
A Practical Implementation Course of Operating Systems: Curriculum 
Design and Teaching Experiences 

 
Shiao-Li Tsao 

Department of Computer Science,  
National Chiao Tung University, Hsinchu Taiwan 

sltsao@cs.nctu.edu.tw 
 

 
Abstract 

The embedded software engineers are highly 
demanded in recent several years in order to support 
fast development of SoCs and embedded systems. 
These engineers need both strong hardware/software 
knowledge and hands-on experiences of system-level 
software. Unfortunately, the practical training of the 
system software development such as the OS design 
and implementation is often insufficient for computer 
science students in Taiwan recently. To minimize the 
gap between theory and practical implementation, a 
practical implementation course of OSs is thus 
developed in National Chiao Tung University. The 
course provides students trainings on the design 
details of modern OSs and comprehensive hands-on 
practices on OS implementation. In this paper, the 
curriculum and hands-on lab design, the teaching 
experiences and student feedbacks for the trial run are 
presented.  
 
1. Introduction  
 

The development of SoCs and embedded systems 
grows rapidly in recent several years. Besides the 
embedded hardware designers, the demands for 
embedded software designers, especially system-level 
software designers, are largely increasing. Different 
from application software designers, the embedded 
software designers require strong hardware and system 
software knowledge. Moreover, the embedded 
software engineers, especially system-software 
engineers, need professional skills in implementation. 
Unfortunately, the practical training of system software 
development such as the OS design and 
implementation is often insufficient for computer 
science students in Taiwan recently. To design a course 
for introducing practical OS implementation and 
training students with system-programming skills is 
quite essential.  

Operating system is one of the fundamental courses 
for computer science students. For example, there are 

12 courses related to operating systems in the 
department of computer science of National Chiao 
Tung University [1]. Figure 1 illustrates curricula for 
OS or embedded software related courses. The basic, 
intermediate, and advanced courses are given to the 2nd, 
3rd, and 4th years undergraduates. The detail description 
of each course can refer [2]. In order to minimize the 
gap between theory and practical implementation, the 
design and implementation of OSs course is thus 
developed in our university. The course aims to give 
students the design and implementation details of 
modern OSs such as Linux and Microsoft Windows. 
The course especially emphasizes the hands-on 
practices. Based on the course design, students are 
asked to implement their own operating systems step 
by step and from scratch based on an X86 virtual 
machine. The students are expected to understand the 
practical aspect of an OS, and have comprehensive 
exercises on OS implementation. This paper presents 
the course and hands-on lab designs, and the teaching 
experiences and student feedbacks for the trial run.  

The rest of the paper is organized as follows. 
Section 2 presents the curriculum design. Section 3 
describes the hands-on lab design which helps students 
to learn OS development step by step. The teaching 
experiences and student feedbacks are discussed in 
Section 4 and finally we conclude this paper in Section 
5.  
 
2. Curriculum Design 
 

The course is for graduated students and senior 
undergraduates. The objectives of the course are (a) to 
introduce the practical design and implementation of 
modern OSs, (b) to introduce research topics such as 
benchmarking, optimization, real-time characteristics, 
etc. for modern OSs, and (c) to provide comprehensive 
hands-on training to students to improve their system-
level programming skills. The prerequisite of the 
course is the Introduction to OS. The course includes 

2008 14th IEEE International Conference on Parallel and Distributed Systems

1521-9097/08 $25.00 © 2008 IEEE

DOI 10.1109/ICPADS.2008.99

768



three hours lecture per week, five take-home hands-on 
labs, and one term project.  

The courseware has to be newly designed since the 
course shall cover the theoretical part of the OS design, 
and also has to give students examples or sources code 
traces which implement a specific module of an OS. 
Moreover, we would like to give students side by side 
comparisons between different modern OSs such as 
Linux and Microsoft Windows Research Kernel [3]. 
We use process management of an OS as an example. 
We first review the how and why we need the process 
management and how to design it. Theoretical 
overview based on the OS textbook such as [4] is 
summarized and presented first. Then, we present how 
Linux process management is designed [5]. Besides 
presenting the lecture slides, we frequently switch to 
the source codes of the Linux to demonstrate its 
implementation. Microsoft Windows is also used as the 
case study [6]. Source codes of the Windows Research 
Kernel are also illustrated for cross references of the 
Windows design. Figure 2, Figure 3 and Figure 4 give 
examples of some slides presenting the general process 
management design, Linux process management 
design and Windows process management design.  

Students are also required to study research papers 
from OSDI etc. [7] and we also encourage students to 
think and improve the design of an OS. The course 
takes 17 weeks, and the syllabus and labs plan are 
shown in Figure 5.  

During the lecture, we spend less than 10% time in 
reviewing the theoretical design of the OS. About 50% 
time is used to present Linux case study and its source 
codes. About 30% time is used to discuss Windows 
case study and its source codes. Also, we have about 
10% time for open discussions, mainly on why and 
how to improve the components of an OS.  

 
3. Hands-on Lab Design  
 

The hands-on labs are step-by-step and closely 
related to the lectures. Each lab has a number of 
incremental requirements. Students have to complete 
mandatory requirements and could continue working 
on bonus requirements which are optional. There are 
five hands-on labs and one term project during the 
entire 17 weeks. The homework is given to students 
after the subjects are presented. Students are 
encouraged to discuss to each other, refer open sources, 
Linux kernel sources, and Windows Research Kernel 
sources, but they are asked to implement the OS code 
by themselves. They can refer all kind of open sources 
but the cut and paste from the open sources or from 
other students are prohibited.  

The development environment for the hands-on 
labs is PC/IA-32. Several virtual machine platforms are 
recommended. They are Bochs [8], Virtual PC [9], 
VMWare [10], and ProjectOZ [11]. The programming 
languages are Assembly and C. Each student has to 
upload his/her report, kernel sources and image to the 
FTP server before lab demo deadline. TAs will run 
their kernel before the demo. Students have to demo 
their kernel to TAs and answer the TAs’ questions.  

The five labs are 
 Lab #1: Bootloader  

The mandatory requirement of this lab is that 
students have to write a simple bootloader for 
X86. The bootloader has to boot the PC and 
run another program displaying “hello world” 
message on the screen using BIOS services. 
The bonus requirement is to support multi-
boot which could boot DOS OS, Linux, and 
Windows XP kernel images.  

 Lab #2: Task, multi-tasking and task 
scheduler  

Based on Lab 1, the mandatory requirement 
of this lab is to allow a PC/X86 running 
several “hello world” applications at the same 
time. The cooperative multi-tasking and 
process management services are 
implemented and applications can call the 
services to switch the tasks. The bonus 
requirement is to implement time-slice based 
multi-tasking.  

 Lab #3: Memory management 
Based on lab 2, students have to implement 
memory-related system services such as 
malloc and free. The program has to manage 
free/allocated memory spaces. The bonus 
requirement is that students can switch the 
PC/X86 to the protected mode so that the 
paged memory management can be used.   

 Lab #4: Interrupt and ISR 
Students are asked to modify interrupt vectors 
and write their own interrupt services routines. 
The bonus requirement is to handle 
exceptions.  

 Lab #5: Device driver 
Based on the lab 4, students are asked to 
implement a simple keyboard driver and 
related OS services. Applications can use the 
system services to get keyboard inputs. The 
BIOS service is no longer used at this stage. 
The bonus requirement is implement a simple 
monitor driver.  
 

For the term project, students have to submit a two-
page proposal first. After the proposal is approved, 
they could work on their term project. The term project 

769



must be based on their own OSs which they develop 
during this course. The term project could be 
improving the stability of their OSs, adding a device 
driver, adding OS modules etc. In the trial run, we 
received 83 proposals, and we categorize and 
summarize them in Table 1. 

 
Table 1. Summary of the term project proposals 

Category  Number of 
proposals 

Add a file system such as FAT 33 
Device drivers such as NIC, mouse, VGA 22 
Kernel enhancement such as IPC, 
preemptive, system call, semaphore 

15 

Middleware such as GUI APIs 8 
Protocol stacks such as TCP/IP 5 
 
4. Teaching Experiences and Students 
Feedbacks 
 

There were more than 200 students who pre-
registered the course for the trial run. After we 
overviewed the course and labs, 120 students finally 
decided to enroll the course. About 40 students 
dropped the course before the deadline of the first lab, 
i.e. the bootloader. There were finally 83 students 
including 8 undergraduates, 3 PhD students and 72 
master students enrolling the course. The student 
evaluation demonstrates the students satisfy the course 
design and training. The course got an overall score of 
4.33 (1-5(highly satisfied)). We received a number of 
positive feedbacks from students. First, they enjoy the 
courses and feel interested to know practical aspect of 
the OS and know details of OS design and 
implementation. Most of the students feel excited to 
know Linux and Windows Internal and compare the 
implementation of Windows and Linux. Many students 
said that their system programming skills improve 
significantly. We also had some negative comments. 
For example, some students said the hands-on labs are 
too difficult and too heavy. Moreover, labs are strongly 
related and some students felt frustrated for the new 
assignment if they could not be able to complete 
previous one.  

We also had an internal review with TAs and other 
professors on the course after the trial run. We have a 
couple of observations. First, we found that the course 
heavily rely on good supporting tools and teaching 
materials. The courseware should be continually 
improved and enhanced. We setup a student discussion 
forum for this course and found it is very useful for 

student discussion. The posts could be used for FAQs 
or accumulating experiences for references. We had 
more than 400 posts for the course during the trial [12]. 
TA loading is quite heavy and they have to be very 
experienced in system programming. Capable TA team 
is one of the most important factors for the success of 
the course. Dividing the requirements of a lab into 
incremental phases is a good approach. Also, it is 
suggested to announce good examples after each lab so 
that students who did not write the homework well can 
learn from others and their examples.  
 
5. Conclusions 
 
   In this paper, we presented the curriculum and hands-
on lab design for a practical OS implementation course. 
Also, the teaching experiences and student feedbacks 
were presented. The experiences show students are 
interested for such a practical course and learn a lot 
although the hands-on labs are difficult and heavy. 
With the comprehensive training on both theory and 
practical implementation, we could have capable 
embedded software engineers to support the 
development of SoCs and embedded systems.  
 
References 
 
[1]Department of Computer Science, National Chiao Tung 
University, http://www.cs.nctu.edu.tw/en/about_cs/index.php 
[2]Shiao-Li Tsao, T. Y. Huang, and C. T. King, “The 
Development and Deployment of Embedded Software 
Curricula in Taiwan,” ACM SIGBED Review, Special 
Interest Group on Embedded Systems, Vol.4, No.1, 2007 Jan. 
[3]Microsoft Windows Research Kernel,  
http://www.microsoft.com/resources/sharedsource/windowsa
cademic/researchkernelkit.mspx 
[4]Abraham Silberschatz, Peter Baer Galvin, and Greg 
Gagne, “Operating System Concepts,” Wiley, 2004. 
[5]Robert Love, “Linux Kernel Development (2nd Edition),” 
Novell Press, 2005. 
[6] Mark E. Russinovich and David A. Solomon, “Microsoft 
Windows Internals,” Microsoft Press, 2005.  
[7] Operating Systems Design and Implementation (OSDI), 
http://www.informatik.uni-trier.de/~ley/db/conf/osdi/ 
[8] BOCHS project, http://bochs.sourceforge.net/ 
[9] Virtual PC,  
http://www.microsoft.com/windows/downloads/virtualpc/def
ault.mspx 
[10] VMWare, http://www.vmware.com/ 
[11] ProjectOZ,  
http://www.microsoft.com/resources/sharedsource/windowsa
cademic/projectoz.mspx 
[12] http://brass.cs.nctu.edu.tw/forum/viewforum.php?f=31 

770



 

Introduction to Compiler

Design and 
Implementation of OS

Embedded OS I/O and Device Driver

Embedded Tool chain

Embedded Processor

HW/SW Co-Design

System Software

Computer Organization Introduction to OS

Real Time Computing

Advanced OS

 
Figure 1. OS related courses in CS of NCTU 

 

 
Figure 2. Slide examples presenting general idea of the process management design 

 

 
Figure 3. Slide examples presenting Linux process management design [5] 

 

771



 
Figure 4. Slide examples presenting Windows process management design [6] 

 
 

Week Agenda Hands-on homework Homework demo

Week 1 Opening and Course Briefing

Week 2 80x86 Architecture Lab1: Bootloader

Week 3 OS Briefing

Week 4 Bootloader

Week 5 Process/Schedule Lab2: Process/Schedule Lab1: Demo

Week 6 Process/Schedule

Week 7 Memory management

Week 8 Memory management Lab3: Memory Lab2: Demo

Week 9 Synchronization and IPC

Week 10 Timers/Exceptions/Interrupts

Week 11 Timers/Exceptions/Interrupts Lab4: Interrupt Lab3: Demo

Week 12 Device Driver

Week 13 System Calls/Call Gates

Week 14 I/O subsystem and File Systems Lab5: Device driver Lab4: Demo

Week 15 Network Protocol Stacks

Week 16 Paper Presentation

Week 17 Paper Presentation Lab 5: Demo
 

Figure 5. Syllabus of the design and implementation of OS course 
 

772


