Graphs and Combinatorics © Springer-Verlag 2006

A Note on Cyclic *m***-cycle** Systems of $K_{r(m)}$

Shung-Liang Wu¹ and Hung-Lin $Fu²$

¹ National United University, Miaoli, Taiwan, R.O.C.

² Department of Applied Mathematics, National Chaio Tung University, Hsin Chu, Taiwan, R.O.C.

Abstract. It was proved by Buratti and Del Fra that for each pair of odd integers r and m , there exists a cyclic *m*-cycle system of the balanced complete *r*-partite graph $K_{r(m)}$ except for the case when $r = m = 3$. In this note, we study the existence of a cyclic m-cycle system of $K_{r(m)}$ where r or m is even. Combining the work of Buratti and Del Fra, we prove that cyclic m-cycle systems of $K_{r(m)}$ exist if and only if (a) $K_{r(m)}$ is an even graph (b) $(r, m) \neq (3, 3)$ and (c) $(r, m) \neq (t, 2) \pmod{4}$ where $t \in \{2, 3\}.$

The Main Result

An m-*cycle system* of a simple graph G is a set *C* of edge disjoint m-cycles which partition the edge set of G . The necessary conditions for the existence of an m -cycle system of a graph G are that the value of m is not exceeding the order of G , m divides the number of edges in G, and the degree of each vertex in G is even. An *even* graph is a graph with vertex degrees all even. If G is a complete graph K_v on v vertices, then it is called an m -cycle system of order v .

Alspach and Gavlas [1] and Šajna [11] have completely settled the existence problem of m-cycle systems of K_v and $K_v - I$, where I is a 1-factor. Moreover, there have been many results in the literature concerning the existence problem of cyclic m -cycle systems. The reader can refer to $[2-10, 12, 13]$.

A graph G is said to be a *complete r-partite graph* $(r > 1)$ if its vertex set V can be partitioned into r disjoint non-empty sets V_1, \ldots, V_r (called *partite sets*) such that there exists exactly one edge between each pair of vertices from different partite sets. If $|V_i| = n_i$ for $1 \le i \le r$, the complete *r*-partite graph is denoted by K_{n_1,\dots,n_r} . In particular, if $n_1 = \cdots = n_r = k(> 1)$, it is called *balanced* and the graph will be simply denoted by $K_{r(k)}$.

Let $C = (c_0, \ldots, c_{m-1})$ be an *m*-cycle. An *m*-cycle system of a graph G, C, is said to be *cyclic* if $V(G) = Z_v$ and $(c_0 + 1, \ldots, c_{m-1} + 1) \in C \pmod{v}$ whenever $(c_0, ..., c_{m-1})$ ∈ **C**.

The necessary conditions for the existence of a cyclic m -cycle system of a complete r-partite graph G are that G is balanced, say $K_{r(k)}$, and any partite set in $K_{r(k)}$ is the subgroup

$$
rZ_k = \{0, r, \ldots, (k-1)r\}
$$

of Z_{rk} or its coset. For $i = 0, ..., r - 1$, let V_i denote the *i*th partite set of $K_{r(k)}$. We may assume $V_i = \{i, i + r, i + 2r, \ldots, i + (k-1)r\}$. Note that the set of distinct differences of edges in $K_{r(k)}$ is $Z_{rk} \setminus \pm \{0, r, 2r, \ldots, \lfloor k/2 \rfloor r\}.$

For any edge {a, b} in G with $V(G) = Z_v$, we shall use $\pm |a - b|$ to denote the *difference* of the edge $\{a, b\}$. The number of distinct differences in a cycle C is called the *weight* of C.

Let $m = ab$ be a positive integer (> 2). An *m*-cycle C in $K_{r(k)}$ with weight *a* has *index* $\frac{rk}{b}$ if for each edge {s, t} in C, the edges {s + i · $\frac{rk}{b}$, t + i · $\frac{rk}{b}$ } (mod rk) with $i \in Z_b$ are also in C.

Proposition 1 ([14]). Let $m = ab$ be a positive integer (> 2) . Then there exists an *m-cycle* $C = (c_0, \ldots, c_{m-1})$ *in* $K_{r(k)}$ *with weight a and index* $\frac{rk}{b}$ *if and only if each of the following conditions is satisfied:*

(1) for $0 \le i \ne j \le a-1$, $c_i \not\equiv c_j \pmod{\frac{rk}{b}}$; (2) the differences of the edges { c_i , c_{i-1} } (1 ≤ *i* ≤ *a*) are all distinct; *(3)* $c_a = c_0 + t \cdot \frac{rk}{b}$, where gcd $(t, b) = 1$; and *(4)* $c_{ia+j} = c_j + i \cdot t \cdot \frac{rk}{b}$ *where* $0 \le j \le a - 1$ *and* $0 \le i \le b - 1$ *.*

To simplify, the *m*-cycle $C = (c_0, \ldots, c_{a-1}, c_0 + t \cdot \frac{rk}{b}, \ldots, c_{a-1} + t \cdot \frac{rk}{b}, \ldots, c_0 +$ $(b-1)\cdot t \cdot \frac{rk}{b}, \ldots, c_{a-1} + (b-1)\cdot t \cdot \frac{rk}{b}$ will be denoted by $C = [c_0, \ldots, c_{a-1}]_{t \cdot rk/b}$. Note that if C is any cycle with weight a in a cyclic m-cycle system of $K_{r(k)}$, then C is precisely an *m*-cycle with index $\frac{rk}{b}$.

The following results are either known or easy to verify, we list them without the details of proof.

Theorem 2 ([2]). *For each pair of odd integers* r *and* m*, there exists a cyclic m-cycle system of* $K_{r(m)}$ *with the exception that* $(r, m) = (3, 3)$ *.*

Lemma 3 ([14]). *If there is a cyclic m-cycle system of a graph G, then G is* 2r*-regular for some positive integer r.*

Proposition 4 ([14]). *If there is a cyclic m-cycle system of* $K_{r(m)}$ *with m even and* $m > 4$ *, then* $(r, m) \neq (t, 2) \pmod{4}$ *where* $t \in \{2, 3\}$ *.*

Note that if *m* is odd, then *r* must be odd since $K_{r(m)}$ is an even graph.

For an *m*-cycle $C = (c_0, \ldots, c_{m-1})$, we shall use ∂C to denote the set of distinct differences $\{\pm (c_i-c_{i-1})|i=1,\ldots,m\}$ where $c_m = c_0$. Given a set $D = \{C_1,\ldots,C_p\}$ of m -cycles, the list of differences from D is defined as the union of the multisets $\partial C_1, \ldots, \partial C_p$, i.e., $\partial D = \bigcup_{i=1}^p \partial C_i$.

Theorem 5 ([14]). *Let D be a set of m-cycles with vertices in* Z_{rk} *such that* $\partial D =$ $Z_{rk}\$ \pm {0, r, 2r, . . . , $\lfloor k/2 \rfloor r$ *}. Then there exists a cyclic m-cycle system of* $K_{r(k)}$ *.*

A Note on Cyclic *m*-cycle Systems of $K_{r(m)}$ 429

We are now ready for the main result. First, we will assume $C_i = (v_{i,0}, v_{i,1}, \ldots, v_{i,n})$ $v_{i,2s}, v_{i,2s+1}, v_{i,2s'}, v_{i,2s-1}, \ldots, v_{i,1}$ to be a $(4s + 2)$ -cycle, and an *m*-cycle with weight m is called *full*, otherwise *short*.

Theorem 6. *A cyclic m-cycle system of* $K_{r(m)}$ *exists if and only if (a)* $K_{r(m)}$ *is an even graph* (*b*) $(r, m) \neq (3, 3)$ *and* (*c*) $(r, m) \neq (t, 2)$ (mod 4) *where* $t \in \{2, 3\}$ *.*

Proof. The necessary part follows by Theorem 2 and Proposition 4. Therefore, we prove the sufficiency in what follows. The proof is split into 4 cases: (i) $(r, m) \equiv (0, 2)$ $(mod 4)$ (ii) $(r, m) \equiv (1, 2)$ (mod 4) (iii) $r \equiv 0 \pmod{2}$ and $m \equiv 0 \pmod{4}$ (iv) $r \equiv 1$ (mod 2) and $m \equiv 0 \pmod{4}$. Note that if m is odd, then r must be odd and this case has been settled by Buratti and Del Fra in [2].

Case 1. $(r, m) \equiv (0, 2) \pmod{4}$.

Subcase 1.1. $r \equiv 0 \pmod{4}$ and $m \equiv 2 \pmod{8}$, say $r = 4p$ and $m = 8k + 2$.

Let $C^* = [c_0, \ldots, c_{4k}]_{r(4k+1)}$ be a short *m*-cycle defined as

$$
c_i = \begin{cases} 2rj, & \text{if } i = 2j \text{ with } j = 0, \dots, 2k - 1; \\ 4r - 1 + 8jr, & \text{if } i = 4j + 1 \text{ with } j = 0, \dots, k - 1; \\ 7r - 1 + 8jr, & \text{if } i = 4j + 3 \text{ with } j = 0, \dots, k - 2; \\ r(8k - 1) + 1, & \text{if } i = 4k - 1; \text{ and} \\ 4rk + 2, & \text{if } i = 4k. \end{cases}
$$

It can be checked that all values in C^* are certainly pairwise distinct and the set of differences occurring in C^* is $\partial C^* = \pm \{r - 2, 2r - 1, 3r - 1, \ldots, (4k + 1)r - 1\}.$ For $i = 1, \ldots, p$, the full *m*-cycles C_i are defined as

 $v_{i,0} = 0$; for $j = 0, \ldots, 2k - 1$, $v_{i,2j+1} = jr - 3 + 4i$, $v_{i,2j+1} = v_{i,2j+1} + 2$; for $j = 1, \ldots, 2k - 1$, $v_{i,2j} = r(4k + 1 - j) - 6 + 8i$, $v_{i,2j'} = v_{i,2j} + 3$; $v_{i,4k} =$ $r(2k + 1) - 5 + 8i$, $v_{i,4k'} = v_{i,4k} + 14$; and $v_{i,4k+1} = 2rk - 2 + 4i$.

If $p \ge 2$, then for $i = 1, \ldots, p - 1$, the remaining full m -cycles C_{p+i} are given by

 $v_{p+i,0} = 0$; for $j = 0, \ldots, 2k - 1$, $v_{p+i,2j+1} = jr - 2 + 4i$, $v_{p+i,2j+1} =$ $v_{p+i,2j+1}$ + 2; for $j = 1, ..., 2k - 1$, $v_{p+i,2j} = r(4k + 1 - j) - 3 + 8i$, $v_{p+i,2j'} =$ $v_{p+i,2i} + 3$; $v_{p+i,4k} = r(2k + 1) - 2 + 8i$, $v_{p+i,4k'} = v_{p+i,4k} + 1$; and $v_{p+i,4k+1} =$ $2rk - 1 + 4i$.

By routine computation, we have that all values in each full m -cycle constructed above are also pairwise distinct and $\bigcup_{i=1}^{2p-1} \partial C_i = \pm \{1, 2, ..., r-3, r-1\}$ $\bigcup_{i=0}^{4k-1} \pm \{r+1+ir, r+2+ir, \ldots, 2r-2+ir\}.$

Since $\partial C^* \cup \bigcup_{i=1}^{2p-1} \partial C_i = Z_{rm} \setminus \pm \{0, r, 2r, \dots, rm/2\}$, it follows from Theorem 5 that there exists a cyclic *m*-cycle system of $K_{r(m)}$.

Subcase 1.2. $r \equiv 0 \pmod{4}$ and $m \equiv 6 \pmod{8}$, say $r = 4p$ and $m = 8k + 6$.

If $k = 0$, then $C^* = [0, 4r - 1, 3r - 2]_{3r}$ is the short 6-cycle. For $i = 1, ..., p$, the full 6-cycles are $C_i = (0, 4i - 3, 2r - 4 + 8i, r - 2 + 4i, 2r - 3 + 8i, 4i - 1)$ and, if $p \ge 2$, for $i = 1, ..., p - 1$, the remaining full 6-cycles are $C_{p+i} = (0, 4i, 2r + 1)$ $1 + 8i$, $r + 1 + 4i$, $2r + 2 + 8i$, $4i + 2$).

We then have that $\partial C^* = \pm \{2, r + 1, 2r + 1\}$ and $\bigcup_{i=1}^{2p-1} \partial C_i = \pm \{1, 3, 4, \ldots, 1\}$ $r-1, r+2, r+3, \ldots, 2r-1, 2r+2, 2r+3, \ldots, 3r-1$.

If $k > 0$, then the short m-cycle $C^* = [c_0, \ldots, c_{4k+2}]_{r(4k+3)}$ is defined as

$$
c_i = \begin{cases} 2jr, \text{ if } i = 2j \text{ with } j = 0, \dots, 2k; \\ 3r + 1 + 8jr, \text{ if } i = 4j + 1 \text{ with } j = 0, \dots, k - 1; \\ 6r + 1 + 8jr, \text{ if } i = 4j + 3 \text{ with } j = 0, \dots, k - 1; \\ 4r(2k + 1) - 1, \text{ if } i = 4k + 1; \text{ and} \\ r(4k + 3) - 2, \text{ if } i = 4k + 2, \end{cases}
$$

and $\partial C^* = \pm \{2, r + 1, 2r + 1, \ldots, (4k + 2)r + 1\}.$

For $i = 1, \ldots, p$, the full *m*-cycles C_i are defined as

 $v_{i,0} = 0$; for $j = 0, \ldots, 2k$, $v_{i,2j+1} = jr - 3 + 4i$, $v_{i,2j+1} = v_{i,2j+1} + 2$, $v_{i,2j+2} =$ $r(4k+2-j) - 4 + 8i$, and $v_{i,2j+2} = v_{i,2j+2} + 1$; and $v_{i,4k+3} = r(2k+1) - 2 + 4i$. For $i = 1, \ldots, p - 1$, the rest of full *m*-cycles C_{p+i} are given by

 $v_{p+i,0} = 0$; for $j = 0, \ldots, 2k$, $v_{p+i,2j+1} = jr + 4i$, $v_{p+i,2j+1} = v_{p+i,2j+1} + 2$, $v_{p+i,2j+2} = r(4k+2-j)+1+8i$, and $v_{p+i,2j+2} = v_{p+i,2j+2}+1$; and $v_{p+i,4k+3} =$ $r(2k + 1) + 1 + 4i$.

An easy verification shows that $\bigcup_{i=1}^{2p-1} \partial C_i = \pm \{1, 3, 4, ..., r-1\} \cup \bigcup_{i=0}^{4k+1} \pm \{(r+1)\}$ $2 + ir, r + 3 + ir, \ldots, 2r - 1 + ir$.

Case 2. $r \equiv 1 \pmod{4}$ and $m \equiv 2 \pmod{4}$, say $r = 4p + 1$ and $m = 4k + 2$.

It suffices to consider the full m - cycles.

For $i = 1, \ldots, p$, the full *m*-cycles C_i are defined as

 $v_{i,0} = 0$; for $j = 0, \ldots, k - 1$, $v_{i,2j+1} = jr - 3 + 4i$, $v_{i,2j+1} = v_{i,2j+1} + 2$; for $j = 1, ..., k - 1$ (if $k \ge 2$), $v_{i,2j} = r(2k + 1 - j) - 6 + 8i$, $v_{i,2j'} = v_{i,2j} + 3$; $v_{i,2k} = r(k + 1) - 5 + 8i$, $v_{i,2k'} = v_{i,2k} + 1$; and $v_{i,2k+1} = rk - 2 + 4i$.

We have $\bigcup_{i=1}^{p} \partial C_i = \pm \{1, 3, ..., r-2\} \cup \bigcup_{i=0}^{p-1} \bigcup_{j=1}^{2k} \pm \{jr+1+4i, jr+2+4i\}.$ For $i = 1, \ldots, p$, let C_{p+i} be the rest of the full m-cycles given by

 $v_{p+i,0} = 0$; for $j = 0, \ldots, k-1$, $v_{p+i,2j+1} = jr-2+4i$, $v_{p+i,2j+1} = v_{p+i,2j+1} +$ 2; for $j = 1, ..., k - 1$, $v_{p+i,2j} = r(2k + 1 - j) - 3 + 8i$, $v_{p+i,2j'} = v_{p+i,2j} + 3$; $v_{p+i,2k} = r(k+1) - 2 + 8i$, $v_{p+i,2k'} = v_{p+i,2k} + 1$; and $v_{p+i,2k+1} = rk - 1 + 4i$.

It follows that $\bigcup_{i=1}^p \partial C_{p+i} = \pm \{2, 4, ..., r-1\} \cup \bigcup_{i=0}^{p-1} \bigcup_{j=1}^{2k} \pm \{jr+3+4i, jr+$ 4 + 4*i*}, and $\bigcup_{i=1}^{2p} \partial C_i = Z_{rm} \setminus \pm \{0, r, 2r, \dots, (2k+1)r\}.$

Case 3. $r \equiv 0 \pmod{2}$ and $m \equiv 0 \pmod{4}$.

Subcase 3.1. $m \equiv 0 \pmod{8}$, say $m = 8k$.

A Note on Cyclic *m*-cycle Systems of $K_{r(m)}$ 431

For
$$
i = 1, ..., r - 1
$$
, the short *m*-cycles $C_i^* = [c_{i,0}, ..., c_{i,4k-1}]_{4rk}$ are defined as
\n
$$
c_{i,j} = \begin{cases} 2rs, \text{ if } j = 2s \text{ with } s = 0, ..., 2k - 1; \\ 2r + i + 8rs, \text{ if } j = 4s + 1 \text{ with } s = 0, ..., k - 1; \text{ and } \\ 5r + i + 8rs, \text{ if } j = 4s + 3 \text{ with } s = 0, ..., k - 1. \end{cases}
$$

We have $\partial C_i^* = \pm \{i, r + i, 2r + i, ..., (4k - 1)r + i\}$ and $\bigcup_{i=1}^{r-1} \partial C_i^* = Z_{rm} \setminus \pm$ $\{0, r, 2r, \ldots, 4rk\}.$

Subcase 3.2. $m \equiv 4 \pmod{8}$, say $m = 8k + 4$.

For $i = 1, ..., r - 1$, the short m-cycles $C_i^* = [c_{i,0}, ..., c_{i,4k+1}]_{r(4k+2)}$ are given by

$$
c_{i,j} = \begin{cases} 2rs, \text{ if } j = 2s \text{ with } s = 0, \dots, 2k; \\ r + i + 8rs, \text{ if } j = 4s + 1 \text{ with } s = 0, \dots, k; \text{ and} \\ 6r + i + 8rs, \text{ if } k \ge 1 \text{ and } j = 4s + 3 \text{ with } s = 0, \dots, k - 1. \end{cases}
$$

 $\partial C_i^* = \pm \{r - i, r + i, 2r + i, 3r + i, ..., (4k + 1)r + i\}$ and $\bigcup_{i=1}^{r-1} \partial C_i^* = Z_{rm} \setminus \pm$ $\{0, r, 2r, \ldots, (4k + 2)r\}.$

Case 4. $(r, m) \equiv (t, 0) \pmod{4}$, $t \in \{1, 3\}$.

Subcase 4.1. $m \equiv 4 \pmod{8}$, say $m = 8k + 4$.

For $i = 1, ..., r - 1$, the short *m*-cycles are $C_i^* = [0, i]_{2r}$ and $\bigcup_{i=1}^{r-1} \partial C_i^* =$ $\pm \{1, 2, \ldots, r - 1, r + 1, r + 2, \ldots, 2r - 1\}.$

If $k \ge 1$ then for $i = 1, \ldots, r-1$, and $j = 1, \ldots, k$, the remaining short m-cycles are $C_{i,j}^* = [0, 4jr + i]_{2r}$ and $\hat{C}_{i,j}^* = [0, (4j + 1)r + i]_{2r}$.

By routine computation, it follows that $\bigcup_{i=1}^{r-1} \bigcup_{j=1}^{k} \partial C_{i,j}^* = \bigcup_{s=0}^{k-1} \pm \{2r + 1 + \dots\}$ 4 $4sr, 2r + 2 + 4sr, \ldots, 3r - 1 + 4sr, 4r + 1 + 4sr, 4r + 2 + 4sr, \ldots, 5r - 1 + 4sr$ and $\bigcup_{i=1}^{r-1} \bigcup_{j=1}^{k} \partial \hat{C}_{i,j}^* = \bigcup_{s=0}^{k-1} \pm \{3r + 1 + 4sr, 3r + 2 + 4sr, \ldots, 4r - 1 + 4sr, 5r + 1 + 1\}$ $4sr, 5r + 2 + 4sr, \ldots, 6r - 1 + 4sr$.

Subcase 4.2. $m \equiv 0 \pmod{8}$, say $m = 8k$.

For $i = 1, ..., r - 1$, and $j = 1, ..., k$, the short m -cycles are $C_{i,j}^* = [0, (4j - 1)$ $(2)r + i]_{2r}$ and $\hat{C}_{i,i}^* = [0, (4j - 1)r + i]_{2r}$.

We have $\bigcup_{i=1}^{r-1} \bigcup_{j=1}^{k} \partial C_{i,j}^{*} = \bigcup_{s=0}^{k-1} \pm \{1 + 4sr, 2 + 4sr, \ldots, r - 1 + 4sr, 2r + 1 + \}$ $4sr, 2r + 2 + 4sr, \ldots, 3r - 1 + 4sr$ and $\bigcup_{i=1}^{r-1} \bigcup_{j=1}^{k} \partial \hat{C}_{i,j}^* = \bigcup_{s=0}^{k-1} \pm \{r + 1 + 4sr, r + 1\}$ $2 + 4sr, \ldots, 2r - 1 + 4sr, 3r + 1 + 4sr, 3r + 2 + 4sr, \ldots, 4r - 1 + 4sr$.

We end this note with a conclusion. Assume m to be even (> 2) and $K_m - I$ to be the complete graph with 1-factor I removed. Observing the consequence of Theorem 6, it is clear that if there exists a cyclic m -cycle system of $K_m - I$, then a cyclic m-cycle system of $K_{rm} - I$ is given. Unfortunately, there does not exist a cyclic m-cycle system of $K_m - I$ except for $m = 4$.

References

- 1. Alspach, B., Gavlas, H.: Cycle decompositions of K_n and $K_n I$, J. Combin. Theory Ser. B **81**, 77–99 (2001)
- 2. Buratti, M., Del Fra, A.: Existence of cyclic k-cycle systems of the complete graph. Discrete Math. **261**, 113–125 (2003)
- 3. Buratti, M., Del Fra, A.: Cyclic Hamiltonian cycle systems of the complete graph. Discrete Math. **279**, 107–119 (2004)
- 4. Bryant, D., Gavlas, H., Ling, A.: Skolem-type difference sets for cycle systems. The Electronic Journal of Combinatorics **10**, 1–12 (2003)
- 5. Fu, H.L., Wu, S.L.: Cyclically decomposing the complete graph into cycles. Discrete Math. **282**, 267–273 (2004)
- 6. Kotzig, A: Decompositions of a complete graph into 4k-gons. (Russian) Mat. Fyz. Casopis Sloven. Akad. Vied **15**, 229–233 (1965)
- 7. Peltesohn, R.: Eine Lösung der beiden Heffterschen Differenzenprobleme. Compositio Math. **6**, 251–257 (1938)
- 8. Rosa, A.: On cyclic decompositions of the complete graph into $(4m+2)$ -gons. Mat. Fyz. Casopis Sloven. Akad. Vied **16**, 349–352 (1966)
- 9. Rosa, A.: On cyclic decompositions of the complete graph into polygons with odd number of edges (Slovak). Časopis Pěst. Mat. $91, 53-63$ (1966)
- 10. Rosa, A.: On decompositions of the complete graph into 4k-gons. (Russian) Mat. Fyz. Casopis Sloven. Akad. Vied **17**, 242–246 (1967)
- 11. Šajna, M.: Cycle decompositions III: Complete graphs and fixed length cycles. J. Combin. Des. **10**, 27–78 (2002)
- 12. Vietri, A.: Cyclic k-cycle system of order $2km + k$; a solution of the last open cases. J. Combin. Des. **12**, 299–310 (2004)
- 13. Wu, S.L., Fu, H.L.: Cyclic *m*-cycle systems with $m \le 32$ or $m = 2_q$ with q a prime power. J. Combin. Des. **14**, 66–81 (2006)
- 14. Wu, S.L., Fu, H.L.:Maximum cyclic 4-cycle packings of the complete multipartite graph, (in preprint)

Received: December 16, 2004 Final Version received: October 24, 2005