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Reliable Control of Nonlinear Systems via Variable
Structure Scheme

Yew-Wen Liang and Sheng-Dong Xu

Abstract—This study proposes a class of variable structure stabilizing
laws which make the closed-loop system be capable of tolerating the
abnormal operation of actuators within a pre-specified subset of actuators.
The ranges of acceptable change in control gain magnitude that preserves
system’s stability are estimated for the whole set of actuators. These ranges
are shown to be able to be made larger than those obtained by linear
quadratic regulator (LQR) reliable design (Veillette, 1995, and Liang et al.,
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2000) by the choice of control parameters. Besides, this approach doesnot
need the solution of Hamilton-Jacobi (HJ) equation or inequality, which is
essential for optimal approaches such as LQR and reliable designs.
As a matter of fact, this approach can also relax the computational burden
for solving the HJ equation or inequality.

Index Terms—Hamilton–Jacobi (HJ) equation, nonlinear systems, reli-
able control, variable structure control (VSC).

I. INTRODUCTION

The study of reliable control has recently attracted lots of atten-
tion (see, e.g., [1]–[3], [5], [8]–[10], and [12]–[15]). The objective of
this study is to design an appropriate controller such that the closed-
loop system can tolerate the abnormal operation of some specific con-
trol components and retain an overall system stability with acceptable
system performance. An abnormal operation may include degradation,
amplification and partial outage. From the approach viewpoint, in gen-
eral, reliable control systems can be classified as active [1]–[3], [5] and
passive [8]–[10], [12]–[15]. In this note, we consider only the passive
issues. In an active reliable control system, faults are to be detected
and identified by a fault detection and diagnosis (FDD) mechanism.
Then the controllers are reconfigured according to the online detec-
tion results in real time. On the other hand, the passive approach ex-
ploits system’s inherent redundancies to design a fixed controller so
that the closed-loop system can achieve an acceptable performance not
only during normal operation but also under various components fail
without the need of FDD and controllers’ reconfiguration. Although
the performances of the active reliable control which uses controllers’
reconfiguration are generally superior to those of passive one under
various faulty situations, the active approach needs a reliable FDD but
the passive one doesnot. This is important when the available reaction
time is short after the occurrence of faults.

Several approaches for passive reliable control have been proposed,
for example, linear matrix inequality (LMI)-based approach [10], al-
gebraic Riccatti equation (ARE)-based approach [12], [13], coprime
factorization approach [14] and Hamilton–Jacobi (HJ)-based approach
[9], [15]. Although the HJ-based approach is mainly for nonlinear sys-
tems, its reliable controllers need a solution of an HJ equation or in-
equality, which is known not easy to obtain. A power series method
[6] may alleviate the difficulty of solving the HJ equation or inequality
through computer calculation. However, the obtained solution is only
an approximate one and, when system is complicated, the computa-
tional load grows fast as the order of the approximated solution in-
creases. Due to these potential drawbacks of the HJ-based approach,
this note investigates the reliability issues from the variable structure
control (VSC) viewpoint, which is known to have the advantages of
fast response and low sensitivity to model uncertainties and/or external
disturbances (see, e.g., [4], [7], and [11]). In this note, we propose a
VSC design that is shown to be able to tolerate the abnormal operation
of actuators within a prespecified subset of actuators. The regions of
acceptable change in control gain magnitude that preserves system’s
stability are also estimated. These regions are shown to be able to be
made larger than those obtained in [9] and [13] by suitable choice of
control parameters. Besides, the VSC approach needs not the solution
of HJ equation or inequality. Thus, this approach can also alleviate the
computational burden for solving the HJ equation or inequality.

This note is organized as follows. The reliable control problem and
the main goal of the note are given in Section II. This is followed by de-
signing the VSC controllers and analyzing their reliability. An example
is also given in this section to demonstrate the use and the benefits of
the design. Finally, Section IV gives concluding remarks.

0018-9286/$20.00 © 2006 IEEE
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II. PROBLEM STATEMENT

Consider a class of nonlinear control systems as described by

_x1 = f1(x) +G
 (x)u
 (1)

and

_x2 = f2(x) +G
 (x)u
 +G
 (x)u
 + d: (2)

Here, x1 2 IRn ;x2 2 IRn , and x = (xT1 ;x
T
2 )

T denotes the
system states, u
 2 IRm and u
 2 IRn are the control inputs,
d = (d1; . . . ; dn )T denotes possible model uncertainties and/or
external disturbances, and ( � )T denotes transpose of a matrix or a
vector. f1(x) 2 IRn ; f2(x) 2 IRn ; G
 (x) 2 IRn �m ; G
 (x) 2
IRn �m , and G
 (x) 2 IRn �n are smooth functions. For the
interest of study, we assume that f1(0) = 0 and f2(0) = 0. Note
that we have divided the control inputs into two disjoint groups 

and 
0 within which the abnormal operation of actuators in the set

 must be tolerated. We also note that system (1)–(2) might come
from a general nonlinear affine system _x = f(x) + G(x)u through
a diffeomorphic transformation. When n1 = n2; f1(x) = x2 and
G
 (x) = 0, system (1)–(2) reduces to an important class of second
order dynamical systems.

If all the actuators in the set 
 fail to operate, (1)–(2) becomes

_x1 = f1(x) (3)

and

_x2 = f2(x) +G
 (x)u
 + d: (4)

In practical applications, the number of susceptible actuators in 
 may
be selected to be as many as possible. In addition, we assume that
system (3)–(4) is in regular form. That is, G
 (x) is a nonsingular ma-
trix, as described in Assumption 1. This assumption is necessary for
the existence of the equivalent control (see, e.g., [4]).

Assumption 1: The origin of system (3)–(4) is locally asymptotically
stabilizable and G
 (x) is a nonsingular matrix.

In addition to Assumption 1, we also impose the next two assump-
tions.

Assumption 2: Suppose there exists a function x2 = �(x1) such
that the reduced-order system _x1 = f1(x1; �(x1)) has an asymptoti-
cally stable (AS) equilibrium point at the origin x1 = 0.

Assumption 3: There exist functions �i(x; t) � 0; i = 1; . . . ; n2,
such that jdij � �i(x; t).

The objective of this study is then to organize u
 and u
 so that
the origin of the closed-loop system is AS even when the actuators
in the set 
 experience abnormal operation. The susceptible actuators
in this design are used to improve system performance when they are
available.

III. MAIN RESULTS

To achieve the objective of the note as stated previously, in this sec-
tion we first employ the VSC technique to design the reliable con-
trollers. This is followed by analyzing the overall reliability of the de-
signed system. Finally, we present an illustrative example to demon-
strate the benefits of the design.

A. Design of Reliable Controllers

The idea is first to organize a VSC law u
 as if u
 is unavailable.
Then the remaining controls u
 are designed to promote the overall

system performances. Suppose now that all the actuators in 
 are un-
available. Then, by Assumption 2, we choose the sliding surface to be

s = x2 � �(x1) = 0: (5)

It follows from (3)–(4) that

_s = f2(x) +G
 (x)u
 �
@�

@x1
� f1(x) + d: (6)

Following the VSC design procedure [11], the VSC law for actuators
in 
0 is designed as

u
�


 = G�1



(x)

@�

@x1
� f1(x)� f2(x)� �
 � sgn(s)

(7)

where �
 = diag(�1; . . . ; �n ) with �i > �i(x; t) + ri and ri > 0
for all i = 1; . . . ; n2; sgn( � ) denotes the sign function and sgn(s) :=
(sgn(s1); . . . ; sgn(sn ))T . By direct calculation

s
T _s � �

n

i=1

ri � jsij (8)

where si denotes the ith entry of the sliding vector s. Equation (8)
implies that the system states will reach the sliding surface in a finite
time and remain there [11]. Then, by Assumption 2, the reduced-order
dynamics on sliding surface makes the states slide toward the origin.

In addition to the design of actuators in 
0, as described by (7), we
now suppose that actuators in
 are also available. The governing equa-
tion in this case is given by (1)–(2). From (1)–(2), and (5), u
 = u

�




given in (7), and (8) we have

s
T _s � �

n

i=1

ri � jsij + s
T�(x)u
 (9)

where�(x) := G
 (x)�((@�)=(@x1))�G
 (x). Clearly, an intuitive
candidate of u
 to make sT s more negative than the case of u
 = 0

has the form

u
�


 = ��
 � sgn(�
T (x)s) (10)

where�
 := diag(�1; . . . ; �m ) and�i � 0 for all i = 1; . . . ;m1. In
practical applications, actuators might experience a change in control
gain magnitude which covers the cases of normal operation, degrada-
tion, amplification and outage. Therefore, u
 has the form of (11)

u
 = N
u
�


 (11)

whereN
 2 IRm �m is a nonsingular diagonal matrix which denotes
the change in gain magnitude of u�
. Clearly, the two cases N
 = I
and N
 = 0 correspond to the situations where all actuators in 
 are
in normal operation and are in outage, respectively. It follows from
(9)–(11) that

s
T _s � �

n

i=1

ri � jsij �

m

j=1

(N
)jj � �j � j(�
T (x)s)j j (12)
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Fig. 1. Relation between and in the ROS estimation of VSC reliable design.

where ( � )j and ( � )ij denote the jth entry of a vector and the
(i; j)-entry of a matrix, respectively. Equation (12) implies that, when
some or all of actuators in 
 are healthy and u

�



has been chosen in

the form of (7), system states towards the sliding surface are faster
than the case when all actuators in 
 fail to operate. These lead to the
next result.

Theorem 1: Suppose that Assumptions 1–3 hold. Then the origin of
system (1)–(2) is locally asymptotically stable (AS) under the controls
(7) and (10) even when some or all of actuators in 
 experience ab-
normal operation in the sense of (11).

B. Reliability Analysis

System (1)–(2) with controls given by (7) and (10) discussed above
has been shown to be able to tolerate any abnormal operation of actu-
ators in 
. In this section, we will also estimate the allowable changes
in control gain magnitude of actuators in 
0 that still guarantee asymp-
totic stability performance of the system with control (7) and (10). For
this purpose, we suppose that G
 (x) is a diagonal matrix and the ac-
tual effective controls in 
0 have the form

u
 = N
 u
�


 (13)

whereN
 2 IRn �n is a nonnegative diagonal matrix which denotes
the change in gain magnitude of u�



. Under the effective controls (11)

and (13), the overall system becomes

_x1 = f1(x) +G
 (x)N
u
�


 (14)

and

_x2 = f2(x) +G
 (x)N
u
�


 +G
 (x)N
 u
�


 + d: (15)

Since both G
 (x) and N
 are diagonal matrices, we then have

s
T _s = s

T (N
 � I)
@�

@x1
f1(x)� f2(x)

� N
 �
 sgn(s) + d

�

m

j=1

�j(N
)jj j(�(x)
T
s)j j: (16)

Similar to the derivation of robust controllers in [11], we have the next
result, which addresses the reliability of the design.

Theorem 2: Suppose that Assumptions 1–3 hold and G
 (x) is a
diagonal matrix. Then, the origin of system (1)–(2) is locally AS under
the effective controls given by (11) and (13) if

�i(x; t) + (N
 � I)
@�

@x1
� f1(x)� f2(x)

i

< (N
 �
 )ii; for all i = 1; . . . ; n2: (17)

To compare the result with those given in [9] and [13], we consider
the special case where d = 0 and N
 � I=2. The latter implies that
j(N
 �I)iij � (N
 )ii. Condition (17) can then be simplified as (18).

Corollary 1: Suppose that N
 � I=2;d = 0; G
 (x) is a diag-
onal matrix, and Assumptions 1 and 2 hold. Then, the origin of system
(1)–(2) is locally AS under the control given by (13) if

@�

@x1
f1(x)� f2(x)

i

< (�
 )ii;

for all i = 1; . . . ; n2: (18)

Remark 1: If all states are available for feedback, then the con-
trol parameters (�
 )ii (or �i) in (18) can be assigned dynamically
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Fig. 2. Norm of states, sliding vector, and control inputs for = 0.

as j(((@�)=(@x1))f1(x)� f2(x))ij+ ci for some positive constant ci.
Otherwise, they can be tuned as large as possible to increase the re-
sponse but fulfill the maximum control magnitude constraint. Clearly,
(18) will establish a region of stability (ROS) that depends on the choice
of �i.

Remark 2: From Corollary 1, we know that, when the control pa-
rameters (�
 )ii (or �i) for i = 1; . . . ; n2 are selected to satisfy (18),
the ranges N
 � I=2 and N
 � 0 are sufficient to guarantee the
asymptotic stability performance of the closed-loop system. Since this
note only deals with passive reliable control (i.e., without requiring
fault information), the conditions N
 � I=2 and N
 � 0 then
characterize the reliability level of the closed-loop system. That is, the
asymptotic stability is preserved even when the actuators in 
 experi-
ence abnormal operation in any order and in any combination. A larger
region for N
 may also be allowed if �
 is chosen to satisfy (17).
Thus, the acceptable regions of N
 and N
 for system’s stability can
be made larger than those given by [9] and [13]. However, the enlarge-
ment of the gain magnitude �
 might come at the price of increased
chatter in the sliding mode.

Remark 3: It is noted that N
u
�


 = 0 if system states keep staying
on sliding surface. This implies that the actuators in 
 have no effect
on reduced-order dynamics no matter whether or not they are in normal
operation. In order to promote system performance on sliding surface
and keep the same reliability level as in Theorem 2 when the actua-
tors in 
 are available, u�
 can be modified as u��
 given by (19) if a
Lyapunov function V (x1) of the reduced-order system given in As-
sumption 2 is known

u
��


 = ��
 � sgn(�
T (x)s)�K
 �G

T

 (x1; �(x1))

@V

@x1

T

(19)

where K
 = diag(k1; . . . ; km ) and ki � 0 for all i = 1; . . . ;m1.
The derivatives of V (x1) along the reduced-order system _x1 =

f1(x1; �(x1)) + G
 (x1; �(x1))N
u
 with u
 = u
��


 and
u
 = u

�


 are found to be _V ju =u = ((@V )=(@x1)) �

f1(x1; �(x1))�
m

i=1
ki � (N
)i � (((@V )=(@x1))G
 (x1; �(x1)))

2

i

and _V ju =u = ((@V )=(@x1)) � f1(x1; �(x1)), respectively, since
N
u

�


 = 0 whenever system states keep staying on sliding surface.
Clearly, _V ju � _V ju < 0. This implies that the convergence speed
of the reduced-order system with u
 = u

��


 is faster than that with
u
 = u

�


. Next, we investigate the reliability of (1)–(2) under controls
(13) with u

�


 being replaced by u
��


 . In this case, sT _s is modified
from (16) as

s
T _s

= s
T (N
 � I)

@�

@x1
f1(x)� f2(x)

�N
 �
 � sgn(s) + d

�

m

j=1

(N
)j �j � j(�(x)
T
s)j j

�kj
@V

@x1
G
 (x1; �(x1))

j

�T (x)s
j

: (20)

To guarantee the same reliability level as those given by Theorem 2
and Corollary 1, the control parameters �j and kj should be selected
to satisfy

kj �
@V

@x1
G
 (x1; �(x1))

j

� �j ; for j = 1; . . . ;m1 (21)

in addition to (17). In particular, if �(x) = 0, then (16) and (20) be-
come the same. This implies that the requirement of (21) can be re-
moved without affecting the reliability level.
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Fig. 3. Norm of states, sliding vector, and control inputs for = 2.

C. An Illustrative Example

Consider a nonlinear control system _y = f(y) + u1 � g1(y) +
u2 � g2(y) from [9] with f(y) = (�y31 ;�y2 + y3y4;�y3 + y24 ; y4 +
y3y4)

T ;g1(y) = (0; y1; 0; 1)
T and g2(y) = (1; 0; y3; 0)

T . It was
pointed out in [9] that (f ;g2) is not a stabilizable pair, while (f ;g1) is
asymptotically stabilizable. This means that the first actuator can not
be taken as the susceptible input. Thus, in this example, we consider

0 = u1 and 
 = u2. A change of coordinate x = T (y) = (y1; y2 �
y1y4; y3; y4)

T with x = (xT1 ;x
T
2 )

T ;x1 = (x1; x2; x3)
T and x2 =

x4 leads to the form of (1)–(2) with f1(x) = (�x31; x31x4 � 2x1x4 +
x3x4 � x1x3x4 � x2; x

2

4 � x3)
T ; f2(x) = x4 + x3x4; G
 (x) =

(1;�x4; x3)T ; G
 (x) = 0 and G
 (x) = 1. Clearly, the function
x2 = �(x1) = 0 fulfills the requirement of Assumption 2, and a
Lyapunov function for the reduced-order system _x1 = f1(x1; 0) is
found to be V (x1) = (x21 + x22 + x23)=2. According to (5), the sliding
surface has the form s = x4 = 0, and the VSC laws given by (7) have
the formu�

1 = �x4�x3x4���sgn(x4). Since in this example�(x) =
G
 (x)�((@�)=(@x1)) �G
 (x) = 0, it follows from Remark 3 that
u2 may be selected as u��

2 = �k � GT

 (x1; 0) � ((@V )=(@x1))T =

�k(x1 + x23); k � 0, to promote system stability on sliding surface
and maintain the same reliability level as those of Theorem 2 without
the need of (21). The overall control in terms of original variables y
then has the form

u = � y4 + y3y4 + � � sgn(y4); ky1 + ky23
T
: (22)

In case u1 is healthy, the dynamics of y4 decouples from the others
as _y4 = �� � sgn(y4). This implies that y4 approaches zero (i.e., the
states reach the sliding surface) in a finite time y4(0)=�. After reaching
the sliding surface we have f2(x) = 0. Condition (18) is then fulfilled
since �(x1) = 0. However, the state might move out of its ROS before
reaching the sliding surface. As a matter of fact, it still needs the infor-
mation of ROS, depending on �, for stability. An estimation of the ROS

for u1 being healthy can be derived as D� = fyjy21 + y23 + y24 < r�g
from the analysis given in [9] with slight modifications, where r� is the
solution of (23)

minimize y21+y
2

3+y
2

4

subject to �y41 � y23+y3y
2

4��jy4j=0 & (y1; y3; y4) 6=(0; 0; 0):
(23)

Clearly, r� is a function of �, and the relation between r� and � is
described in Fig. 1.

To compare the performances between VSC and LQR reli-
able designs, the LQR reliable laws are recalled from [9] as
u = (�ky4;�y23)T with k >

p
2 + 1. However, under these

laws, the closed-loop dynamics of y1 is short of linear terms. It follows
that y1 will converge slowly for small y1 even when u2 is available.
To promote the convergence speed of y1, we modify the LQR reliable
laws as (24) below:

u = �ky4;�y1 � y23
T

with k >
p
2 + 1: (24)

Clearly, these modified laws result in exponential convergence of y1
near the origin when u2 is available, and they are also the LQR reli-
able laws associated with the class of positive semidefinite solutions
V (x) = y21 + y23 + ky24 ; k >

p
2+1, of the same HJ-inequality given

in [9].
In this example, the LQR and VSC reliable laws are adopted from

(24) with k = 3 and (22) with k = 1, respectively. The initial states
are selected as y0 = (0:1; 1:2; 0:7; 0:9)T . To emphasize the relation
between control magnitude and speed of response, the value of control
parameter � in the VSC law is set to be 0.7 and 2.2. Clearly, y0 is inside
the estimated ROS for � = 0:7 and 2:2. Furthermore, the sign function
is replaced by saturation function with boundary layer width 0.01 to
avoid chattering. To examine the influences of the change in control
gain magnitude, we also consider the two cases of which N2 = 0 and
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2. These two cases correspond to the second loop gain being broken
and amplified, respectively.

Numerical simulations are given in Figs. 2–3, which correspond to
N2 = 0 and 2, respectively. In these figures, the dashed, solid and
dash-dotted lines denote the timing responses of norms of states and
controls by LQR and VSC designs with � = 0:7 and 2:2, respectively.
The dotted line and starred line denote the norm of the sliding vector
by VSC design with � = 0:7 and 2:2, respectively. From these figures,
system states are observed convergent to zero for all the two cases,
which agree with the theoretic results. When u2 fails to operate, the
system is found to have a linear uncontrollable mode � = 0 and the
associated closed-loop dynamics of y1 decouples from the others as
_y1 = �y31 . It means that y1 will approach zero but the convergence rate
will be progressively smaller as jy1j gets smaller. This is why the norm
of system states in Fig. 2 converges to zero very slowly. In addition,
since in this example �(x) = 0; u�1 is then the main force to make
system states reach the sliding surface. It follows that the first reaching
time of system states to the sliding surface depends only on the choice
of control parameter �. The first reaching time observed from jjsjj in
Figs. 2–3 for � = 0:7 and � = 2:2 are around treach � 1:2 and
0.4. This implies that the larger the value of � is, the shorter the first
reaching time treach is. These phenomena can also be told from the
abrupt change of the control magnitude, where the VSC reliable system
is driven mainly by the equivalent part of u after the first reaching time.
This example verifies that the control parameters of the VSC reliable
design can be tuned as large as possible to increase the response while
fulfilling the maximum control magnitude constraint.

IV. CONCLUDING REMARKS

Variable structure type stabilizing control laws have been proposed
in this note to study reliable control issues. This approach can alleviate
the computational burden for solving the HJ equation or inequality. In
addition, the regions of acceptable change in control gain magnitude
that guarantees system’s stability can be made larger than those ob-
tained by LQR reliable design by the choice of control parameters. As
a matter of fact, the control parameters can be tuned as large as pos-
sible in practical applications to promote the responding performances
while fulfilling the maximum control magnitude constraint.

ACKNOWLEDGMENT

The authors would like to thank Prof. D. Nesic for his assistance and
the anonymous reviewers for their constructive comments and helpful
suggestions which have led to substantial improvements to this note.

REFERENCES

[1] M. Bodson and J. E. Groszkiewicz, “Multivariable adaptive algorithms
for reconfigurable flight control,” IEEE Trans. Control Syst. Technol.,
vol. 5, no. 2, pp. 217–229, Mar. 1997.

[2] J. D. Boskovic and R. K. Mehra, “A decentralized scheme for accom-
modation of multiple simultaneous actuator failures,” in Proc. Amer.
Control Conf., 2002, pp. 5098–5103.

[3] M. L. Corradini and G. Parlangeli, “A fault tolerant control system
for the output stabilization of SISO plants with actuator uncertain
hysteresis nonlinearities,” in Proc. IEEE Conf. Decision and Control,
2003, pp. 4044–4049.

[4] R. A. Decarlo, S. H. Zak, and G. P. Matthews, “Variable structure con-
trol of nonlinear multivariable systems: A tutorial,” Proc. IEEE, vol.
76, no. 3, pp. 212–232, Mar. 1988.

[5] Y. Diao and K. M. Passino, “Stable fault-tolerant adaptive fuzzy/neural
control for a turbine engine,” IEEE Trans. Control Syst. Technol., vol.
9, no. 3, pp. 494–509, May 2001.

[6] J. Huang and C.-F. Lin, “Numerical approach to computing nonlinear
control laws,” J. Guid., Control, Dyna., vol. 18, pp. 989–994, 1995.

[7] E. M. Jafarov and R. Tasaltin, “Robust sliding-mode control for the un-
certain MIMO aircraft model F-18,” IEEE Trans. Aerospace Electron.
Syst., vol. 36, no. 4, pp. 1127–1141, Oct. 2000.

[8] J. Jiang and Q. Zhao, “Design of reliable control systems possessing
actuator redundancies,” J. Guid., Control, Dyna., vol. 23, pp. 706–710,
2000.

[9] Y.-W. Liang, D.-C. Liaw, and T.-C. Lee, “Reliable Control of Non-
linear Systems,” IEEE Trans. Autom. Control, vol. 45, no. 4, pp.
706–710, Apr. 2000.

[10] F. Liao, J. L. Wang, and G.-H. Yang, “Reliable robust flight tracking
control: An LMI approach,” IEEE Trans. Control Syst. Technol., vol.
10, no. 1, pp. 76–89, Jan. 2002.

[11] D.-C. Liaw, Y.-W. Liang, and C.-C. Cheng, “Nonlinear control for mis-
sile terminal guidance,” J. Dyna. Syst., Measure., Control, vol. 122, pp.
663–668, 2000.

[12] R. J. Veillette, J. V. Medanic, and W. R. Perkins, “Design of reli-
able control systems,” IEEE Trans. Autom. Control, vol. 37, no. 3, pp.
290–304, Mar. 1992.

[13] R. J. Veillette, “Reliable linear-quadratic state-feedback control,” Au-
tomatica, vol. 31, pp. 137–143, 1995.

[14] M. Vidyasagar and N. Viswanadham, “Reliable stabilization using a
multi-controller configuration,” Automatica, pp. 599–602, 1985.

[15] G.-H. Yang, J. L. Wang, and Y. C. Soh, “Reliable guaranteed cost con-
trol for uncertain nonlinear systems,” IEEE Trans. Autom. Control, vol.
45, no. 11, pp. 2188–2192, Nov. 2000.

Comments and Remarks on “On Improved
Delay-Dependent Robust Control for Uncertain

Time-Delay Systems”

Qing-Long Han

Abstract—The purpose of this note is to correct some statements and nu-
merical examples’ results in the above paper. A few remarks are also given
to clarify the facts that for systems with small delay, the results in Han et al.
(2003) are much less conservative than those in Kwon and Park (2004); for
systems with nonsmall delay, the criterion in Kwon and Park (2004) fails to
make any conclusion, while the criterion in Han et al. (2003) can be appli-
cable to these kinds of systems.

I. COMMENTS AND REMARKS

Consider the following system [1]:

_x(t)=(A+�A)x(t)+(A1+�A1)x(t�h)+(B+�B)u(t)

x(s) = �(s); s 2 [�h; 0]
(1)

where �A, �A1, and �B are uncertain matrices satisfying

�A = D1F1(t)E1;�A1 = D2F2(t)E2;�B = D3F3(t)E3
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