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On the Distribution of the Inverted

Linear Compound of Dependent

F-Variates and its Application to the

Combination of Forecasts

KUO-YUAN LIANG�, JACK C. LEE�� & KURT S.H. SHAO†

�Polaris Research Institute and Department of Economics, National Taiwan University, Taiwan,
��National Chiao Tung University, Taiwan, †Polaris Research Institute, Taiwan

ABSTRACT This paper establishes a sampling theory for an inverted linear combination of two
dependent F-variates. It is found that the random variable is approximately expressible in terms
of a mixture of weighted beta distributions. Operational results, including rth-order raw moments
and critical values of the density are subsequently obtained by using the Pearson Type I
approximation technique. As a contribution to the probability theory, our findings extend Lee &
Hu’s (1996) recent investigation on the distribution of the linear compound of two independent
F-variates. In terms of relevant applied works, our results refine Dickinson’s (1973) inquiry on
the distribution of the optimal combining weights estimates based on combining two independent
rival forecasts, and provide a further advancement to the general case of combining three
independent competing forecasts. Accordingly, our conclusions give a new perception of
constructing the confidence intervals for the optimal combining weights estimates studied in the
literature of the linear combination of forecasts.

KEY WORDS: Combining weights, critical values, error-variance minimizing criterion, inverted
F-variates, Pearson Type I approximation

Introduction

In this paper, we study the distribution of an inverted linear compound of dependent

F-variates in the form:

1

1þ a1F1(T , T)þ a2F2(T , T)
(1)

with degrees of freedom as indicated. Here, the two constants a1 and a2 lie in the

interval (0,1]. This distribution is useful in constructing confidence intervals of the
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minimum variance weights that can be attached to the components of the linear com-

posite forecasts.

From Reid (1969), Dickinson (1973) or Newbold & Granger (1974), it is well known

that given a history of unbiased forecast errors for k (k � 2) models, under the error-

variance minimizing criterion, the optimal weighting vector (W) of the combined

forecasts becomes

W ¼

P�1 u

u0
P�1 u

(2)

where u is a (k � 1) vector of ones and
P

a (k � k) positive definite covariance matrix of

forecasting errors between the k models.

It is worth noting that despite the popularity of equation (2), very little is known about

the sampling properties of its estimator. A notable exception to this issue is the work of

Dickinson (1973). When k ¼ 2, based on the maximum likelihood estimator (S) of
P

with zero off-diagonal elements and normally distributed forecasting errors, Dickinson

(1973) demonstrated that each component of the estimated weight vector Ŵ is expressible

as a weighted beta or beta (if homoscedasticity is further imposed) distribution.

Although the combining procedure may involve more than two competing forecasts, we

will restrict our attention to the k ¼ 3 set-up with
P

having zero off-diagonal elements

and normally distributed forecasting errors only. This proves necessary as use of the

general k � k set-up is technically difficult. Our restricted set-up hence extends the

initial work of Dickinson (1973).

From the statistical viewpoint, a corollary of Dickinson’s (1973) result is that an

inverted F-variate of the form: 1
1þaF(T , T)

where a is an arbitrary constant, is expressible

as a weighted beta (if a , 1) or as a beta (if a ¼ 1) distribution, i.e.,

1

1þ aF(T , T)
� weighted beta (3)

Another relevant theoretical contribution to our investigation is the work of Lee & Hu

(1996). According to them, an arbitrary linear combination of two independent F-variates

can be expressed approximately as a suitable constant (c) times an F density function, i.e.,

a1F(u1, u2)þ a2F(u1, u2) _� cF(m1, m2) (4)

where m1 and m2 are two positive constants.

Using the restricted set-up (detailed above), this paper derives the sampling distribution

of the estimated combining weights. To achieve this goal, we begin in the next section

with a reformulation of equation (2) by replacing
P

with S, and show that each estimated

weight is an inverted linear compound of dependent F-variates. We then relax the indepen-

dence assumption on equation (4), and demonstrate in the third section that an expression

of the right-hand side of equation (4) approximately still holds. Using this result and

random variables transformation techniques, we also show in the third section that the

distribution of an inverted linear compound of dependent F-variates of equation (1) is

approximately expressible in terms of a mixture of weighted beta distributions. Addition-

ally, we conduct extensive simulations to assess the accuracy of these approximations. Our

results thus generalize those of Lee & Hu (1996) as well as Dickinson (1973). A notable

implication of our theoretical results to the equal weighting scheme is elaborated as well.

962 K.-Y. Liang et al.
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Owing to the complexity of the derived distribution, the fourth section presents several

operational results, including rth-order raw moments and critical values of the density

based on the Pearson Type I approximation technique (Johnson et al., 1963). The fifth

section summarizes our findings and indicates future research directions.

Model and Related Results

Consider equation (2) in the restricted case where
P
¼ diag(s11, s22, s33). In practice,

the parameters sii are unknown, and
P

is estimated by:

S ¼ diag

PT
t¼1 e2

1t

T
,

PT
t¼1 e2

2t

T
,

PT
t¼1 e2

3t

T

 !

where eit is the error in the tth forecast value, using the ith forecasting method. Assuming

eit to be normally distributed with zero mean and variance sii, the maximum likelihood

estimator of T
P

is given by:

TS ¼ diag
XT

t¼1

e2
1t,
XT

t¼1

e2
2t,
XT

t¼1

e2
3t

 !
: (5)

It follows that:

XT

t¼1

e2
it � siix

2(T) (6)

From above, the ith weight in equation (2) is estimated by:

ŵi ¼
1=
PT

t¼1 e2
it

1=
PT

t¼1 e2
1t

� �
þ 1=

PT
t¼1 e2

2t

� �
þ 1=

PT
t¼1 e2

3t

� � , i ¼ 1, 2, 3 (7)

Based on equation (7), each estimated weight can thus be written as an inverted linear

compound of dependent F-variates of the form stated in equation (1). For example,

equation (7) implies that another expression for the first estimated weight is:

ŵ1 ¼
1

1þ
PT

t¼1 e2
1t=
PT

t¼1 e2
2t

� �
þ

PT
t¼1 e2

1t=
PT

t¼1 e2
3t

� � (8)

Using equation (6) in equation (8), we can conclude that:

ŵ1 �
1

1þ a1F1(T , T)þ a2F2(T , T)
(9)

with degrees of freedom as indicated, and a1 ¼ s11=s22, a2 ¼ s11=s33 are two positive

constants. Comparing this set-up with equation (1), we see that s11 � s22 and s11 �

s33 are assumed here for illustrational convenience. Similar expressions for ŵ2 and ŵ3

can also be readily derived. Since
PT

t¼1 e2
1t appears in the second and third denominator

terms of the right-hand expression of equation (8), it can be shown, that if T . 4 these

Distribution of the Inverted Linear Compound of Dependent F-Variates 963
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two F-variates are indeed dependent and their correlation is given by:

corr(F1, F2) ¼
T � 4

2(T � 1)
(10)

See Appendix A.1 for the proof.

Theorems, Simulations and Implications

Having verified the dependency between F1 and F2 in equation (10), we now turn our

attention to the problem of finding the probability density of its linear compound of

a1F1(T , T) and a2F2(T , T). As the following result indicates, this linear compound can

be approximated by a constant (h) times an F(m1, m2) variate, with the degrees of

freedom as indicated.

Theorem 1

a1F1(T , T)þ a2F2(T , T) _� hF(m1, m2) (11)

where the right-hand expression of equation (11) comes from the denominator of equation

(9), and the parameters h, m1 and m2 can be expressed in explicit forms in terms of a1, a2

and T. Specifically (Lee & Hu, 1996),

h ¼
2A2C � 2AB2

A2Bþ 3AC � 4B2

m1 ¼
4A2C � 4AB2

AB2 � 2A2C þ BC

and

m2 ¼
2A2Bþ 6AC � 8B2

A2Bþ AC � 2B2
(12)

where

A ¼
(a1 þ a2)T

T � 2

B ¼
T(T þ 2)

T � 2

a2
1 þ a2

2

T � 4
þ

2a1a2

T � 2

� �

C ¼
T(T þ 2)(T þ 4)

(T � 2)(T � 4)

a3
1 þ a3

2

T � 6
þ

3a2
1a2 þ 3a1a2

2

T � 2

� �
(13)

and T . 6.

Similar to Lee & Hu (1996), we conduct an extensive simulation study to assess the

accuracy of this approximation. The results of our study are summarized in Table 1.

In the simulation, we conduct 15,000 runs for each linear compound of the form

a1F1(T , T)þ a2F2(T , T) and compute the probabilities of exceeding the 1%, 5% and

10% points. From Table 1, we see that the approximation to the assigned probability

964 K.-Y. Liang et al.
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(a) in the right-hand tail of the listed linear compound of dependent F-variates is generally

quite accurate.

By virtue of Theorem 1, ŵ1 in equation (9) can thus be reasonably approximated by:

ŵ1 _� 1

1þ hF(m1, m2)
(14)

Likewise, similar expressions for ŵ2 and ŵ3 can be obtained. Using the approximations

derived in equation (14), we are ready to apply the variable transformation techniques

to derive the probability density of f (ŵi) (i ¼ 1, 2, 3).

Theorem 2

Let eit(i ¼ 1, 2, 3; t ¼ 1, 2, . . . , T) be the error in the tth forecast value using the ith fore-

casting model. Assume at a particular point of time, e0 ¼ (e1t, e2t, e3t) � N(0,
P

) withP
¼ diag(s11, s22, s33), then under the error-variance minimizing criterion, the distri-

bution of the ith optimal combining weight estimator ŵi is approximately a mixture of

beta random variables with the probability density function of the form:

f (ŵi) ¼
(1� b)m2=2

B(m2=2, m1=2)

X1
j¼0

C
mþj�1
j bjB

m2

2
þ j,

m1

2

� �
Beta

m2

2
þ j,

m1

2

� �h i
(15)

where C
mþj�1
j ¼

(mþj�1)!
j!(m�1)!

, b ¼ 1� hm2

m1
, B(p, q) is a beta function and Beta(p, q) is a beta

density function with parameters p, q, respectively.

Proof

For the proof see Appendix A.2.

The following two theorems show that the condition jbj , 1 is sufficient for the integr-

ability of f (ŵi) over (0,1], the satisfaction of
Ð 1

0
f (ŵi)dŵi ¼ 1, and the existence of the rth

order raw moment.

Table 1. Simulated results for Theorem 1

Linear compound

Tail probability

a ¼ 0.01 a ¼ 0.05 a ¼ 0.1

F1(10,10)þ F2(10,10) 0.0101 0.0510 0.1019

F1(10,10)þ 0.5F2(10,10) 0.0101 0.0510 0.1024

0.3F1(10,10)þ 0.01F2(10,10) 0.0106 0.0491 0.0994

0.7F1(10,10)þ 0.01F2(10,10) 0.0103 0.0493 0.0993

0.9F1(10,10)þ 0.01F2(10,10) 0.0097 0.0491 0.1000

F1(10,10)þ 0.01F2(10,10) 0.0098 0.0500 0.0984

0.9F1(10,10)þ 0.7F2(10,10) 0.0106 0.0507 0.1039

0.9F1(30,30)þ 0.01F2(30,30) 0.0098 0.0493 0.0978

F1(30,30)þ 0.01F2(30,30) 0.0098 0.0493 0.0972

Table entries are the simulated probabilities in the right-hand tail of the listed linear compound of

dependent F-variates.

Distribution of the Inverted Linear Compound of Dependent F-Variates 965
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Theorem 3

If jbj , 1, then
Ð 1

0
f (ŵi)dŵi ¼ 1.

Proof

For the proof see Appendix A.3.

Theorem 4

If jbj , 1, then the rth-order raw moment of f (ŵi) exists.

Proof

For the proof see Appendix A.4.

A notable implication of the condition jbj , 1 is elaborated as follows. Suppose the

matrix
P

in equation (2) is further restricted to
P
¼ diag(s11, s22, s33) and

s11 ¼ s22 ¼ s33. It would immediately appear that this case would generate

w1 ¼ w2 ¼ w3 ¼ 1=3. The case in which each forecast receives equal weight is of particu-

lar interest, because it may be reasonable in many realistic applications.

More specifically, the usual rationale for the equal weighting scheme is as follows. First,

‘if (a) there is only a small data base and/or (b) the error covariance structure is not

stationary’ (Bunn, 1986, p. 152), then specifying
P

as an unrestricted real symmetric

positive definite matrix tends to cause the robustness problems due to poor estimation

of its elements. A resolution is therefore suggested to specify the matrix
P

in our

restricted setup as diag(s11, s22, s33). Second, if no information is known or no reason

to believe a priori on the relative accuracy of the competing forecasts, an even more

extreme response is to further impose the constraint s11 ¼ s22 ¼ s33 into the above diag-

onal setting and utilize the equal weighting scheme (Bunn, 1986).

This extreme case means that a1 ¼ a2 ¼ 1 in equation (9). Substituting a1 ¼ a2 ¼ 1 for

b in equation (15) and using the condition jbj , 1 produces:

0 ,
4(T � 6)(3T2 � 10T � 10)

(T � 2)(3T2 � 16T þ 28)
, 2

Significantly, the above inequality holds only when T ¼ 7,8,9. Therefore, as a practical

matter, the existing conditions of f (ŵi) and its rth-order moment in this particular equal

weighting scheme are extremely hard to satisfy. A cautious approach is suggested when

applying this method, where other sources also share this view (Bunn, 1986; Winkler &

Clemen, 1992)

Theorem 4 gives the following corollary.

Corollary 1

Each rth-order moment of f (ŵi) is expressible as a monotonically decreasing sequence.

Proof

For the proof see Appendix A.5

To check the validity of the properties expressed in Theorems 2, 3, 4 and Corollary 1,

the raw moments of ŵi up to the fourth-order with sample sizes 10, 30 and 100 are studied

966 K.-Y. Liang et al.
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separately. Because each of the three weights studied leads to similar conclusions, only the

numerical results of the first weight (w1) are reported in Table 2. Three important points

are noted as follows. First, for each reported inverted linear compound with three different

sample sizes, the condition jbj , 1 is satisfied. For example, for the case, 1/(1þ 0.7

F1þ 0.01 F2) with sample sizes 10, 30, and 100, jbj ¼ 0:5804, 0:4999, and 0.4971,

respectively. Second, the numerical results are consistent with Corollary 1, displaying a

monotonically decreasing sequence pattern. Third, all E(ŵ1) entries have a downward

bias, i.e. E(ŵ1) ¼ E(1=1þ a1F1 þ a2F2) , (1=1þ a1 þ a2) ¼ w1. However, the magni-

tude of this downward bias shrinks as the sample size increases, implying that ŵ1 tends

to be asymptotically unbiased for w1.

Pearson Type I Approximation

Although the density of ŵi has been derived in the previous section, the critical values for

interval estimation and hypothesis testing purposes are still extremely hard to obtain.

However, since the moments are available, we can approximate the distribution of ŵi

by the Pearson type I distribution which is defined as (Lee & Hu, 1996)

f (x) ¼ ½b(aþ 1, bþ 1)(s1 � s0)aþbþ1�
�1(x� s0)a(s1 � x)b

where s0 � x � s1, a, b [ R.

Table 2. w1 and the raw moments of ŵ1 up to the fourth-order

ŵ1 w1 Eŵ1 Eŵ2
1 Eŵ3

1 Eŵ4
1

Sample size 10

1/(1þ 0.02F1þ 0.01F2) 0.970874 0.964700 0.931100 0.899077 0.868543

1/(1þ 0.002F1þ 0.001F2) 0.997009 0.996307 0.992634 0.988980 0.985345

1/(1þ 0.3F1þ 0.01F2) 0.763359 0.744231 0.567644 0.441612 0.349256

1/(1þ 0.7F1þ 0.01F2) 0.584795 0.576654 0.354011 0.228156 0.152900

1/(1þ 0.9F1þ 0.01F2) 0.523561 0.520868 0.293674 0.156437 0.095475

1/(1þ F1þ 0.01F2) 0.497512 0.497211 0.269679 0.156437 0.095745

1/(1þ 0.9F1þ 0.7F2) 0.384618 0.382487 0.162398 0.075405 0.037481

1/(1þ F1þ 0.5F2) 0.400000 0.397275 0.174562 0.083274 0.042524

Sample size 30

1/(1þ 0.02F1þ 0.01F2) 0.970874 0.968968 0.939000 0.910054 0.882093

1/(1þ 0.002F1þ 0.001F2) 0.997009 0.996798 0.993607 0.990427 0.987259

1/(1þ 0.3F1þ 0.01F2) 0.763359 0.756860 0.577213 0.443337 0.342773

1/(1þ 0.7F1þ 0.01F2) 0.584795 0.584420 0.346758 0.210638 0.130330

1/(1þ 0.9F1þ 0.01F2) 0.523561 0.522624 0.281083 0.155174 0.087736

1/(1þ F1þ 0.5F2) 0.497512 0.497424 0.255416 0.134998 0.073263

Sample size 100

1/(1þ 0.02F1þ 0.01F2) 0.970874 0.970324 0.941556 0.913665 0.886626

1/(1þ 0.3F1þ 0.01F2) 0.763359 0.761404 0.581016 0.444323 0.340508

1/(1þ 0.7F1þ 0.01F2) 0.584795 0.583922 0.343273 0.203130 0.120970

1/(1þ 0.9F1þ 0.01F2) 0.523561 0.523275 0.276255 0.147106 0.078992

1/(1þ F1þ 0.5F2) 0.497512 0.497487 0.249945 0.126783 0.064911

Distribution of the Inverted Linear Compound of Dependent F-Variates 967
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Table 3. Critical values for ŵ1 based on the Pearson Type I approximation

Tail Probability a

ŵ1 w1 a ¼ 0.005 a ¼ 0.01 a ¼ 0.025 a ¼ 0.05 a ¼ 0.95 a ¼ 0.975 a ¼ 0.99 a ¼ 0.995

Sample size 10

1/(1þ 0.3F1þ 0.01F2) 0.763359 0.361607 0.406223 0.470608 0.524328 0.902542 0.918216 0.932646 0.940401

1/(1þ 0.7F1þ 0.01F2) 0.584795 0.185902 0.223393 0.279248 0.327863 0.810466 0.849467 0.892380 0.920052

1/(1þ F1þ 0.5F2) 0.497512 0.125202 0.142536 0.171396 0.199804 0.625318 0.668873 0.717642 0.749386

Sample size 30

1/(1þ 0.02F1þ 0.01F2) 0.970874 0.934439 0.939205 0.945599 0.950575 0.982675 0.984428 0.986272 0.987420

1/(1þ 0.3F1þ 0.01F2) 0.763359 0.584444 0.598797 0.614514 0.642355 0.860101 0.874330 0.888617 0.896978

1/(1þ 0.7F1þ 0.01F2) 0.584795 0.348087 0.371800 0.405815 0.435148 0.721016 0.744503 0.770518 0.787430

Sample size 100

1/(1þ 0.02F1þ 0.01F2) 0.970874 0.954803 0.956636 0.959200 0.961292 0.978035 0.979237 0.980566 0.981427

1/(1þ 0.3F1þ 0.01F2) 0.763359 0.651932 0.664615 0.682600 0.697790 0.814163 0.821643 0.829568 0.834512

Table entries are the critical values with the probability a lying beneath.
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In order to utilize the Pearson Type I approximation, we need the first four moments of

ŵi, which can be obtained as demonstrated numerically in Table 2. Let m ¼ E(ŵi),

mh ¼ E(ŵi � m)h, h ¼ 2, 3, 4 and b1 ¼ m2
3=m

3
2, b2 ¼ m4=m

2
2. Then the Pearson Type I dis-

tribution requires that 6þ 3b1 � 2b2 . 0, b2 � b1 � 1 . 0.

Instead of computing from the density directly, we will make use of the tables produced

by Johnson et al. (1963). For this purpose, we need the following double entry interpola-

tions. Linear interpolation is often possible for b2, while second differences are needed forffiffiffiffiffi
b1

p
. This procedure allows us to interpolate first for b2 at each of the nearest four values

of
ffiffiffiffiffi
b1

p
. Furthermore, it also tabulates first x�1, x0, x1, x2, and finally to interpolate forffiffiffiffiffi

b1

p
, using the formula

x(u) ¼ (1� u)x0 þ ux1 �
1

4
u(1� u)½D2x0 þ D2x1�

where u is the appropriate fraction in the tabular interval.

Based on the Pearson Type I approximation, as briefed above, Table 3 gives critical

values of ŵ1 with a ¼ 0:005, 0:01, 0:025, 0:05, 0:95, 0:975, 0:99, 0:995 for several

cases considered in Table 2. In reference to Table 3, two major results emerged. First,

by picking up a ¼ 0:025 and a ¼ 0:975, it can be seen that with sample sizes 10, 30

and 100 the 95% interval estimates of w1 for ŵ1 ¼ 1=(1þ 0:3F1 þ 0:01F2) lie in the

interval [0.470608, 0.918216], [0.614514, 0.874330] and [0.6826, 0.821643], respect-

ively. Most importantly by using the data in Table 3, the same method also applies to

the construction of interval estimates of w1 based on particular ŵ1 and distinctive width

considerations. Second, as expected, we note that, under the preassigned percentage, the

larger are the sample sizes the narrower are the interval weight estimates.

Conclusions

Among methods of combining forecasts (Liang, 1992), the formula (2) proposed by

Reid (1969), Dickinson (1973) or Newbold & Granger (1974) is perhaps the single

most extensively used measure of the optimal weights. Despite the popularity of this

formula, very little is known about the sampling properties of its estimator. Although

Dickinson (1973) has studied this issue, it only dealt with the combination of two fore-

casts exhibiting no covariance between their errors. Dickinson (1973, p. 259) also men-

tioned that ‘[t]he exact derivation of confidence intervals for the weights . . . of the

combined forecasts is extremely complex when more forecasts, or covariance

between errors, are introduced’.

In this paper, attention has been directed mainly to the combination of three forecasts

exhibiting no covariance between their errors. With normally distributed forecasting

errors, we show that each estimated weight is expressible as an inverted linear com-

pound of dependent F-variates and has approximately a mixture of weighted beta

distributions.

Operational results, including rth-order raw moments and critical values of the

density are subsequently obtained by using the Pearson Type I approximation tech-

nique. As a contribution to the probability theory, our findings extend Lee & Hu’s

(1996) recent investigation on the distribution of the linear compound of two indepen-

dent F-variates. In terms of relevant applied works, our results refine Dickinson’s

(1973) inquiry on the distribution of the optimal combining weights estimates based

on combining two independent rival forecasts, and provide a further advancement to

the general case of combining three independent competing forecasts. Accordingly,
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this paper gives a new perception of constructing the confidence intervals for the

optimal combining weights estimates studied in the literature of the linear combination

of forecasts. A cautious approach is also suggested when applying the popular equal

weighting combining method, because the existing conditions of f (ŵi) and its

rth-order moment are practically very hard to satisfy.

In this paper, we have enlarged the forecasting error covariance matrix from Dickinson’s

(1973) 2 � 2 diagonal setting to 3 � 3. We strongly hope that this can serve as a stepping

stone into the studies based on the more general formulation of the matrix.

Appendix: Proofs

Appendix A.1. Proof of equation (10)

Suppose X1, X2 and X3 are three independent chi-square distributed random variables with

T degrees of freedom. By independence, we have

fX1X2X3
(x1,x2,x3) ¼ fX1

(x1)fX2
(x2)fX3

(x3)

Using the following transformations of variables

F1 ¼
X1

X2

, F2 ¼
X1

X3

, F3 ¼ X1

we obtain the joint probability density function of F1, F2 and F3

fF1F2F3
(f1, f2, f3) ¼

1

½G(T=2)�32ð3T=2Þ
f
�ðT=2Þ�1
1 f

�ðT=2Þ�1
2 f

ð3T=2Þ�1
3 e�(1þð1=f1Þþð1=f2Þ)f3=2Þ,

and the joint probability density function of F1 and F2

fF1F2
¼

G(3T=2)

½G(T=2)�3
f
�ðT=2Þ�1
1 f

�ðT=2Þ�1
2

(1þ ð1=f1Þ þ ð1=f2Þ)
ð3T=2Þ

It is easy to verify that

E(F
rj

j ) ¼
G(T=2þ rj)G(T=2� rj)

½G(T=2)�2
, 8rj [ N

and

E(Fr1

1 Fr2

2 ) ¼
G(T=2þ r)G(T=2� r1)G(T=2� r2)

½G(T=2)�3
, r ¼ r1 þ r2

Hence,

E(Fj) ¼
T

T � 2
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E(F2
j ) ¼

T(T þ 2)

(T � 2)(T � 4)

E(F1F2) ¼
T(T þ 2)

(T � 2)2

and

cov(F1, F2) ¼
2T

(T � 2)2

var(Fj) ¼
4T(T � 1)

(T � 2)2(T � 4)

corr(F1, F2) ¼
T � 4

2(T � 1)

Appendix A.2. Proof of Theorem 2

Since

ŵi �
1

1þ a1F1 þ a2F2

_� 1

1þ hF(m1, m2)

we have the following approximate probability density function of ŵi

f (ŵi) ¼
(1� b)m2=2

B(m2=2, m1=2)

ŵ
ðm2=2Þ�1
i (1� ŵi)

ðm1=2Þ�1

(1� bŵi)
m

Using a negative binomial expansion we can express f (ŵi) as

f (ŵi) ¼
(1� b)m2=2

B(m2=2, m1=2)

X1
j¼0

C
ðmþjÞ�1
j bjŵ

ðm2=2Þþðj�1Þ
i (1� ŵi)

ðm1=2Þ�1

or alternatively as

f (ŵi) ¼
(1� b)m2=2

B(m2=2, m1=2)

X1
j¼0

C
ðmþjÞ�1
j bjB

m2

2
þ j,

m1

2

� �
Beta

m2

2
þ j,

m1

2

� �h i

Appendix A.3. Proof of Theorem 3ð1

0

f (ŵi)dŵi ¼

ð1

0

(1� b)ðm2=2Þ

B(m2=2, m1=2)

X1
j¼0

C
mþj�1
j b jB

m2

2
þ j,

m1

2

� �
Beta

m2

2
þ j,

m1

2

� �" #
dŵi

Distribution of the Inverted Linear Compound of Dependent F-Variates 971

D
ow

nl
oa

de
d 

by
 [

N
at

io
na

l C
hi

ao
 T

un
g 

U
ni

ve
rs

ity
 ]

 a
t 0

1:
29

 2
6 

A
pr

il 
20

14
 



¼ (1� b)m2=2
X1
j¼0

C
ðmþjÞ�1
j bj B(ðm2=2Þ þ j, m1=2)

B(m2=2, m1=2)

� 	

Consider a non-negative infinite series anf g, and let

R ¼ lim sup
n!1

anþ1

an












If R , 1, then anf g is absolutely convergent, by the ratio test (Apostol, 1974, p.173).

By the previous theorem, with

R ¼ lim sup
n!1

m2 þ 2n

2þ 2n
b










 ¼ jbj

if R ¼ jbj , 1, then

ð1

0

f (ŵi)dŵi ¼ 1

Appendix A.4. Proof of Theorem 4

E(ŵr
i ) ¼

ð1

0

ŵr
i f (ŵi)dŵi

¼ (1� b)m2=2
X1
j¼0

C
ðmþjÞ�1
j bj B(ðm2=2Þ þ r þ j, m1=2)

B(m2=2, m1=2)

� 	

Again, by the previous theorem (Apostol, 1974, p. 193), with

Rr ¼ lim sup
n!1

(mþ n)(m2 þ 2r þ 2n)

(1þ n)(2mþ 2r þ 2n)
b










 ¼ jbj

Rr ¼ jbj , 1, then the rth-order raw moment of ŵi exists.

Appendix A.5. Proof of Corollary 1

Let

Br
j ¼

B(ðm2=2Þ þ r þ j, m2=2)

B(m2=2, m1=2)

Brþ1
j ¼

m2 þ 2r þ 2j

m1 þ m2 þ 2r þ 2j
Br

j

Then

Brþ1
j , Br

j , 8r [ N
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and therefore

E(ŵrþ1
i ) ¼ (1� b)m2=2

X1
j¼0

C
ðmþjÞ�1
j bjBrþ1

j

, (1� b)m2=2
X1
j¼0

C
ðmþjÞ�1
j bjBr

j ¼ E(ŵr), 8r [ N

Appendix A.6. Pearson Type I Approximation

We must compute some important coefficients such as

b1 ¼
m2

3

m3
2

, b2 ¼
m4

m2
2

then check the following conditions

6þ 3b1 � 2b2 . 0, b2 � b1 � 1 . 0

and the interpolation between x0 and x1 is

x(u) ¼ (1� u)x0 þ ux1 �
1

4
u(1� u)½D2x0 þ D2x1�
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