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Abstract. It was proved by Buratti and Del Fra that for each pair of odd integers » and m,
there exists a cyclic m-cycle system of the balanced complete r-partite graph K, except for
the case when r = m = 3. In this note, we study the existence of a cyclic m-cycle system of
K, where r or m is even. Combining the work of Buratti and Del Fra, we prove that cyclic
m-cycle systems of K, exist if and only if (a) K, is an even graph (b) (r, m) # (3, 3) and
(c) (r,m) #(t , 2) (mod 4) where ¢ € {2, 3}.

The Main Result

An m-cycle system of a simple graph G is a set C of edge disjoint m-cycles which
partition the edge set of G. The necessary conditions for the existence of an m-cycle
system of a graph G are that the value of m is not exceeding the order of G, m divides
the number of edges in G, and the degree of each vertex in G is even. An even graph
is a graph with vertex degrees all even. If G is a complete graph K, on v vertices,
then it is called an m-cycle system of order v.

Alspach and Gavlas[1] and Sajna [11] have completely settled the existence prob-
lem of m-cycle systems of K, and K, — I, where [ is a 1-factor. Moreover, there
have been many results in the literature concerning the existence problem of cyclic
m-cycle systems. The reader can refer to [2-10, 12, 13].

A graph G is said to be a complete r-partite graph (r > 1) if its vertex set V can
be partitioned into r disjoint non-empty sets Vi, ..., V, (called partite sets) such
that there exists exactly one edge between each pair of vertices from different partite
sets. If |V;| = n; for 1 <i < r, the complete r-partite graph is denoted by K, ... s, .
In particular, if ny = --- = n, = k(> 1), it is called balanced and the graph will be
simply denoted by K, ().

Let C = (co, ..., cm—1) be an m-cycle. An m-cycle system of a graph G, C, is
said to be cyclic if V(G) = Z, and (¢ + 1, ...,¢cn—1 + 1) € C (mod v) whenever
(coy...,cmo1) € C.

The necessary conditions for the existence of a cyclic m-cycle system of a com-
plete r-partite graph G are that G is balanced, say K, ), and any partite set in K, )
is the subgroup
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rZy=1{0,r,...,(k—Dr}

of Z,; orits coset. Fori = 0,...,r — 1, let V; denote the ith partite set of K, ).
We may assume V; = {i,i +r,i +2r,...,i + (k — 1)r}. Note that the set of distinct
differences of edges in K,) is Zx\ £{0,r,2r, ..., [k/2] r}.

For any edge {a, b} in G with V(G) = Z,, we shall use & |a — b| to denote the
difference of the edge {a, b}. The number of distinct differences in a cycle C is called
the weight of C.

Let m = ab be a positive integer (> 2). An m-cycle C in K, ) with weight a has
index % if for each edge {s, r} in C, the edges {s + i - %, t+i- %} ( mod rk) with
i € Zparealsoin C.

Proposition 1 ([14]). Let m = ab be a positive integer (> 2). Then there exists an
m-cycle C = (co, ..., cm—1) in Ky with weight a and index % if and only if each of
the following conditions is satisfied.:

(1) for0<i#j<a—1c #cj(mod%);

(2) the differences of the edges {c;, ci_1} (1 <i < a) are all distinct;
(3) cag=co+1- %, where ged (t, b) = 1; and

(4) cm+j=cj—|—i~t-%wher60§j§a—1and0§i§b—1.

To simplify, the m-cycle C = (cg, ..., cq—1,c0+1- %, ceesCq1tHE- %, .00+
(b—1)-t-% . cooi+(b—1)-1- %) will be denoted by C =[cq, ..., Ca—1lrrisp-

Note that if C is any cycle with weight a in a cyclic m-cycle system of K, (), then
C is precisely an m-cycle with index %.

The following results are either known or easy to verify, we list them without
the details of proof.

Theorem 2 (|2]). For each pair of odd integers r and m, there exists a cyclic m-cycle
system of K, with the exception that (r, m) = (3, 3).

Lemma 3 ([14]). If there is a cyclic m-cycle system of a graph G, then G is 2r-regular
Jfor some positive integer r.

Proposition 4 ([14]). If there is a cyclic m-cycle system of K ny withm even andm > 4,
then (r, m) # (¢, 2) (mod 4) where t € {2, 3}.

Note that if m is odd, then » must be odd since K, is an even graph.

For an m-cycle C = (¢, ..., c;u—1), we shall use dC to denote the set of distinct
differences {+(c; —c;—1)|i =1, ..., m}wherec,, = ¢o. Givenaset D = {Cy, ..., Cp}
of m-cycles, the list of differences from D is defined as the union of the multisets
dC1,...,0Cy, ie, 0D =J!_, 9C;.

Theorem 5 ([14]). Let D be a set of m-cycles with vertices in Z,; such that 9D =
Zi\£A{0,7,2r, ..., |k/2] r}. Then there exists a cyclic m-cycle system of K, ).
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We are now ready for the main result. First, we will assume C; = (v; o, v 1, - - .,
Vi 25 Vi 2s+15 Vi 25/, Vi 2s—1/s - - ., Vi,1/) to be a (4s + 2)-cycle, and an m-cycle with
weight m is called full, otherwise short.

Theorem 6. A cyclic m-cycle system of K, exists if and only if (a) K, ) is an even
graph (b) (r,m) # (3,3) and (c) (r,m) #£ (t,2) (mod 4) where t € {2, 3}.

Proof. The necessary part follows by Theorem 2 and Proposition 4. Therefore, we
prove the sufficiency in what follows. The proof'is split into 4 cases: (1) (r, m) = (0, 2)
(mod 4) (i1) (r, m) = (1, 2) (mod 4) (iii)) r = 0 (mod 2) and m = 0 (mod 4) (iv) r =1
(mod 2) and m = 0 (mod 4). Note that if m is odd, then » must be odd and this case
has been settled by Buratti and Del Fra in [2].

Case 1. (r,m) = (0, 2) (mod 4).
Subcase 1.1. r = 0 (mod 4) and m = 2 (mod 8), say r = 4p and m = 8k + 2.

Let C* = [co, ..., caklr@k+1) be a short m-cycle defined as

2rj, ifi =2j with j =0,...,2k — 1;

4r — 1+ 8jr, ifi =4j+1with j =0,...,k—1;
ci=3Tr—1+8jr,ifi=4j +3withj=0,...,k—2;

r(8 —1)+1, ifi =4k —1; and

4rk + 2, if i = 4k.

It can be checked that all values in C* are certainly pairwise distinct and the set of
differences occurring in C*is 9C* = +{r —2,2r — 1,3r — 1, ..., (4k + 1)r — 1}.

Fori =1,..., p, the full m-cycles C; are defined as

Vio = 0;for j =0,...,2k—1, Vi2j+l = jr—3+4i, Vi2j+1! = Vi2j+1 + 2;
forj=1,...,2k—1, Vi2j = r(4k+1—j)—6+48i, Vil = vz + 3 viak =
rQ2k + 1) — 5+ 8i, vj ar/ = vi 4k + 14; and v; 4441 = 2rk — 2+ 4i.

If p>2,thenfori =1,..., p— 1, the remaining full m -cycles C,; are given
by

Vpyio = 05 for j = 0,...,2k — 1, vpqinjq1 = jr — 2+ 4, vppinjql/ =
Vpgigjrl +20or j=1,...,2k =L, vpyinj =r(@k+1—j)=3+8i,v,42/ =
Vpti2j + 3; Vptidk = r(2k +1) — 2 + 8i, Upti,dk! = Vptidk + 1; and Vpti dk+1 =
2rk — 1 4+ 4i.

By routine computation, we have that all values in each full m-cycle constructed

above are also pairwise distinct and Ufﬁl_l oC; = ={1,2,...,r =3, r — 1} U

U?ialj:{r—f-1+ir,r+2+ir,...,2r—2+ir}.
Since dC* U Ufjl‘l 0C; = Zyy\ £1{0,1,2r,...,rm/2}, it follows from Theorem

5 that there exists a cyclic m-cycle system of K ().

Subcase 1.2. r = 0 (mod 4) and m = 6 (mod 8), say r = 4p and m = 8k + 6.
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If k = 0, then C* = [0,4r — 1, 3r — 2]3, is the short 6-cycle. Fori = 1,..., p,
the full 6-cyclesare C; = (0,4i —3,2r —4+8i,r —2+4i,2r —3+8i,4i — 1) and,
if p>2fori=1,..., p—1, the remaining full 6-cycles are C,; = (0,4, 2r +
14+8i,r+14+4i,2r +2+48i,4i +2).

We then have that 8C* = +(2, 7 + 1,2r + 1} and [J7/]' 9C; = +{1,3,4, ...,
r—1Lr+2,r+3,...,2r—1,2r +2,2r+3,...,3r — 1}.

If k > 0, then the short m-cycle C* = [co, ..., car+2]r@4k+3) 1s defined as

2jr, ifi =2j with j =0,...,2k;

3r+148jr, ifi=4j+1withj=0,...,k—1;
ci=36r+1+8jr,ifi =4 +3withj=0,...,k—1;

4r2k+1)—1, ifi =4k +1; and

r(dk +3) =2, ifi =4k +2,

and 0C* =£{2,r +1,2r +1,..., 4k +2)r + 1}.

Fori =1,..., p, the full m-cycles C; are defined as

Vo= 0;forj =0,...,2k, Vi2j+l = jr—344i, Vi 2j+1/ = Vi2j+1 +2, Vij42 =
r(4k+2—j)—4+8i,and Vi2j+2! = Vi2j+2 + 1; and Vi 4k4+3 = rRk+1)—-2+4i.

Fori =1,..., p — 1, the rest of full m-cycles C,; are given by

Vptio =05 for j =0,...,2k, vpyinjr1 = jr+4i, vpyi2jr1/ = Vprinjyl + 2,
Vpij+2 =r(@k+2—j)+1+8i,and vy 2j42/ = Vpyinj+2 + 1;and vy a3 =
r(2k+ 1)+ 1+ 4i.

An easy verification shows that _J
24ir,r+3+ir,...,2r — 1 +ir}.

2p—1
290 = £{1,3,4, ..., r— UK H(0+

Case2. r =1(mod4)and m =2 (mod 4), sayr =4p + | and m = 4k + 2.

It suffices to consider the full m- cycles.

Fori =1, ..., p, the full m-cycles C; are defined as

vio=0;for j =0,....,k—1, Viojrl = jr—3+4i, vi2j1/ = vi2jr1 + 2
forj=1,...,k=1Gk>2),v0, =rCk+1—j)—6+4+8i,v2;/ =02 +3;
viok =rk+1)—5+8i,vi/ =viok+1;and v; 2ky1 =rk — 2 4 4i.

We have U?_, 9C; = (1,3, ..., r 23U/ UK, £Ur+ 1440, jr+2+4i).

Fori =1,..., p,let Cpq; be the rest of the full m-cycles given by

Vptio = 0sfor j =0, .., k=1, vp10j41 = jr—2441,0p4i2j41/ = Vpti2j+1t
2 forj=1,...,k—1, Up+ti2j = r2k+1—j)—3+8i, Vp+i2j! = Up+i2j + 3;
Vppik =1k +1) =2+ 8i, vpyin/ = vpyin + L and vy op 1 = rk — 1 4+ 4i.

Itfollows that ?_; 8C,4; = (2.4, ..., r—1JUU/Z) U £jr+3+4i, jr+

4+4i}, and U7 0C; = Zm\ £ (0,7, 2r, ..., 2k + Dr}.
Case 3. r = 0 (mod 2) and m = 0 (mod 4).

Subcase 3.1. m = 0 (mod 8), say m = 8k.
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Fori =1,...,r —1, the short m-cycles C} = [c; 0, . . ., i ak—1]4rk are defined as

2rs, if j =2s withs =0,...,2k — 1;
cij=142r+i+38rs, if j=4s+1withs =0,...,k—1; and
Sr+i+8rs, if j=4s+3withs =0,...,k—1.

We have oC = £{i,r +i,2r +1i,..., (4k — Dr + i} and Ulr;ll 0C! = Zym\ £
{0,r,2r, ..., 4rk}.

Subcase 3.2. m = 4 (mod 8), say m = 8k + 4.

Fori =1,...,r — 1, the short m-cycles C} = [c; 0, ..., ¢ 4k+1]-(4k+2) are given by

2rs, if j =2s withs =0, ..., 2k;
cij=r+i+8rs, if j=4s+1withs =0,...,k; and
6r +i+8rs, ifk>1land j =4s+3withs =0,...,k— 1.

aC; =:I:{r—i,r+i,2r+i,3r+i,...,(4k+1)r+i}ande;118Cl?k = Zmm\
{0,r,2r,..., (4k + 2)r}.

Case 4. (r,m) = (t,0) (mod 4), ¢t € {1, 3}.
Subcase 4.1. m = 4 (mod 8), say m = 8k + 4.

Fori = 1,...,r — 1, the short m-cycles are C/ = [0, i]o, and U;;ll C; =
+H1,2,...,r—1,r+1,r+2,...,2r — 1}

Ifk > 1thenfori =1, ...Ar—l,andj =1, ..., k,theremaining short m-cycles
are C;‘jj =[0,4jr + il and C;‘jj =10, 4j + Dr + il -

By routine computation, it follows that Ulr;ll U’;'=1 act; = Uf;é +2r +1+4
4sr,2r+2+4§r,...,3r—1—|—4sr,4r+1+4sr,4r+2+4sr,...,5r—1+4sr}and
Uizt USs 0C), = Sy £ 03r + 1+ 457 3r + 2+ dsr . 4r — L+ 45y, Sr 4+ 1+
4sr,5r +2 +4sr,...,6r — 1 +4sr}.

Subcase 4.2. m = 0 (mod 8), say m = 8k.

Fori=1,...,r —1,andj = 1, ..., k, the short m -cycles are Cl.fj =1[0,4j —
2)r + il and € ; =10, (4j — Dr + il
We have UIZ{ Uy 9C7 ;= USZg (1 +4sr, 2+ 4dsr, o r — 145, 2r +1 4

4sr,2r +2+4sr, ..., 3r —1+4sr}and Ulr;ll Ul;zl BCA‘;fj = Ui:é Hr+1+4sr,r+
24dsr, ..., 2r — 1 +4sr,3r + 1 +4sr, 3r + 2+ 4sr, ..., 4r — 1 +4sr}. O

We end this note with a conclusion. Assume m to be even (> 2) and K, — 1
to be the complete graph with 1-factor I removed. Observing the consequence of
Theorem 6, it is clear that if there exists a cyclic m -cycle system of K,, — I, then
a cyclic m-cycle system of K,,, — I is given. Unfortunately, there does not exist a
cyclic m-cycle system of K, — I except for m = 4.
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