic graph theory, we have

WALKðk; u; vÞ ! PATHð1; u; vÞ [ PATHð2; u; vÞ [ . . .

[ PATHðk; u; vÞ:
ð1Þ

On the other hand, assume PATHðm;u; vÞ is true, where

m is between 1 and k; then, we can create a transition of

distance m from u to v. Moreover, since u is a self-

transition state, we can create a transition of distance

ðk�mÞ from u to itself. Next, if we concatenate the above

two transitions, we can create a transition of distance

ðk�mÞ þm ¼ k from u to v and such a transition

suggests that WALKðk; u; vÞ is true by definition. In

short, if PATHðm;u; vÞ ¼ true, where 1 � m � k, then

WALKðk; u; vÞ ¼ true. Based on the above deduction, we

have the following set of equations:

PATHð1; u; vÞ !WALKðk; u; vÞ
PATHð2; u; vÞ !WALKðk; u; vÞ
. . .

PATHðk; u; vÞ !WALKðk; u; vÞ:

Consequently, we acquire the following formula:

PATHð1; u; vÞ [ PATHð2; u; vÞ [ . . .

[ PATHðk; u; vÞ !WALKðk; u; vÞ:
ð2Þ

According to (1) and (2), we prove Theorem 1. tu
Theorem 1 suggests that the function WALKðk; u; vÞ

decides whether the length of the shortest path from u to

v is larger or smaller than k. Such a decision ability

enables us to discard half of the solution space for the

error trace compaction problem. The following elaborates

on how it works.
Consider an error trace with the initial state u, the error

state v, and the original length n. Apparently, the length n

for the path from u to v implies the following equation:

WALKðn; u; vÞ ¼ true:

According to Theorem 1, the above equation implies that

at least one of the following equations holds (1 � k � n):

PATHð1; u; vÞ ¼ true

PATHð2; u; vÞ ¼ true

. . .

PATHðk; u; vÞ ¼ true

9>>>=
>>>;
ðIÞ

PATHðkþ 1; u; vÞ ¼ true

. . .

PATHðn� 1; u; vÞ ¼ true

PATHðn; u; vÞ ¼ true

9>>>=
>>>;
ðIIÞ:

Obviously, to find the shortest path from u to v, we can

directly identify the above PATH functions from 1 to n

sequentially. However, such a brute force method is very

inefficient. Therefore, we intend to apply the binary search

manner to discover which PATH function is true and has

the smallest length.
To realize the location for the length of the shortest path

from u to v, we divide the above equations into two groups.
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Group (I) stands for the path of length between 1 and k and

group (II) represents the path of length between ðkþ 1Þ andn.

Next, we attempt to halve the solution space by checking

the function WALKðk; u; vÞ. If WALKðk; u; vÞ is true,

Theorem 1 ensures that at least one of the equations in

group (I) holds. That is, the length of the shortest path from

u to v is guaranteed to be between 1 and k. To the contrary,

in case WALKðk; u; vÞ is false, then none of the equations in

group (I) holds. However, recall that the original length n

from u to v suggests that at least one of the equations in (I)

and (II) holds. Thus, we comprehend that at least one of the

equations in group (II) holds. In other words, the length of

the shortest path from u to v is guaranteed to be between

ðkþ 1Þ and n.

Apparently, if we let k be the midpoint of n, k ¼ n=2, then,

through the use of checking WALKðn=2; u; vÞ, we narrow

down the range for the location of the length of the shortest

path from u to v. Take Fig. 1b as an example. Since the original

length n ¼ 13, we can check WALKð13=2; S0; S14Þ or

WALKð6; S0; S14Þ to decide the location for the length of

the shortest path. Based on Fig. 1a, the answer to the

function is true; therefore, we realize that the length of the

shortest path from S0 to S14 is between 1 and 6.

3.2 Terminating the Search

By recursively checking the WALK function, we lessen the

solution space step by step. However, we still need to know

when to terminate the searching process to determine the

actual shortest path. Theorem 2 states such a condition.

Theorem 2. Given an STGðMÞ with two vertices u; v 2 V ,

where u is a self-transition state. If the following two equations

hold:

WALKðk� 1; u; vÞ ¼ false

WALKðk; u; vÞ ¼ true;

then the length of the shortest path from u to v is exactly k.

Proof. Based on Theorem 1, if WALKðk; u; vÞ is true,

then at least one of the following functions:

PATHð1; u; vÞ, PATHð2; u; vÞ, . . . , PATHðk� 1; u; vÞ,
or PATHðk; u; vÞ is true. Nevertheless, the equation

WALKðk� 1; u; vÞ ¼ false means that all of the

following functions: PATHð1; u; vÞ;PATHð2; u; vÞ; . . . ,

and PATHðk� 1; u; vÞ are false. Thus, if both equations

WALKðk� 1; u; vÞ ¼ false and WALKðk; u; vÞ ¼ true oc-

cur at the same time, we infer that the equation

PATHðk; u; vÞ ¼ true is the only factor to cause

WALKðk; u; vÞ to be true. It implies that the length of

the shortest path from u to v is exactly k. tu

Theorem 2 clearly describes the condition for determin-

ing the shortest distance of an error trace between the initial

state u and the error state v. With the support of Theorem 1

and Theorem 2, we develop our optimum error trace

compaction algorithm in the following section.

3.3 The Optimum Algorithm

Fig. 2 depicts the pseudocode of our error trace compaction

algorithm. It accepts three inputs: the initial state IS, the error

stateES, and the original lengthn. First, the algorithm assigns

the values for two variables,LB andUB, which, respectively,

represent the lower bound and the upper bound for the length

of the shortest path from IS toES. Afterward, the codes from

line 4 to line 10 perform the key operation of the binary search.

At each recursion, the algorithm sets the midpoint MP

between LB and UB. Then, it checks WALKðMP; IS;ESÞ to

halve the solution space. If the function is true, the shortest

distance from IS toES must be equal to or smaller thanMP .

Thus, the algorithm will replace UB with MP . To the

contrary, if the function is false, the shortest distance from

IS to ES must be larger than MP and, hence, the algorithm

will replace LB with MP . Finally, if the difference between

UB andLB is just one, the loop terminates and the algorithm

prints the shortest path and returns UB as the shortest

distance from IS to ES.
We explain the reason why the algorithm shown in Fig. 2

guarantees to acquire the optimum solution. For every UB at

each recursion in line 7, WALKðUB; IS;ESÞ ¼ true. Further-

more, for each LB in line 9, WALKðLB; IS;ESÞ ¼ false.

Whenever the termination condition in line 6 holds,

ðUB� LBÞ ¼ 1, both of the following equations hold at

the same time:

WALKðLB; IS;ESÞ ¼ false

WALKðUB; IS;ESÞ ¼ true:

Since LB is equal to ðUB� 1Þ, the above situation

satisfies Theorem 2 and UB is absolutely the shortest

distance from IS to ES.
We take the error trace example illustrated in Fig. 1b to

demonstrate our algorithm. In the beginning, we set IS to

S0, ES to S14, and n to 13. Then, we have the following

recursions:
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Step 1: LB ¼ 0; UB ¼ 13; then MP ¼ ð0þ 13Þ=2 ¼ 6:
WALKð6; S0; S14Þ ¼ true; then reassign UB ¼ 6:

Step 2: LB ¼ 0; UB ¼ 6; then MP ¼ ð0þ 6Þ=2 ¼ 3:
WALKð3; S0; S14Þ ¼ true; then reassign UB ¼ 3:

Step 3: LB ¼ 0; UB ¼ 3; then MP ¼ ð0þ 3Þ=2 ¼ 1:
WALKð1; S0; S14Þ ¼ false; then reassign LB ¼ 1:

Step 4: LB ¼ 1; UB ¼ 3; then MP ¼ ð1þ 3Þ=2 ¼ 2:
WALKð2; S0; S14Þ ¼ false; then reassign LB ¼ 2:

Step 5: LB ¼ 2; UB ¼ 3; then ðUB� LBÞ ¼ 1: Return UB:

After Step 5 finishes, we learn that the shortest distance
from S0 to S14 is UB ¼ 3. Furthermore, through the SAT-
solver, the algorithm outputs the shortest error trace that is
just as Fig. 1d pictures.

On the whole, the benefits of the algorithm are twofold.
First, it guarantees to obtain the optimum solution, that is, it
identifies the shortest path from the initial state to the error
state in the design. Second, given the original length n of an
error trace, the algorithm performs the WALK function only
log2ðnÞ times due to the binary search manner. Such a
number of operation times gives a promising effect on the
error trace compaction problem.

4 EXPERIMENTAL RESULTS

To demonstrate the effectiveness of our algorithm, we
implemented it in C++ and employed the Chaff [10]
package as the underlying SAT-solver for the WALK
function. Moreover, we also implement the CET2 algorithm
[7] presented in Section 1.2 for comparison. Note that,
unlike the original CET2 algorithm which employs BDDs,
we implement it by the SAT-solver to handle large designs.
Basically, such a change may influence the runtime.
Nevertheless, the lengths of compact error traces are still
the same with our implementation.

We conducted the previous work CET2 and our optimum
algorithm over some ITC-99 and ISCAS-89 benchmarks. All
experiments were run on an AMD Athlon 64 3500+ work-
station with 2GB main memory. Table 1 lists the funda-
mental information for these designs, where the first three
columns display the names, the number of sequential
elements, and the number of gates separately. The fourth

column, titled “Sequential Depth,” shows the sequential
depths for every design. We use the approach presented in
[11] with 5,000 seconds time limit to calculate the values,
while the empty cells indicate that the sequential depth is
not available within the limited runtime. In general, the
sequential depth of a design means the largest length of all
shortest paths starting from the initial state to any other
reachable states. Hence, given any error traces, the shortest
distances from the initial state to the error states must be
equal to or smaller than the sequential depth. With the
information of the sequential depths, we can prove that our
algorithm certainly obtains the optimum solutions.

Table 2 presents the results for the error trace compac-
tion. For each design, we generate three error traces by
using the semiformal verification engine presented in [12].
Moreover, we preprocess all error traces such that the states
on each error trace are distinct. The second and third
columns in Table 2 give the names and the original lengths
of the error traces. The fourth, fifth, and sixth columns show
the results obtained by the CET2 algorithm. Specifically, the
fourth column presents the compact lengths of error traces
and the fifth column shows the corresponding run time in
seconds. To evaluate the effectiveness of the algorithm, the
sixth column presents the percentage of reduction ratio, that
is, the ratio of the reduced length to the original one. The
higher the reduction ratio is, the better the operation the
algorithm performs. Note that the 0 percent reduction ratio
means the compact length is the same as the original one.

Similarly, the seventh, eighth, and ninth columns in
Table 2 present the compact length, the runtime, and the
reduction ratio obtained by our algorithm. The rightmost
column, titled “IMP,” gives the percentage of the improve-
ment from the CET2 algorithm to our algorithm. It
calculates the difference from the values shown in the
ninth column to the ones shown in the sixth column.

Based on Table 2, we see the following features for our
algorithm. First, the compact results obtained by our
algorithm are extremely superior to those by CET2. For
example, for circuits b09, b04, and s6669, CET2 could not
reduce any lengths for the original error traces. On the
contrary, our algorithm achieved at least 60 percent
reduction for the three circuits. For b04, s3271, and s6669,
our algorithm even improved over 90 percent reduction.
The major reason for the great improvement is because our
algorithm can globally search the entire state spaces, while
CET2 can just explore limited distinct states in the original
error traces.

Second, compared to the sequential depths shown in the
fourth column in Table 1, our algorithm indeed gained the
shortest distance for each error trace. In other words, the
results shown in the eighth column are all equal to or
smaller than the sequential depths. As an example, b04 has
the sequential depth 8 and the reduced lengths for b04-1,
b04-2, and b04-3 are 8, 7, and 7, which certainly satisfies our
deduction. Similarly, for b03, s1269, s3271, s3330, and s5378,
the reduced results by our algorithm justify Theorem 2.

Third, our algorithm may become inefficient when
handling complex circuits with very lengthy error traces.
Take s5378-3 as an example. Although our algorithm
acquired the shortest length 36, it took over 90,000 seconds.
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Generally, such a flaw is due to the limit of the SAT-solvers.

For example, since the original length of s5378-3 is 607, the

first step in our algorithm is to solve WALKð607=2; IS; ESÞ,
or WALKð303; IS; ESÞ. The length 303 in the WALK

function means the SAT-solver has to solve 303 time-frame

expansions for s5378, which is 303 times the gate count for

the original circuit. Therefore, how to improve the efficiency

while preserving promising results has become an impor-

tant task.

5 TWO ROBUST HEURISTICS FOR ERROR TRACE

COMPACTION

Due to the limited capability of the SAT-solvers, our optimum

algorithm can suffer from difficulty when handling lengthy

error traces in complex designs. In this section, we present
two robust heuristics to overcome the shortage of the
optimum algorithm. Although the heuristics cannot guar-
antee to obtain the shortest lengths for the error traces,
experimental results demonstrate that they can still acquire
incredible results within acceptable runtime.

5.1 Bounded Compaction

The first heuristic is bounded compaction. That is, we
confine the maximum k value for the WALK function in
binary search algorithm. Fig. 3 shows the pseudocode of the
approach.

In Fig. 3, the algorithm inputs the vector of the state
sequence for the original error trace, named ET_Vec, where
the first element ET_Vec[0] represents the initial state and
the last element ET_Vec[n] represents the error state.
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Moreover, the algorithm inputs the length n of the original

error trace and a specific upper bound, named BounD.

Initially, the approach sets ET_Vec[0] as the source state Src.

Then, it sets the Index value for ET_Vec to identify the

destination state Dest ¼ ETV ec½Index�. Afterward, the

heuristic calls the OETC-BIN-SEARCH procedure at line

6, which is just the optimum algorithm shown in Fig. 2.

Since the maximum input length for the optimum proce-

dure is limited to BounD, the approach ensures efficiency

for runtime.
To clearly explain the loop from line 4 to line 13 in Fig. 3,

we use Fig. 4 to show the concept. In the beginning, Fig. 4a

presents the first Index for the destination state, Si. The

distance between the initial state and Si is just BounD. Then,

the heuristic performs OETC-BIN-SEARCH to obtain the

compact length L0 from the source state Src to the

destination state Dest, which is shown in Fig. 4b. Note that

L0 is the shortest distance between Src and Dest. Now, the

value of L0 and the location of the Index determine three

different cases:

1. If L0 is smaller than BounD and the location of
Index is not the error state, then the heuristic will
update the Index value by the equation
Index ¼ Indexþ ðBounD� L0Þ, as shown at line 10
in Fig. 3. Next, the approach attempts to identify
another destination state, Sj, to operate the OETC-
BIN-SEARCH procedure again. Fig. 4c shows the
case where the distance between Si and Sj must be
ðBounD� L0Þ.

2. If L0 is equal to BounD, then the loop shown in Fig. 3
will terminate and the reduced length from the
initial state to the error state will be L0 plus
ðn� IndexÞ. Fig. 4d illustrates this case.

3. If Index just indicates the error state, as shown at
line 7 in Fig. 3, then L0 will be the optimum solution.
That is, L0 is the shortest length from the initial state
to the error state. Fig. 4e depicts the case.

In short, Fig. 4d and 4e present two possible results after

applying the heuristic.

We take an example shown in Fig. 5 to go through the

approach. In Fig. 5, the original length of the error trace is

24; the initial state and the error state are S0 and S24,

respectively. If we let the BounD value be 10, the bounded

compaction heuristic will undergo the following steps:
Step 1: Src ¼ S0, Index ¼ 10, Dest ¼ S10. We obtain

L0 ¼ 6.
Step 2:

Index ¼ Indexþ ðBounD� L0Þ ¼ 10þ ð10� 6Þ ¼ 14:

Step 3: Src ¼ S0, Index ¼ 14, Dest ¼ S14. We obtain

L0 ¼ 2.
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Step 4:

Index ¼ Indexþ ðBounD� L0Þ ¼ 14þ ð10� 2Þ ¼ 22:

Step 5: Src ¼ S0, Index ¼ 22, Dest ¼ S22. We obtain
L0 ¼ 10.

Step 6: Since L0 is equal to BounD, we obtain

n0 ¼ L0 þ ðn� IndexÞ ¼ 10þ ð24� 22Þ ¼ 12:

Finally, we compact the error trace shown in Fig. 5 from
the original length 24 to the reduced length 12.

5.2 Dynamic Divide and Conquer

The second heuristic is the dynamic divide-and-conquer
approach. Intuitively, divide and conquer is the natural way
to cope with the problem of error trace compaction. That is,
we can partition the original error trace into several parts
and then each part can be handled separately and
efficiently.

Fig. 6 shows the concept of the divide-and-conquer
heuristic. For each divided segment, we apply the bounded
compaction heuristic (see Fig. 3 and Fig. 4) to gain the
reduced length. Initially, as indicated in Fig. 6a, we use the
bounded compaction approach to reduce the segment L1 to
the length BounD from the initial state to the destination
state Sk1. As described in Fig. 4d, the length L1 is
determined by the location of the Index value. In other
words, the length of each divided segment is dynamically
determined.

Next, we intend to compact the rest portion, i.e., the
segment between the state Sk1 and the error state. We set
the state Sk1 as the first element of ET_Vec and the error
state as the last element of ET_Vec. In other words, we
attempt to apply the bounded compaction heuristic to cope
with the error trace starting at Sk1 and ending at the error
state. Fig. 6b depicts the result of this compaction, where the
segment L2 is reduced to the length BounD from Sk1 to the
destination state Sk2.

Accordingly, if we recursively handle the rest portion,
we can finally obtain the compaction shown in Fig. 6c.
Moreover, as Fig. 4e illustrates, the length of the last
segment must be reduced to L0. If there are k segments
generated in the dynamic divide-and-conquer heuristic,
then the length of the compact error trace will be
ðBounD � ðk� 1ÞÞ þ L0.

All in all, unlike the typical divide-and-conquer ap-

proach which partitions the solution space statically, our

approach divides the segments of the original error trace

dynamically. Each segment is handled one after another.

Thus, the dynamic divide-and-conquer heuristic amplifies

the power of the bounded compaction approach.
Although elegant, the dynamic divide-and-conquer

heuristic still has an issue when applying the bounded

compaction approach. Specifically, if the first element of

ET_Vec is not a self-transition state, then Theorem 1 and

Theorem 2 will not hold and, hence, the OETC-BIN-

SEARCH procedure shown in Fig. 2 and Fig. 3 cannot

operate. In such a situation, we need to use the sequential

search-based algorithm for the bounded compaction heur-

istic. Fig. 7 and Fig. 8 depict the pseudocode of the

approach.
In Fig. 7, all the codes are the same as those shown in Fig. 3,

except for two parts: line 1 (BOUND-COMPACTION-SEQ)

and line 6 (OETC-SEQ-SEARCH). At line 6, the procedure
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Fig. 5. An example of operating the bounded compaction approach.

Fig. 6. The dynamic divide-and-conquer approach.



OETC-SEQ-SEARCH operates the sequential search-based

algorithm for compacting error traces. Fig. 8 illustrates
such procedure. By employing the sequential search-based
bounded compaction heuristic, we can perform the dy-
namic divide-and-conquer approach whether ET_Vec[0] is a

self-transition state or not.
In the end, we apply Fig. 9 to summarize the dynamic

divide-and-conquer approach. In Fig. 9, segments L1 and L3

can be handled by the binary search-based method,
BOUND-COMPACTION-BIN, since the initial state and

the intermediate state Sk2 are self-transition states. On the
other hand, segments L2 and L4 must be handled by the
sequential search-based method, BOUND-COMPACTION-
SEQ, since neither the state Sk1 nor Sk3 is a self-transition

state.

5.3 Experimental Results

We implemented the two heuristics in C++. To demonstrate
their efficiency, we first conducted the largest error trace in
Table 2—s5378-3. Table 3 summarizes the results, where the
first six columns record the data of CET2 and the optimum

algorithm, named OETC. The seventh column, entitled
“BounD,” stands for the parameter used in the two
heuristics. In this experiment, the BounD value ranged
from 10 to 50.

The eighth, ninth, and tenth columns present the

reduced lengths, the runtime, and the reduction ratio by

applying the bounded compaction heuristic. For
BounD ¼ 10, we see that, although the approach took very
little runtime (17.71 seconds), it acquired a very low reduction
ratio. However, as the BounD value increases, the reduction
ratio augments accordingly. When BounD ¼ 50, the ap-
proach even obtained the optimum solution, while it just took
about 300 seconds (316.10 seconds).

Similarly, Table 3 also presents the reduced length, the
runtime, and the reduction ratio by applying the dynamic
divide-and-conquer heuristic. Since the approach iteratively
employs bounded compaction, the results were superior to
those obtained by bounded compaction, although it con-
sumed more runtime. However, the time used in the
approach was still much less than that of CET2 and OETC.

Furthermore, when BounD ¼ 50, the dynamic divide-
and-conquer method operated with the same runtime as the
bounded compaction approach. This is because the first
divided segment in the dynamic divide-and-conquer
method can handle the state sequence from the initial state
to the error state and, hence, no additional part can be
handled further.

Next, we conducted a real design to evaluate the
effectiveness of our heuristics. The design, named SCPU,
is a subset of a microprocessor. It contains 1,638 sequential
elements and 37,464 gates. In this experiment, we generated
10 error traces for compaction. Moreover, the maximum
runtime was limited to 100,000 seconds and the BounD
value used in the two heuristics was 30. Table 4 shows the
comparison of the results of the four methods (CET2, OETC,
Bounded Compaction, and Dynamic Divide and Conquer).
The empty cells indicate that the results were not available
within the runtime limit.
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Fig. 7. The bounded compaction approach by applying the sequential

search manner.

Fig. 8. The sequential search-based optimum error trace compaction

algorithm.

Fig. 9. Handling divided segments the in dynamic divide-and-conquer approach.



Obviously, the CET2 and OETC approaches cannot finish

the 10 tasks of SCPU. OETC only finished the smallest task

even though the result is guaranteed to be the shortest length.

For CET2, although it handled more tasks, it contributed no

improvement to error trace compaction since all the finished

tasks acquired 0 percent reduction ratio.
Unlike CET2 and OETC, the bounded compaction heur-

istic, as well as the dynamic divide-and-conquer approach,

completed all 10 error traces of SCPU. In fact, the bounded

compaction method even finished the 10 tasks within 30,000

seconds. However, the performance of the bounded compac-

tion method is not very desirable. For the error trace S-006, S-

009, and S-010, the bounded compaction heuristic just

obtained no more than 10 percent reduction ratio.
On the other hand, the dynamic divide-and-conquer

approach acquired an incredible reduction ratio for each

compaction. The major reason, as described in Fig. 6, is

because the dynamic divide-and-conquer method can

further compact the portion that the bounded compaction

approach cannot handle.

6 CONCLUSIONS AND FUTURE WORK

We have presented an optimum algorithm that takes the

paradigm of binary search for compacting error traces. The

algorithm not only ensures log2ðnÞ number of operations,

but also guarantees to gain the shortest length from the

initial state to the error state. Based on the algorithm, we

also present two robust and practical heuristics to handle

real designs. Although not optimum, experimental results

truly show that our approaches outperform prior work. We

believe that, through the manipulation of our approaches,

designers can earn numerous profits to increase their

debugging performance. Future work will concentrate on

developing more powerful heuristics to speed up the

compaction. Moreover, applying other symbolic techniques

to enhance the efficiency can be another practical issue.
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TABLE 3
Experimental Results of Applying Heuristics to s5378-3

TABLE 4
Comparison of the Four Error Trace Compaction Methods
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