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It is shown in this paper that for open systems, states that are localized in space, discrete in energy, and
embedded in the continuum of extended states can be sustained by low-dimensional and channeled leads.
These states have an origin different from that of analogous states discussed by von Neumann and Wigner
�Phys. Z. 30, 465 �1929��. A few representative systems are discussed. These states cause, for example,
infinitely sharp Fano resonance in transport when they are marginally destroyed.
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I. INTRODUCTION

Shortly after the discovery of quantum mechanics, von
Neumann and Wigner pointed1,2 out that potentials defining
closed boundary conditions were not the only cause of dis-
crete and localized �normalizable� states. They showed that
localized states could also be due to the destructive interfer-
ence in the Bragg scattering from certain long-ranged wig-
gling potentials defining open boundary conditions. These
states are embedded in the continuum, decay in space with a
power dependence, and have been studied in atomic and mo-
lecular systems2–4 and superlattices.5 In this paper, we show
that analogous states can also be found in open systems with
low-dimensional leads. They decay exponentially in space,
in contrast to those discussed by von Neumann and
Wigner,1,2 and also have a different origin. Moreover, they
are shown to be related to the infinitely sharp Fano
resonance6 in transport.

To illustrate the properties of such states in low-
dimensional systems, three representative model systems
will be discussed—a tight-binding �TB� molecular system, a
quantum graph with doubly connected one-dimensional �1D�
channels, and a waveguide in a two-dimensional �2D� space.
All three are open systems. The first two are simple enough
for analytic analyses, where some generic properties can be
studied rigorously. The third one is to illustrate the presence
of these states in more realistic systems, but unfortunately it
allows only a numerical analysis.

II. MODELS AND DISCUSSION

A. A tight-binding molecular system

First we consider the TB system shown in Fig. 1�a� which
is defined by the Hamiltonian

H = Hmol + Hlead + Hmol-lead,

Hmol � �
i=1

4

ci
†Vici + �

i=1

4

�
j�i

�ci
†hijcj + H.c.� ,

Hlead � − t �
�=I,II

�
i=0

�

c�i + 1��

† ci�
+ H.c.,

Hmol-lead � �
�=I,II

�
i=1

4

c0�

† h0�ici + H.c., �1�

where c�, �� �1–4,0I–�I ,0II–�II�, is the annihilation op-
erator of a spinless particle on site �, t and Vi are real, and hij
and h0�i are complex in general. Sites 1–4 are in a “mol-
ecule,” and sites 0�–�� are in lead �, �=I and II. This
Hamiltonian may describe a nanoscopic molecule or a me-
soscopic cluster of quantum dots connected to two leads.

Using a basis set �	�
� defined by 	�
�c�
† 	0
 and c� 	0


�0, one can write the time-independent Schrödinger equa-
tion �TISE� H 	�
=E 	�
, where E is the energy of the par-
ticle, into a set of simultaneous finite-difference �FD� equa-
tions. In a lead, the FD equations read t� j−1

� +E� j
�+ t� j+1

� =0,
for j=1–� and �= I or II, where � j

���j� 	�
. The problem
has an analytic solution

� j
� = A�e−ikj + B�eikj , �2�

where A� and B� are arbitrary complex numbers, and

FIG. 1. �Color online� �a� The considered open TB system,
which consists of a molecule with four sites �labeled by 1–4� con-
nected to two leads �labeled by I and II� with serially connected
sites �labeled by i� for lead �, where i=0–� and � = I and II�. The
hoppings are denoted by bonds. �b� The transmission probability T
at different energies for V2=0 �solid line�, where there is a LSC
�located by a dotted line�; and V2=0.05t �dash-dotted line� and 0.3t
�dash-dot-dotted line�, where there are no LSCs. Those system pa-
rameters not mentioned are referred to in the text.
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k�	k 	 �cos−1�−E / �2t���k�E�. Since k�0, the ingoing or
inward propagating wave amplitudes are AI and AII.

There remain six FD equations not solved by Eq. �2�.

Replacing �0
� and �1

� by A� and B� using Eq. �2�, and writing
� j ��j 	�
 for j=1–4, the six equations can be written as a
matrix equation,

�
− teik�E� − E h0I1

h0I2
h0I3

h0I4 0

h0I1
*

V1 − E h12 h13 h14 h0II1
*

h0I2
*

h12
* V2 − E h23 h24 h0II2

*

h0I3
*

h13
* h23

* V3 − E h34 h0II3
*

h0I4
*

h14
* h24

* h34
* V4 − E h0II4

*

0 h0II1
h0II2

h0II3
h0II4 − teik�E� − E


�
BI

�1

�2

�3

�4

BII


 = �
�E + te−ik�E��AI

− h0I1
* AI − h0II1

* AII

− h0I2
* AI − h0II2

* AII

− h0I3
* AI − h0II3

* AII

− h0I4
* AI − h0II4

* AII

�E + te−ik�E��AII


 , �3�

where the components from top to bottom are, respectively,
the FD equations centered at sites 0I, 1, 2, 3, 4, and 0II. When
AI and AII are given, there are six unknowns �BI, �1, �2, �3,
�4, and BII� to be found. The unknowns can be found by a
straightforward matrix inversion when the square matrix has
a nonzero determinant. Notably, the determinant actually can
vanish at certain energies for some system configurations,
implying a nontrivial solution at AI=AII=0 �no ingoing
waves�. The solution must be localized within the molecule,
since the outgoing wave amplitudes BI and BII are necessar-
ily vanishing due to unitarity.

The determinant of the square matrix in Eq. �3� vanishes
whenever the rows or columns of the matrix are not linearly
independent. For instance, consider the configuration h0I2

=h0I3
, h0II2

=h0II3
, h12=h13, h24=h34, h23=h23

* , and V2=V3, at
the energy E=V2−h23. In this example, the third and fourth
rows of the matrix are seen to be identical, which means that
the determinant of the matrix vanishes, and the solution to
the problem is not unique. Note that the system in this con-
figuration is not really “symmetric” in the usual sense.

A complete solution ���� for Eq. �3�, in the case of a
simple symmetric system in which h12=h13=h24=h34��,
h0I1

=h0II4
��, and h14=h23=h0I2

=h0I3
=h0I4

=h0II1
=h0II2

=h0II3
=V1=V2=V3=V4=0 �which is similar to the model

considered in Ref. 7�, at E=0 �i.e., k=	 /2�, where the de-
terminant vanishes, is found to be

���� = �ext��� + 
�loc��� ,

�ext��� =
t�AI − AII�

i�
���,1 − ��,4� −

�

�
�AI��,2 + AII��,3�

+ �
j=0

�

��i−jAI + ijAII���,jI
+ �i−jAII + ijAI���,jII

� ,

�loc��� = ��,2 − ��,3, �4�

where 
 is an arbitrary complex number, i��−1, and
��,��=1 �0� when �=�� ������. � is seen to be a superpo-

sition of an extended state �ext and a localized state �loc.
When AI=AII=0 or 	
 	 →�, �→�loc and it is a localized
state in the continuum �LSC�.

The origin of the LSCs in TB systems can also be under-
stood in a more direct manner, given the insight from the
observation that �loc vanishes at the sites in the molecule in
contact with the leads �see Eq. �4��. In general, if �A and �B
are, respectively, the stationary states at an energy E in two
isolated clusters of sites, labeled by A and B, and �A�jA

0�
=�B�jB

0�=0, where jA
0 �jB

0� is a site on cluster A �B�, then the
direct product �A � �B is a stationary state at E in a system
where clusters A and B are coupled by tABcjA

0
† cjB

0 +H.c. This is

because, though the FD equations for the coupled clusters
contain the additional terms tAB��jB

0� and tAB
* ��jA

0�, the wave
function �A � �B is still a solution of the FD equations since
these terms vanish due to �A�jA

0�=�B�jB
0�=0. If one of the

clusters, say cluster A, is infinitely large or open and �A is
trivial, whereas cluster B is finite sized and �B is nontrivial,
then �A � �B is a LSC. The generalization of the above ar-
gument to the case with more than two clusters is straight-
forward. An example of such a case is the LSC in Eq. �4�,
which can be constructed from three clusters, where two of
them �the two leads� have infinitely large sizes and trivial
stationary states.

For AI=1 and AII=0, the transmission probability T de-
fined by T�	BII	2 is plotted versus the energy E for �=0.2t
and �=0.4t in Fig. 1�b�. In the same figure, T is also plotted
for the same system parameters but V2 =0.05t and 0.3t,
where the LSC is destroyed and has become an almost local-
ized state. It is seen that T can reflect the LSC only when the
LSC is destroyed by a perturbation and a Fano resonance
appears.8 The blueshifts of the resonances from the energy of
the LSC is due to the increase of the energies of the almost
localized states by V2.

Therefore a comprehensive understanding of the problem
may be stated as follows. For problems of open systems,
whenever the determinant of the matrix to be inverted van-
ishes at an energy, there is a localized state at that energy. If
the energy is in a continuum of extended scattering states,
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the localized state is a LSC, and a complete solution is an
arbitrary superposition of the LSC and the extended states
degenerate with it. As the states are decoupled, the transport
that is related only to the extended states does not reflect the
presence of the LSC. When a LSC is destroyed, or a previ-
ously localized state is coupled with the extended states, the
passing of a particle from one lead to the other through the
molecule can take place via two routes—the extended states
spanning the leads and the molecule or the almost localized
state in the molecule. That results in a nonresonant transmis-
sion amplitude and a resonant transmission amplitude, and
the interference results in a Fano resonance.6 When the al-
most localized state is on the verge of decoupling from the
continuum and acquiring an infinitely long lifetime, the reso-
nance is infinitely sharp.9

B. A quantum graph

The second example is a quantum graph. The quantum
graphs are multiply connected 1D systems, which are meant
to be effective models of multiply connected quasi-one-
dimensional �Q1D� systems at low energies. They are de-
fined by the following conditions. Away from the junctions, a
particle is governed by a 1D Schrödinger equation. At a junc-
tion, the wave functions on different branches are connected
by a chosen connecting scheme.10 For a junction of three
branches, we have chosen a scheme defined by Eqs. �1� �1
=�2=�3 and �2� ��1+�i=1

3 ��i /�xi=0, where �i and xi are,
respectively, the wave function and coordinate defined on
branch i. The coordinates are directed away from the junc-
tion, and � is a given real parameter with dimension of
1/length.

We consider a 1D ring connected to two 1D leads as
shown in Fig. 2�a�. A potential everywhere equal to zero is
assumed, and the wave function at energy E on the branch
labeled by � �� = I, II, III, and IV� is ���x��=A�eikx�

+B�e−ikx�, where A� and B� are arbitrary complex numbers

and k��2mE /�. Applying the mentioned connecting
scheme at the two junctions, we obtain six simultaneous
equations or a matrix equation,

�
− 1 1 1 0 0 0

− 1 0 0 1 1 0

1 − i�/k 1 − 1 1 − 1 0

0 eikLII e−ikLII 0 0 − 1

0 0 0 eikLIII e−ikLIII − 1

0 − eikLII e−ikLII − eikLIII e−ikLIII 1 − i�/k


�
BI

AII

BII

AIII

BIII

BIV


 = �
AI

AI

AI�1 − i�/k�
AIV

AIV

AIV�1 − i�/k�

 , �5�

where LII and LIII are, respectively, the lengths of branches II
and III. When the ingoing wave amplitudes AI and AIV are
specified, there are six unknowns to be found �BI, AII, BII,
AIII, BIII, and BIV�.

From Eq. �5�, a LSC is seen at k=kn�nn0	 /L0, when
LII :LIII=nII :nIII, n0�min�nII ,nIII�, L0�min�LII ,LIII�, n, nII,
and nIII are integers, and nII+nIII is even. The above condi-

tion results in eiknLII=eiknLIII= �−1�nn0 �
n, and for the square
matrix in Eq. �5�, the differences between the corresponding
elements in the first and second rows are identical to those
between the fourth and fifth rows. Therefore the rows are not
linearly independent and the determinant of the matrix van-
ishes. A complete solution �n�x�, where x� �x� 	�
=I , II , III , IV�, is found to be

FIG. 2. �Color online� �a� The considered open quantum graph,
which consists of a 1D ring �formed by the branches labeled by II
and III� connected to two leads �labeled by I and IV�. A coordinate
x� with positive direction indicated by the arrow is defined on
branch � ��= I, II, III, and IV�. �b� The transmission probability T
is plotted versus a dimensionless wave number � defined by �
�k�LII+LIII� / �2	�, for �=0, and LII :LIII=1 :3 �solid line� and
1:3.4 �dash-dotted line�. There is a LSC for the 1:3 case �indicated
by a dotted line�, but not for the 1:3.4 case in this energy range.
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�n�x� = �n
ext�x� + 
�n

loc�x� ,

�n
ext�x� = �

�=I,IV
�A�eiknx� + �n�Ā�,A��e−iknx���x,x�

+ �
�=II,III

��n�AI,AIV�eiknx�

+ �n�AIV,AI�eikn�L�−x����x,x�
,

�n
loc�x� = sin�knxII��x,xII

− sin�knxIII��x,xIII
,

�n�X,Y� �

nX − Y�n

1 + �n
, �n�X,Y� �

X�3 + �n� + 
nY�1 − �n�
4�1 + �n�

,

ĀI � AIV, ĀIV � AI ,

�n �
�

ikn
, �6�

where 
 is an arbitrary complex number, and �x,x�
=1 �0�

when x=x� �x�x��. The solution �n is a superposition of a
LSC �n

loc and an extended state �n
ext. As in the case of the

TB model discussed in Sec. II A, �n
loc vanishes at the point in

contact with the leads
Since the LSC is decoupled from the extended states, it

will not be revealed in those spectral properties due to the
scattering. For quantum graphs, Texier11 has pointed out that
the Friedel sum rule, which is related to the phases of the
eigenvalues of the scattering matrix, fails to count the num-
ber of states in a scattering region in such a situation. Ex-
perimentally, it has also been found12 that a 1D lead does not
couple to a 2D wave function when the lead is located at a
node of the wave functions.

The LSCs in the defined quantum graph can also be un-
derstood directly from the connecting equations at the junc-
tions. If a stationary state at energy E in a graph labeled by A
has a node at a point P on one of the branches, then labeling
the segments of the branch on the two sides of P by 1 and 2,
defining coordinates x1 and x2, respectively, with positive
directions directed away from P, and denoting the stationary
wave functions on segments 1 and 2 by �1�x1� and �2�x2�,
respectively, one has �1=�2 �both are vanishing� and
��1 /�x1+��2 /�x2=0 at P, and the stationary wave function
can be written in the form of the direct product �1 � �2
� �others

A , where �others
A is the direct product of the wave func-

tions on the other branches in the graph. Similarly, for a
graph labeled by B containing a branch with an open end
labeled by 3, which has also a stationary state at E, the sta-
tionary wave function can be written in the form �3
� �others

B , where �3 is the wave function on branch 3, and
�others

B is the direct product of the wave functions on the other
branches in the graph. If �3 is trivial, when the open end of
branch 3 is attached to P by demanding that the connecting
equations �1=�2=�3 and ��1+�i=1

3 ��i /�xi=0 are satisfied
at P, the direct product �1 � �2 � �3 � �others

A
� �others

B is a sta-
tionary solution at E in the coupled graphs, since the con-
necting equations are automatically satisfied. If graph A is

finite and �1 � �2 � �others
A is nontrivial, whereas graph B is

infinitely large and �3 � �others
B is trivial, the stationary state

in the coupled graphs is a LSC. Note that the above argu-
ments can also be straightforwardly generalized to the case
of more than two clusters, and the LSC in Eq. �6� is an
example of this.

For AI=1 and AIV=0, the transmission probability T is
defined by T= 	BIV	2. In Fig. 2�b�, T is plotted versus the
wave number for �=0, LII :LIII=1 :3 and 1:3.4, at the vicin-
ity of a LSC or almost localized state. For an isolated ring
with a uniform potential on it, the nodes of the stationary
standing wave states are equally spaced, and hence “com-
mensurate” branch lengths �such as 1:3� in the open graph
give rise to LSCs. Note the Fano resonance when the LSC is
destroyed.

C. A two-dimensional waveguide

Our third example is a waveguide in a 2D continuous
space as shown in Fig. 3�a�. The waveguide has a width of
W, and the potential in the waveguide is set at zero; there is
also a square region that is set at VG. We will call the infi-
nitely extended regions on both sides the leads, and the cen-
tral finite-sized region a resonating cavity. This system may
model a mesoscopic fabricated structure.

We discretize the continuous space into a square lattice,
and the TISE becomes a set of simultaneous FD equations
that read13,14 −t��i−x̂+�i+x̂+�i−ŷ +�i+ŷ�+ �Vi−E+2t��i=0,
where E is the energy, t��2 / �2ma2� �a is the distance be-

FIG. 3. �Color online� �a� The considered open 2D waveguide.
Two leads �labeled by I and II� of width W are attached at opposite
sides of a square cavity �shaded region�. The potential in the leads is
kept at zero, and that in the cavity is kept at VG. A coordinate
system �x ,y� is defined in the cavity as shown. �b� The transmission
probability T is plotted versus a dimensionless wave number � de-
fined by ���2mEW / �	� �, for the case shown in �a� �solid line�
and the case with an additional � potential V�x ,y�=v0��x
−W /6���y−W /6� �dash-dotted line�. In this energy range, LSCs
�indicated by dotted lines� are found only in the case of no � po-
tential. The pairs of integers in the form �mx ,my� indicate the pro-
files of the LSCs.
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tween two nearest sites�, x̂ and ŷ are, respectively, the unit
vectors along the x and y directions, i��ix , iy� �where ix and
iy are integers�, and �i and Vi are, respectively, the wave
function and potential at ia. The FD equations are solved as
in the first example.

In a lead labeled by � ���I or II�, taking the integer ix
�

�iy
�� as the longitudinal �transverse� coordinate, the wave

function at energy E for Vi=0 is13,14

���ix
�,iy

�� = �
m=1

N�

�Am
�eikm

� ix
�a + Bm

�e−ikm
� ix

�a�

�
1

�N� + 1
sin� m	

N� + 1
�iy

� + 1�� , �7�

where Am
� and Bm

� are arbitrary complex numbers, iy
�=0–N�

−1 �where W��N�+1�a�, and km
� is defined by E�−2t�2

−cos�km
�a�−cos�m	 / �N�+1���, where the cosine is defined

by cos ���ei�+e−i�� /2 for a complex �, and the phase of km
�

is chosen such that Am
� is the amplitude of a wave propagat-

ing or exponentially decaying inward. The multiple trans-
verse modes for the transverse coordinate iy

� is a consequence
of the quasi-one-dimensionality.

Taking the ingoing amplitudes �Am
�� as the input, the un-

knowns will be �Bm
�� �amplitudes of the waves propagating or

exponentially decaying outward� and the pointwise wave
function in the cavity �cavity. The FD equations centered at
the sites within the cavity, and the uniqueness requirement of
the wave function at the interfaces between the cavity and
the leads results in a matrix equation of the form

M�E� · 	�Bm
��,�cavity
 = 	�Am

��
 , �8�

where 	�Am
��
 and 	�Bm

��, �cavity
 are, respectively, the known
and unknown column matrices, and M�E� is a square matrix
whose determinant det M�E� may vanish and imply LSCs in
the system.

When there are no ingoing waves �i.e., Am
� =0 for all � and

m� and hence 	�Am
��
=0, a nontrivial solution for

	�Bm
�� ,�cavity
 can be obtained if det M�E�=0. This is neces-

sarily a localized state since the Bm
�’s for the outward propa-

gating waves necessarily vanish due to unitarity, leaving only
the possibility of nonvanishing Bm

�’s for the outward expo-
nentially decaying waves. If det M�E�=0 occurs at an energy
E0 in the continuum, a complete solution at E0 is a superpo-
sition of the localized state found by det M�E�=0 and the
extended states found by inverting M�E� at E0+�, �→0.

Note that, to find a nontrivial solution for the column
vector 	�
 in an equation S 	�
=0, where S is a square ma-
trix, is to find an eigenvector of S that corresponds to a
vanishing eigenvalue �since the equation is just S 	�

=0· 	�
�. The eigenproblem can be solved by a numerical
package such as EISPACK.26 In general, there can be simulta-
neously more than one eigenvectors having vanishing eigen-
values, and these eigenvectors are the degenerate localized
states in the original problem.

Figure 3�b� shows the transmission probability T for a
particle with an energy E, injected from the first subband in
lead I, and passed to the first subband in lead II. Letting

Am
� =��,I�m,1, T is given by T�	B1

II	2. We choose
VG=−15�2 / �mW2�, and consider the cases with and without
an additional perturbing � potential V�x ,y�=v0��x
−W /6���y−W /6� in the cavity,15 where v0=5�2 /m, and x
and y are the coordinates defined in Fig. 3�a�.

In the considered energy range in Fig. 3�b�, zeros of
det M�E� �Ref. 16� or LSCs are found only for the case with-
out a perturbing � potential. Note that LSCs can also exist at
energies beyond the first subband �at ��2�. We have used
N�=17 in Fig. 3�b�, and since we find the LSCs qualitatively
the same as those in the calculation using N�=8,17 we be-
lieve they will survive in the continuous space limit. As
usual, Fano resonances appear when the LSCs are destroyed.
The locations of the resonances depend on the details of the
perturbing potential, but when the perturbing potentials are
vanishingly small, the resonances are always found with in-
finitesimal widths on the locations of the LSCs. A notewor-
thy point is that the � potential does not affect a LSC when it
is on a node of it.

The LSCs in Fig. 3�b� have profiles with exponential tails
in the leads, and resemble the fictitious standing waves
sin�mx	x /W�sin�my	y /W� in the cavity, where mx and my

are integers. Therefore we will use �mx ,my� to label the LSCs
for the convenience in our discussion. The four LSCs in Fig.
3�b�, from the lowest to the highest energy, resemble stand-
ing waves with �mx ,my�= �1,2�, �2,2�, �1,3�, and �2,3�, re-
spectively. The probability densities or squares of the abso-
lute values of the wave functions of two of the LSCs are
shown in Fig. 4. The energy of a LSC is found to be always
redshifted from the energy of the corresponding fictitious
standing wave in the cavity ESW�mx ,my�, where
ESW�mx ,my�=VG+ �mx

2+my
2�	2�2 / �2mW2�. Moreover, it

seems that the larger the exponential tails, the greater the
redshift �comparing Figs. 4�a� and 4�b��. This is conceivable
since the tails lead to a lowering of the kinetic energies.

The presence of the above LSCs can be understood in an
intuitive picture. Notice that the first two LSCs, which re-
semble the �mx ,my�= �1,2� and �2,2� standing waves, are em-
bedded only in the first subband. Since their transverse wave
functions resemble sin�2	y /W� and are orthogonal to the
first transverse modes in the leads, sin�	y /W�, the standing
waves are trapped in the cavity. With this picture, the ab-
sence of a LSC with my =1, such as a LSC with �mx ,my�
= �2,1� or �3,1�, is conceivable. The two higher-energy
LSCs, which resemble the standing waves with �mx ,my�
= �1,3� and �2,3�, are embedded in both the first and second
subbands. Likewise, the trapping can be understood by the
observation that their transverse wave functions with my =3
are orthogonal to the transverse modes in the leads with my
=1 and 2. In this energy range we do not find LSCs with
my =1 and 2, such as �3,1� and �3,2�.18–21

The LSCs as the eigenstates of M�E� are orthogonal to
each other, though the M�E� in Eq. �8� is non-Hermitian in
general. The orthogonality can be argued from the fact that
the LSCs are localized and are not affected by a truncation of
the leads at distances far away from the cavity. Since the
LSCs form a subset of the set of eigenenergy states of the
Hermitian Hamiltonian matrix for the truncated �closed� sys-
tem, they are orthogonal.
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III. CONCLUDING REMARKS

The behaviors of the LSCs in open low-dimensional sys-
tems have been illustrated by examples of various kinds.
These LSCs are obtained by studying the zeros of the deter-
minant of the matrix to be inverted in a considered problem.
A zero corresponds to at least one localized state. The crucial
factor in the formation of these LSCs is the low dimension-
ality of the leads, and the symmetry in the systems is not a
necessary condition.22

For the TB molecule and quantum graph, the one-
dimensionality of the leads enables them to attach just at the
nodes of a LSC in the scattering region, thereby leaving the
LSC intact. The same argument also holds for the case of
higher-dimensional leads with 1D constrictions at the ends
joining the scattering region. For the case of Q1D leads, the
delocalization of a standing wave in the cavity can be pro-
hibited by the nonoverlapping of its transverse wave function
and the transverse modes in the leads, and the standing wave
is turned into a LSC.23

In view of the possibility of such LSCs not only in the
case of idealized 1D leads but also in the case of Q1D leads,
such LSCs may exist or may be realizable in, e.g., mesos-
copic structures24 and nanobridges or molecular junctions,25

and may not be of academic interest only.
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