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1. 

The stability of a single-axis rate gyro mounted on a space vehicle subject to a variety of
motion has been analyzed by Singh [1] and Ge [2]. Further consideration is given here to
the complex non-linear and chaotic motions of a rate gyro under harmonic excitation
about the vehicle input axis. This is a non-linear system subjected to combined parametric
and external excitations.

A number of studies on non-linear parametrically excited oxcillators over the past few
decades have employed analytical approximation methods, in particular the averaging
method [3] and the multiple scales method [4] on weakly non-linear systems, and the
harmonic balance method (HBM) [5] for strongly non-linear systems. In this paper the
latter method with the Floquet theorem [6] is used to analyze the stability of system
attractors with strong non-linearities and parametric excitations. The HBM appears to
handle strong non-linearities well, and provides accurate steady state solutions, but it
requires an excessive amount of analytical work. Thus, the Galerkin technique with
harmonic balancing with the fast Fourier transform algorithm [7] is used here to reduce
the amount of computational work and obtain a higher order approximation. Finally,
numerical techniques are used to detect the existence of symmetry-breaking bifurcation,
subharmonic responses, period-doubling bifurcations, interior crisis and chaos.

A model of a single-rate gyro mounted on a space vehicle is considered, as shown in
Figure 1. The gimbal rotates about the output axis X with rotational angle u. Motion about
this axis is resisted by the torisonal spring and damping torque defined by Ku and Cdu� ,
respectively. Using Lagrange’s equation, one can derive the following differential equation
for the output deflection angle u of a rate gyro [2]:

(A+Ag )u� +Cdu� +Ku+CnR (vY cos u+vZ sin u)+ (A+Bg −Cg )

× ( vY cos u+vZ sin u)(vY sin u−vZ cos u)=−(A+Ag )v̇X, (1)

where

CnR =C(c� −vY sin u+vZ cos u)= constant, (2)

in which vX , vY and vZ denote the angular velocity components of the platform along
the output X-axis, the input Y-axis and the normal Z-axis, respectively. A, A and C, and
Ag , Bg and Cg denote the moments of inertia of the rotor and gimbal, respectively.

Interest here is in the behavior of non-linear dynamical motion when the vehicle
undergoes a steady rotation about the X-axis, and very small rotation with respect
to the Z-axis, so that then v̇X =0 and vZ 1 0. It is assumed that the rotation of the vehicle
about the input Y-axis is harmonic: i.e., vY = f sin vft; f and vf are the amplitude and
the frequency of the input, respectively. For convenience, by using the parameters
t=vnt, x= u, y= u� , a=Cd /[2(A+Ag )vn ], b=(A+Bg −Cg )f 2/[4(A+Ag )v2

n ], g =
107
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CnRf/[(A+Ag )v2
n ], vn =zK/(A+Ag ) and v=vf /vn , where the excitation frequency is

close to twice the natural frequency, equation (1) can be changed into the dimensionless
form

ẍ+2aẋ+ x=−b sin 2x+ b sin 2x cos 2vt− g cos x sin vt= g(x(t), t), (3)

where b=2·5×10−5f, g=0·2f and g(x(t), t) represents the non-linear forcing function;
the other values of the gyro parameters [1] are given in the Appendix (I).

2.  

When harmonic input is absent, equation (3) has a hyperbolic fixed point at the origin.
With the addition of the harmonic input, the sink becomes a hyperbolic closed orbit and
the effects of both external and parametric excitations gradually increase. Here, interest
is in determining the stability limits of periodic orbits.

First, the approximate solution can be obtained by using the Galerkin technique
with harmonic balancing. The steady state periodic solution can be represented as a
Fourier series

x(t)3 a0/q + s
n

k=1 0ak/q cos
kvt

q
− bk/q sin

kvt

q 1, (4)

where n is the order of the harmonic to be taken into account, and q is the order of the
subharmonics. Similarly, the non-linear forcing function g(x, t) can be expressed as

g(x, t)= c0/q + s
n

k=1 0ck/q cos
kvt

q
− dk/q sin

kvt

q 1, (5)

where c0/q , ck/q , and dk/q are given in the Appendix (II).
Substituting equations (4) and (5) into equation (3), and setting the coefficients of the

constant, cos (kvt/q), and sin (kvt/q) terms to zero, yields the following non-linear 2n+1
algebraic equations:

C0(v)= a0/q + c0/q =0, Ck (v)=$1−0kq v1
2

%ak/q −2a0kq v1bk/q + ck/q =0,

Sk (v)=2a0kq v1ak/q +$1−0kq v12%bk/q + dk/q =0, k=1, 2, . . . , n,

or

F(v)=Lv+w(v), (6)

where v=[a0/q , . . . , an/q , bn/q ]T, w(v)= [c0/q (v), . . . , cn/q (v), dn/q (v)]T and F(v) =
[C0, . . . , Cn , Sn ]T. F is the corrective term which goes to zero when the approximate
steady state is reached. One can solve the non-linear algebraic equations (6) to determine
v by the Newton–Raphson iterative method. A neighbouring state is reached through a
parameter incrementation

v= v0 +Dv, (7)
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where Dv=[Da0/q , . . . , Dan/q , Dbn/q ]T. By substituting equation (7) into equation (6), a
(2n+1) linearized incremental equation in terms of the correctors Dak/q and Dbk/q is
obtained from equation (6), namely

JDv=F, (8)

where J= 1F/1v=L+Nf is the first order derivative matrix and L is the linear part of
the matrix J; the elements of the matrix Nf = 1w/1v =v= v0 are given in the Appendix (II).
Equation (8) defines an iterative solution algorithm for equation (6). After each iteration
the v0 are updated to v0 +Dv. Convergence is indicated by the magnitude of F, since F:0
as x0:x* (the steady state solution).

After this procedure, the approximate solution is determined by harmonic balancing and
the Newton–Raphson iterative method.

To examine the local stability of the qT-periodic steady state solution x0(t), the
perturbed solution is considered in the form

x(t)= x0(t)+ j(t). (9)

Inserting equation (9) into equation (3), and ignoring the terms of higher order in j, one
has a linear variational equation with periodic coefficients in the form

j� +2aj� + j[1+2b cos 2x0(1−cos 2vt)− g sin x0 sin vt]=0, (10)

which can be arranged as

j� +2aj� + j[1+H(t)]=0, (11)

where

H(t)= l0 + l1(t)+ l2(t), l1(t)= l1(t+ qT), l2 = l2(t+ qT/2),

T=2p/v. (12)

By applying Floquet theory [6], one obtains the particular solution of equation (10) in the
form

j(t)= exp[(o− a)t]F(t), (13)

where (o− a) is the characteristic exponent which is positive in the instability region
and F(t) is a periodic function. From equation (13) and the characteristics of a
dynamical system and its solution, one can determine the behavior of the system under

Figure 1. A rate gyro.



   110

Figure 2. Two inversion-symmetric attractors as obtained by the Galerkin technique with harmonic balancing
( · · · · ) and numerical integration (——) from equation (3).

symmetry-breaking and period-doubling bifurcations described by Szemplińska-Stupnicka
[8].

Räty [9] has shown that oscillators with external excitation and antisymmetric
non-linear terms possess inversion-symmetric attractors with odd periods: i.e., non-linear
terms F(−x)=−F(x), with the periods of the attractors Tj =(2j−1)2p/v. Similarily,
the non-linear function g(x, t) of a parametrically excited rate gyro suggests that these
attractors are inversion-symmetric, or inversions of each other corresponding to the
varying parameter f. If Tj is of odd period, the non-linear forcing function of this system
satisfies the relation

g(x(t), t)=−g(−x(t), t+ 1
2Tj )= g(−x̃(t+ 1

2Tj ), t), (14)

where x(t) and x̃(t) are the steady state solutions of equation (3) related as follows:
x(t)=−x̃(t+ 1

2Tj ) implies that the phase portraits of attractors x(t) and x̃(t) with odd
periods coincide, i.e., x(t)= x̃(t); the inversion-symmetric attractors are odd-period
functions that coincide with the numerical simulation in period-T and period-3T attractors,
as shown in Figure 2. On the other hand, breaking of the inversion symmetry implies
that a pair of attractors x(t) and x̃(t) are inversions of each other, as illustrated in
Figure 5 of Section 3.

The symmetry-breaking instability boundary of the system can be studied as follows.
For small system response, the non-linear terms sin x and cos x can be replaced by
(x− x3/3!) and (1− x2/2!), so that the governing equation becomes

ẍ+2aẋ+[x+ b(2x−4x3/3)(1−cos 2vt)]=−g(1− x2/2) sin vt. (15)

The approximate solution is assumed to be

x0(t)= a1/q cos
vt

q
− b1/q sin

vt

q
+ s

i=3, 5, . . .

ai/q cos
ivt

q
− bi/q sin

ivt

q
, (16)
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where q is odd. From the previous procedure, one obtains the linear variational equation
(15) in the form

j� +2aj� + j[1+ b(2−4x2
0 )(1 −cos 2vt)− gx0 sin vt]=0. (17)

Because the solution x0 is symmetric, the types of instability of a particular solution of
equation (17) involve functions of period Tq /2,

F(t)=F0t+
Tq

2 1= r0 + s
n

j=1 0rj cos
2jvt

q
− sj sin

2jvt

q 1, (18)

where q is odd. To determine the period-T symmetry-breaking instability, one assumes the
first approximate solution to be

j(t)= e(o− a)t(r0 + r1 cos 2vt− s1 sin 2vt), (19)

which gives the following perturbed solution relation:

x̃(t+ 1
2T1)+ j(t+ 1

2T1)=−x(t)+ j(t), T1 =T=2p/v. (20)

Therefore, the inversion symmetry has been broken. By inserting equation (19) into
equation (17) and applying the harmonic balance method, the stability limit (where
o− a=0, can be obtained, as shown in Figure 3.

After symmetry-breaking bifurcation, period-doubling bifurcation begins. From the
unsymmetric solution (4) and dynamical equation (3), one has l1(t) of equation (12),
which is an essential term to yield the period-doubling bifurcation. One may expect a
particular solution of equation (11) in the same form as equation (13):

F(t)=F(t+2qT)= s
2n−1

k=1, 3 0rcj/2q cos
kvt

2q
− rsj/2q sin

kvt

2q 1. (21)

When o− aq 0, this form of instability exists and a series of period-doubling bifurcations
becomes possible. The stability limit can be obtained by substituting equation (21) into

Figure 3. The bifurcation diagram for S.B. (symmetry-breaking bifurcation) and P.B. (period-doubling
bifurcation), from equation (15).
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equation (11), using the Galerkin technique and matching harmonic terms. Assuming
o− a=0, one has

Ck (m)= [1− (kv/2q)2]r ck/2q −2a(kv/2q)rsk/2q + sck/2q =0,

Sk (m)=2a(kv/2q)rck/2q +[1−(kv/2q)2]rsk/2q + ssk/2q =0, k=1, 3, . . . , 2n−1, (22)

where m=[rc1/2q , . . . , rck/2q , rsk/2q ]T and s(m)= sc1/2q (m), . . . , sck/2q (m), ss/2q (m)]T. The variation
of equation (22) with respect to m is

(R+S)dm=0, (23)

where

S=
1s

1m
, Rkj = 04×4 k$ j,

Rkj =G
G

G

K

k

1−0kv

2q1
2

2a0kv

2q1
−2a0kv

2q1
1−0kv

2q1
2
G
G

G

L

l
4×4

, k= j, k=1, 3, . . . , 2n−1. (24)

To determine the stability limit, one sets the Jacobian of equation (23) to zero, obtaining
the characteristic equation D(v2)= =(R+S)==0. By considering the period-T solution
(q=1) with the first harmonic order (k=1), and solving the characteristic equation, the
stability curve is obtained in the parameter plane, as shown in Figure 3.

3.    

As shown in Figure 2, the preceding analytical approximation method yields an attractor
which is in good agreement with that obtained by numerical integration. It also reveals
two types of bifurcations, as shown in Figure 3. Clearly distinct bifurcations and chaos
are exposed in detail by various numerical simulations. The first type, which appears
at point A in Figure 4 for f1 18·8, is called symmetry-breaking bifurcation. The second
type, which appears at point B in Figure 4 for f1 24·8, is the period-doubling (flip)
bifurcation. The third type, which appears at point E in Figure 4 for f1 29·1, is the
saddle-node (tangent) bifurcation. In this model, a sequence of bifurcations occurs and
leads to chaos as the system parameter is varied.

The bifurcation diagram in Figure 4 shows the long-term values of the rotational
angle, obtained by numerical integration, plotted against the dimensionless forcing
amplitude f. Before point A (or G) in Figure 4, the orbit in the phase plane is an inversely
symmetric cycle of period-T (or period-3T), as shown in Figure 2. At point A (or G) in
Figure 4, a symmetry-breaking bifurcation occurs. After a bifurcation of this type, there
occurs a cascade of period-doubling bifurcations from point B to point C (or point H-I)
in Figure 4. When the parameter f approaches point C (or I), chaotic motion appears.
Between point C and point D (or point I–J) in Figure 4, there exist two inverse chaotic
attractors, as shown in Figure 5. As shown in Figure 4, when the parameter f passes beyond
point D, conjunction of the two chaotic attractors creates a larger chaotic attractor similar
to that in Figure 6. At point E in Figure 4, a stable period-3 orbit abruptly appears, but
a chaotic attractor still exists (see Figure 6). The former is the saddle-node (tangent)
bifurcation which also creates a period-unstable orbit. Upon passing point F in Figure 4,
the chaotic attractor disappears, and the period-3 window is seen at the interval from point
E to point J.
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Figure 4. The bifurcation diagram for a rate gyro; steady state angular displacement x(nT) versus the amplitude
of excitation f, from equation (3).

Within the period-3 window from point I to point J in Figure 4, there are two inverse
chaotic attractors, the mappings of which are confined to three narrow bands. After the
period-3 window (just past point J in Figure 4), one sees a bifurcation from a chaotic
attractor in three bands to a chaotic attractor in only one larger band. This bifurcation
causes sudden changes in the size of the chaotic attractor which is called an ‘‘interior crisis’’
[10]. From point B to point C in Figure 4, a series of period-doubling routes to chaotic
motion occur as system parameter is varied. The classic route to chaos via a cascade of
period-doubling bifurcations can be described as the evolution of unsymmetric solutions
due to the system possessing unsymmetric non-linear characteristics. From the averaged

Figure 5. Two inverse chaotic attractors of the system equation (3) plotted in the phase plane for f=26·8.
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Figure 6. A large chaotic attractor coexisting with a period-3T limit cycle of the system (3) as shown by
(a) a phase plane plot, (b) a Poincaré map, and (c) the average power spectrum, for f=29·1.

power spectrum Sx (v), one also observes that a chaotic motion has a continuous broad
spectrum, and shows random-like behavior (see Figure 6(c)).

In the period-3T windows, there also occurs a period-doubling cascade route to chaotic
motion. As the system parameter f increases from point I to point J, a chaotic attractor
in three bands gradually becomes larger until the parameter passes point J and the
interior-crisis bifurcation occurs. When the parameter passes point K in Figure 4, the
chaotic attractor disappears and two inverse attractors of period-2T occur. The values of
A–K are shown in the Appendix (III).

In order to confirm the chaotic behavior, Lyapunov exponents have been calculated as
l1 =0·047, l2 =0·0 and l3 =−1·431 for f=26·8, as shown in Figure 7. The Lyapunov
exponent calculation algorithm was proposed by Wolf et al. [11]. There exists a positive
Lyapunov exponent which indicates the system to be chaotic. The sum of all the three
Lyapunov exponents, l1 + l2 + l3 =−1·384, is equivalent to the negative damping



    115

Figure 7. Lyapunov exponents for a rate gyro plotted as a function of the number of drive cycles are
shown as (0·047, 0, −1·431) for f=26·8; the positive Lyapunov exponent shows that the system equation (3)
is chaotic.

coefficient of the system. The Lyapunov dimension dL =2·0328, for f=26·8, was also
calculated by the relation described by Frederickson et al. [12],

dL = j+ s
j

i=1

li/=lj+1 =, (25)

where j is defined by the condition

s
j

i=1

li q 0 and s
j+1

i=1

li Q 0. (26)

4. 

The dynamics of a single-axis rate gyro subjected to parametric excitation have been
investigated. By using the Galerkin technique with harmonic balancing, approximate
periodic solutions and their stability have been analyzed. The modified harmonic balance
method can reduce the amount of computation work and produce a good approximation.
From the approximate analysis of local instability in variational equations of Hill’s type,
symmetry-breaking and period-doubling bifurcation behavior can be examined.

Results describing the behavior of a symmetry-breaking precursor of period-doubling
bifurcations, and a cascade of period-doubling route to chaos in numerical simulations,
have been shown through Poincaré maps, phase portraits, bifurcation diagrams, power
spectral diagrams and Lyapunov-exponent diagrams. Additionally, interior crisis and
chaotic attractors that coexist with periodic attractors were also found to occur in the
system.
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APPENDIX

I. The values of the gyro parameters are as follows:

Cd

(A+Ag )
=140 rad−1 s−1,

K
(A+Ag )

=104 rad−1 s−2,
CnR

(A+Ag )
=2000 s−1,

(A+Bg −Cg )
(A+Ag )

=1,

vn =100 rad s−1, v=vf /vn =2, a=0·7, b=2·5×10−5f 2, g=0·2f.

II. The coefficients of the Fourier transform of the non-linear forcing function g(x, t)
are given by

c0/q =
1
Tq g

Tq

0

g(x, t) dt, cp/q =
2
Tq g

Tq

0

g(x, t) cos
pvt

q
dt,

dp/q =
2
Tq g

Tq

0

g(x, t) sin
pvt

q
dt. (II1)

Let Tq =N Dt, dt=Dt, t= r Dt, Dt:0; equation (II1) then becomes

c0/q =
1
N

s
N−1

r=0

g(x, r), cp/q =
2
N

s
N−1

r=0

g(x, r) cos
2ppr
N

, dp/q =
2
N

s
N−1

r=0

g(x, r) sin
2ppr
N

.

(II2)
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The Jacobian matrix is

Nf = 1w/1v =v= v0 = 1[c0/q , . . . , cp/q , dp/q ]/1[a0/q , . . . , ak/q , bk/q]=v=v0. (II3)

The elements of the Jacobian matrix Nf are expressed as follows:

1c0/q

1a0/q
=

1
N

s
N−1

r=0

g',
1c0/q

1ak/q
=

1
N

s
N−1

r=0

g' cos
2pkr
N

,
1c0/q

1bk/q
=−

1
N

s
N−1

r=0

g' sin
2pkr
N

,

1cp/q

1ak/q
=

2
N

s
N−1

r=0

g' cos
2ppr
N

cos
2pkr
N

,
1cp/q

1bk/q
=−

2
N

s
N−1

r=0

g' cos
2ppr
N

sin
2pkr
N

,

1dp/q

1ak/q
=−

2
N

s
N−1

r=0

g' sin
2ppr
N

cos
2pkr
N

,
1dp/q

1bk/q
=

2
N

s
N−1

r=0

g' sin
2ppr
N

sin
2pkr
N

,

p, k=1, 2, . . . , n . (II4)

Here N is the number of samples in the FFT; g'= 1g(x, r)/1x =x= x0 can be expressed as

g'=−2b cos 2x0{1−cos(4pqr/N)}+ g sin x0 sin(2pqr/N), (II5)

where

x0 =$a0/q + s
n

k=1 0ak/q cos
2pkr
N

− bk/q sin
2pkr
N 1%v= v0

. (II6)

III. The critical values (points A–K) shown in Figure 4 are the following:

A1 18·8, B1 24·8, C1 26·8, D1 28, E1 29·1, F1 30·05,

G1 32·4, H1 34·1, I1 34·6, J1 35·8, K1 45·4.


