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Abstract. It was proved by Buratti and Del Fra that for each pair of odd integers r and m,
there exists a cyclic m-cycle system of the balanced complete r-partite graph Kr(m) except for
the case when r = m = 3. In this note, we study the existence of a cyclic m-cycle system of
Kr(m) where r or m is even. Combining the work of Buratti and Del Fra, we prove that cyclic
m-cycle systems of Kr(m) exist if and only if (a) Kr(m) is an even graph (b) (r, m) �= (3, 3) and
(c) (r, m) �≡ (t , 2) (mod 4) where t ∈ {2, 3}.

The Main Result

An m-cycle system of a simple graph G is a set C of edge disjoint m-cycles which
partition the edge set of G. The necessary conditions for the existence of an m-cycle
system of a graph G are that the value of m is not exceeding the order of G, m divides
the number of edges in G, and the degree of each vertex in G is even. An even graph
is a graph with vertex degrees all even. If G is a complete graph Kv on v vertices,
then it is called an m-cycle system of order v.

Alspach and Gavlas [1] and Šajna [11] have completely settled the existence prob-
lem of m-cycle systems of Kv and Kv − I , where I is a 1-factor. Moreover, there
have been many results in the literature concerning the existence problem of cyclic
m-cycle systems. The reader can refer to [2–10, 12, 13].

A graph G is said to be a complete r-partite graph (r > 1) if its vertex set V can
be partitioned into r disjoint non-empty sets V1, . . . , Vr (called partite sets) such
that there exists exactly one edge between each pair of vertices from different partite
sets. If |Vi | = ni for 1 ≤ i ≤ r, the complete r-partite graph is denoted by Kn1,···,nr .
In particular, if n1 = · · · = nr = k(> 1), it is called balanced and the graph will be
simply denoted by Kr(k).

Let C = (c0, . . . , cm−1) be an m-cycle. An m-cycle system of a graph G, C, is
said to be cyclic if V (G) = Zv and (c0 + 1, . . . , cm−1 + 1) ∈ C (mod v) whenever
(c0, . . . , cm−1) ∈ C.

The necessary conditions for the existence of a cyclic m-cycle system of a com-
plete r-partite graph G are that G is balanced, say Kr(k), and any partite set in Kr(k)
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rZk = {0, r, . . . , (k − 1)r}
of Zrk or its coset. For i = 0, . . . , r − 1, let Vi denote the ith partite set of Kr(k).
We may assume Vi = {i, i + r, i + 2r, . . . , i + (k − 1)r}. Note that the set of distinct
differences of edges in Kr(k) is Zrk\ ± {0, r, 2r, . . . , �k/2� r}.

For any edge {a, b} in G with V (G) = Zv, we shall use ± |a − b| to denote the
difference of the edge {a, b}. The number of distinct differences in a cycle C is called
the weight of C.

Let m = ab be a positive integer (> 2). An m-cycle C in Kr(k) with weight a has
index rk

b
if for each edge {s, t} in C, the edges {s + i · rk

b
, t + i · rk

b
} ( mod rk) with

i ∈ Zb are also in C.

Proposition 1 ([14]). Let m = ab be a positive integer (> 2). Then there exists an
m-cycle C = (c0, . . . , cm−1) in Kr(k) with weight a and index rk

b
if and only if each of

the following conditions is satisfied:

(1) for 0 ≤ i �= j ≤ a − 1, ci �≡ cj (mod rk
b

);
(2) the differences of the edges {ci, ci−1} (1 ≤ i ≤ a) are all distinct;
(3) ca = c0 + t · rk

b
, where gcd (t, b) = 1; and

(4) cia+j = cj + i · t · rk
b

where 0 ≤ j ≤ a − 1 and 0 ≤ i ≤ b − 1.

To simplify, the m-cycle C = (c0, . . . , ca−1, c0 + t · rk
b

, . . . , ca−1 + t · rk
b

, . . . , c0 +
(b − 1) · t · rk

b
, . . . , ca−1 + (b − 1) · t · rk

b
) will be denoted by C = [c0, . . . , ca−1]t ·rk/b.

Note that if C is any cycle with weight a in a cyclic m-cycle system of Kr(k), then
C is precisely an m-cycle with index rk

b
.

The following results are either known or easy to verify, we list them without
the details of proof.

Theorem 2 ([2]). For each pair of odd integers r and m, there exists a cyclic m-cycle
system of Kr(m) with the exception that (r, m) = (3, 3).

Lemma 3 ([14]). If there is a cyclic m-cycle system of a graph G, then G is 2r-regular
for some positive integer r.

Proposition 4 ([14]). If there is a cyclic m-cycle system of Kr(m) with m even and m > 4,
then (r, m) �≡ (t, 2) (mod 4) where t ∈ {2, 3}.

Note that if m is odd, then r must be odd since Kr(m) is an even graph.
For an m-cycle C = (c0, . . . , cm−1), we shall use ∂C to denote the set of distinct

differences {±(ci−ci−1)|i = 1, . . . , m} where cm = c0. Given a set D = {C1, . . . , Cp}
of m-cycles, the list of differences from D is defined as the union of the multisets
∂C1, . . . , ∂Cp, i.e., ∂D = ⋃p

i=1 ∂Ci .

Theorem 5 ([14]). Let D be a set of m-cycles with vertices in Zrk such that ∂D =
Zrk\ ± {0, r, 2r, . . . , �k/2� r}. Then there exists a cyclic m-cycle system of Kr(k).
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We are now ready for the main result. First, we will assume Ci = (vi,0, vi,1, . . . ,

vi,2s , vi,2s+1, vi,2s ′, vi,2s−1′, . . . , vi,1′) to be a (4s + 2)-cycle, and an m-cycle with
weight m is called full, otherwise short.

Theorem 6. A cyclic m-cycle system of Kr(m) exists if and only if (a) Kr(m) is an even
graph (b) (r, m) �= (3, 3) and (c) (r, m) �≡ (t, 2) (mod 4) where t ∈ {2, 3}.

Proof. The necessary part follows by Theorem 2 and Proposition 4. Therefore, we
prove the sufficiency in what follows. The proof is split into 4 cases: (i) (r, m) ≡ (0, 2)

(mod 4) (ii) (r, m) ≡ (1, 2) (mod 4) (iii) r ≡ 0 (mod 2) and m ≡ 0 (mod 4) (iv) r ≡ 1
(mod 2) and m ≡ 0 (mod 4). Note that if m is odd, then r must be odd and this case
has been settled by Buratti and Del Fra in [2].

Case 1. (r, m) ≡ (0, 2) (mod 4).

Subcase 1.1. r ≡ 0 (mod 4) and m ≡ 2 (mod 8), say r = 4p and m = 8k + 2.

Let C∗ = [c0, . . . , c4k]r(4k+1) be a short m-cycle defined as

ci =






2rj, if i = 2j with j = 0, . . . , 2k − 1;
4r − 1 + 8jr, if i = 4j + 1 with j = 0, . . . , k − 1;
7r − 1 + 8jr, if i = 4j + 3 with j = 0, . . . , k − 2;
r(8k − 1) + 1, if i = 4k − 1; and
4rk + 2, if i = 4k.

It can be checked that all values in C∗ are certainly pairwise distinct and the set of
differences occurring in C∗ is ∂C∗ = ±{r − 2, 2r − 1, 3r − 1, . . . , (4k + 1)r − 1}.

For i = 1, . . . , p, the full m-cycles Ci are defined as
vi,0 = 0; for j = 0, . . . , 2k − 1, vi,2j+1 = jr − 3 + 4i, vi,2j+1′ = vi,2j+1 + 2;

for j = 1, . . . , 2k − 1, vi,2j = r(4k + 1 − j) − 6 + 8i, vi,2j ′ = vi,2j + 3; vi,4k =
r(2k + 1) − 5 + 8i, vi,4k′ = vi,4k + 14; and vi,4k+1 = 2rk − 2 + 4i.

If p ≥ 2, then for i = 1, . . . , p − 1, the remaining full m -cycles Cp+i are given
by

vp+i,0 = 0; for j = 0, . . . , 2k − 1, vp+i,2j+1 = jr − 2 + 4i, vp+i,2j+1′ =
vp+i,2j+1 + 2; for j = 1, . . . , 2k − 1, vp+i,2j = r(4k + 1 − j) − 3 + 8i, vp+i,2j ′ =
vp+i,2j + 3; vp+i,4k = r(2k + 1) − 2 + 8i, vp+i,4k′ = vp+i,4k + 1; and vp+i,4k+1 =
2rk − 1 + 4i.

By routine computation, we have that all values in each full m-cycle constructed
above are also pairwise distinct and

⋃2p−1
i=1 ∂Ci = ±{1, 2, . . . , r − 3, r − 1} ∪

⋃4k−1
i=0 ±{r + 1 + ir, r + 2 + ir, . . . , 2r − 2 + ir}.

Since ∂C∗ ∪ ⋃2p−1
i=1 ∂Ci = Zrm\ ± {0, r, 2r, . . . , rm/2}, it follows from Theorem

5 that there exists a cyclic m-cycle system of Kr(m).

Subcase 1.2. r ≡ 0 (mod 4) and m ≡ 6 (mod 8), say r = 4p and m = 8k + 6.
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If k = 0, then C∗ = [0, 4r − 1, 3r − 2]3r is the short 6-cycle. For i = 1, . . . , p,
the full 6-cycles are Ci = (0, 4i − 3, 2r − 4 + 8i, r − 2 + 4i, 2r − 3 + 8i, 4i − 1) and,
if p ≥ 2, for i = 1, . . . , p − 1, the remaining full 6-cycles are Cp+i = (0, 4i, 2r +
1 + 8i, r + 1 + 4i, 2r + 2 + 8i, 4i + 2).

We then have that ∂C∗ = ±{2, r + 1, 2r + 1} and
⋃2p−1

i=1 ∂Ci = ±{1, 3, 4, . . . ,

r − 1, r + 2, r + 3, . . . , 2r − 1, 2r + 2, 2r + 3, . . . , 3r − 1}.
If k > 0, then the short m-cycle C∗ = [c0, . . . , c4k+2]r(4k+3) is defined as

ci =






2jr, if i = 2j with j = 0, . . . , 2k;
3r + 1 + 8jr, if i = 4j + 1 with j = 0, . . . , k − 1;
6r + 1 + 8jr, if i = 4j + 3 with j = 0, . . . , k − 1;
4r(2k + 1) − 1, if i = 4k + 1; and
r(4k + 3) − 2, if i = 4k + 2,

and ∂C∗ = ±{2, r + 1, 2r + 1, . . . , (4k + 2)r + 1}.
For i = 1, . . . , p, the full m-cycles Ci are defined as
vi,0 = 0; for j = 0, . . . , 2k, vi,2j+1 = jr −3+4i, vi,2j+1′ = vi,2j+1 +2, vi,2j+2 =

r(4k + 2 − j) − 4 + 8i, and vi,2j+2′ = vi,2j+2 + 1; and vi,4k+3 = r(2k + 1) − 2 + 4i.
For i = 1, . . . , p − 1, the rest of full m-cycles Cp+i are given by
vp+i,0 = 0; for j = 0, . . . , 2k, vp+i,2j+1 = jr + 4i, vp+i,2j+1′ = vp+i,2j+1 + 2,

vp+i,2j+2 = r(4k + 2 − j)+ 1 + 8i, and vp+i,2j+2′ = vp+i,2j+2 + 1; and vp+i,4k+3 =
r(2k + 1) + 1 + 4i.

An easy verification shows that
⋃2p−1

i=1 ∂Ci = ±{1, 3, 4, . . . , r−1}∪⋃4k+1
i=0 ±{(r+

2 + ir, r + 3 + ir, . . . , 2r − 1 + ir}.

Case 2. r ≡ 1 ( mod 4) and m ≡ 2 (mod 4), say r = 4p + 1 and m = 4k + 2.

It suffices to consider the full m- cycles.
For i = 1, . . . , p, the full m-cycles Ci are defined as
vi,0 = 0; for j = 0, . . . , k − 1, vi,2j+1 = jr − 3 + 4i, vi,2j+1′ = vi,2j+1 + 2;

for j = 1, . . . , k − 1 (if k ≥ 2), vi,2j = r(2k + 1 − j) − 6 + 8i, vi,2j ′ = vi,2j + 3;
vi,2k = r(k + 1) − 5 + 8i, vi,2k′ = vi,2k + 1; and vi,2k+1 = rk − 2 + 4i.

We have
⋃p

i=1 ∂Ci = ±{1, 3, . . . , r −2}∪⋃p−1
i=0

⋃2k
j=1 ±{jr +1+4i, jr +2+4i}.

For i = 1, . . . , p, let Cp+i be the rest of the full m-cycles given by
vp+i,0 = 0; for j = 0, . . . , k−1, vp+i,2j+1 = jr−2+4i, vp+i,2j+1′ = vp+i,2j+1+

2; for j = 1, . . . , k − 1, vp+i,2j = r(2k + 1 − j) − 3 + 8i, vp+i,2j ′ = vp+i,2j + 3;
vp+i,2k = r(k + 1) − 2 + 8i, vp+i,2k′ = vp+i,2k + 1; and vp+i,2k+1 = rk − 1 + 4i.

It follows that
⋃p

i=1 ∂Cp+i = ±{2, 4, . . . , r−1}∪⋃p−1
i=0

⋃2k
j=1 ±{jr+3+4i, jr+

4 + 4i}, and
⋃2p

i=1 ∂Ci = Zrm\ ± {0, r, 2r, . . . , (2k + 1)r}.

Case 3. r ≡ 0 (mod 2) and m ≡ 0 (mod 4).

Subcase 3.1. m ≡ 0 (mod 8), say m = 8k.
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For i = 1, . . . , r − 1, the short m-cycles C∗
i = [ci,0, . . . , ci,4k−1]4rk are defined as

ci,j =





2rs, if j = 2s with s = 0, . . . , 2k − 1;
2r + i + 8rs, if j = 4s + 1 with s = 0, . . . , k − 1; and
5r + i + 8rs, if j = 4s + 3 with s = 0, . . . , k − 1.

We have ∂C∗
i = ±{i, r + i, 2r + i, . . . , (4k − 1)r + i} and

⋃r−1
i=1 ∂C∗

i = Zrm\ ±
{0, r, 2r, . . . , 4rk}.

Subcase 3.2. m ≡ 4 (mod 8), say m = 8k + 4.

For i = 1, . . . , r − 1, the short m-cycles C∗
i = [ci,0, . . . , ci,4k+1]r(4k+2) are given by

ci,j =





2rs, if j = 2s with s = 0, . . . , 2k;
r + i + 8rs, if j = 4s + 1 with s = 0, . . . , k; and
6r + i + 8rs, if k ≥ 1 and j = 4s + 3 with s = 0, . . . , k − 1.

∂C∗
i = ±{r − i, r + i, 2r + i, 3r + i, . . . , (4k + 1)r + i} and

⋃r−1
i=1 ∂C∗

i = Zrm\ ±
{0, r, 2r, . . . , (4k + 2)r}.

Case 4. (r, m) ≡ (t, 0) (mod 4), t ∈ {1, 3}.

Subcase 4.1. m ≡ 4 (mod 8), say m = 8k + 4.

For i = 1, . . . , r − 1, the short m-cycles are C∗
i = [0, i]2r and

⋃r−1
i=1 ∂C∗

i =
±{1, 2, . . . , r − 1, r + 1, r + 2, . . . , 2r − 1}.

If k ≥ 1 then for i = 1, . . . , r−1, and j = 1, . . . , k , the remaining short m-cycles
are C∗

i,j = [0, 4jr + i]2r and Ĉ∗
i,j = [0, (4j + 1)r + i]2r .

By routine computation, it follows that
⋃r−1

i=1
⋃k

j=1 ∂C∗
i,j = ⋃k−1

s=0 ±{2r + 1 +
4sr, 2r + 2 + 4sr, . . . , 3r − 1 + 4sr, 4r + 1 + 4sr, 4r + 2 + 4sr, . . . , 5r − 1 + 4sr} and⋃r−1

i=1
⋃k

j=1 ∂Ĉ∗
i,j = ⋃k−1

s=0 ±{3r + 1 + 4sr, 3r + 2 + 4sr, . . . , 4r − 1 + 4sr, 5r + 1 +
4sr, 5r + 2 + 4sr, . . . , 6r − 1 + 4sr}.

Subcase 4.2. m ≡ 0 (mod 8), say m = 8k.

For i = 1, . . . , r − 1, andj = 1, . . . , k, the short m -cycles are C∗
i,j = [0, (4j −

2)r + i]2r and Ĉ∗
i,j = [0, (4j − 1)r + i]2r .

We have
⋃r−1

i=1
⋃k

j=1 ∂C∗
i,j = ⋃k−1

s=0 ±{1 + 4sr, 2 + 4sr, . . . , r − 1 + 4sr, 2r + 1 +
4sr, 2r +2+4sr, . . . , 3r −1+4sr} and

⋃r−1
i=1

⋃k
j=1 ∂Ĉ∗

i,j = ⋃k−1
s=0 ±{r +1+4sr, r +

2 + 4sr, . . . , 2r − 1 + 4sr, 3r + 1 + 4sr, 3r + 2 + 4sr, . . . , 4r − 1 + 4sr}. �

We end this note with a conclusion. Assume m to be even (> 2) and Km − I

to be the complete graph with 1-factor I removed. Observing the consequence of
Theorem 6, it is clear that if there exists a cyclic m -cycle system of Km − I , then
a cyclic m-cycle system of Krm − I is given. Unfortunately, there does not exist a
cyclic m-cycle system of Km − I except for m = 4.
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