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Dynamic Calibration of Pan–Tilt–Zoom
Cameras for Traffic Monitoring
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Abstract—Pan–tilt–zoom (PTZ) cameras have been widely used
in recent years for monitoring and surveillance applications. These
cameras provide flexible view selection as well as a wider obser-
vation range. This makes them suitable for vision-based traffic
monitoring and enforcement systems. To employ PTZ cameras for
image measurement applications, one first needs to calibrate the
camera to obtain meaningful results. For instance, the accuracy of
estimating vehicle speed depends on the accuracy of camera cali-
bration and that of vehicle tracking results. This paper presents a
novel calibration method for a PTZ camera overlooking a traffic
scene. The proposed approach requires no manual operation to
select the positions of special features. It automatically uses a set of
parallel lane markings and the lane width to compute the camera
parameters, namely, focal length, tilt angle, and pan angle. Image
processing procedures have been developed for automatically find-
ing parallel lane markings. Interesting experimental results are
presented to validate the robustness and accuracy of the proposed
method.

Index Terms—Background segmentation, camera calibration,
image measurement, image processing, lane-marking detection,
traffic monitoring.

I. INTRODUCTION

C LOSED-CIRCUIT television (CCTV) cameras have been
widely used for traffic monitoring and surveillance appli-

cations. For a vision-based traffic monitoring system (VTMS),
the basic function is to extract automatically real-time traffic
parameters, including flow rates, average vehicle speeds, traf-
fic offense levels, etc., through image processing techniques
[1]–[4]. Traffic parameters, such as vehicle speed, are very
often obtained using image tracking techniques. The accuracy
of traffic parameter estimation is thus affected by both the
camera parameters and the tracking algorithm. VTMS works
only if the cameras are calibrated properly, and its accuracy
is very sensitive to the calibration results. Moreover, to obtain
a flexible view and observation range, an increasing number
of CCTV systems rely on movable cameras with adjustable
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pan/tilt and zoom settings. Proper calibration of the parameters
of pan–tilt–zoom (PTZ) cameras plays an important role in
vision-based traffic applications.

Most calibration methods [5]–[8] utilize known features in
a scene to estimate the camera parameters, including tilt angle,
pan angle, and focal length. In [9] and [10], sets of parallel lines
of a hexagon are employed to estimate the camera parameters.
Results from these presentations demonstrate that parallel lines
can be employed to adequately determine the camera parame-
ters. Effective algorithms have been developed for estimating
the camera parameters using parallel lanes in a traffic scene
[11]–[13]. Bas and Crisman [11] used the height and the tilt of
the camera along with a pair of parallel lines in a traffic scene
to calibrate the camera. Their approach, however, needs special
manual operations to measure the tilt of the camera. In [12] and
[13], multiple parallel lanes and a special perpendicular line
were used to calibrate the camera parameters. The drawback
of their design is that the perpendicular line seldom appears
in a traffic scene. Moreover, the lane markings need to be
manually assigned in the aforementioned methods. It will not
be practical for a traffic monitoring system using PTZ cameras
where manual operation should be avoided. Therefore, it will
be necessary for the VTMS to possess the capacity of dynamic
calibration of PTZ cameras.

In their recent presentation of dynamic calibration [14],
Schoepflin and Dailey employed the trajectories as well as
the bottom edges of vehicles to obtain two sets of parallel
lines for PTZ camera calibration. The calibration procedure
can be automated using the presented approach. However, the
accuracy is considerably sensitive to the trajectories of vehicles
in traffic imagery. Furthermore, to obtain reliable tracks with
high quality, the system takes a longer time to capture more
image frames for recording the recognizable tracks of vehicles.
It becomes very time consuming and cannot meet the real-time
requirement of the VTMS. For practical applications, a method
to speed up the process and obtain stable results demands
urgent attention.

In this paper, a novel focal length equation will be derived to
estimate the PTZ camera parameters. The derivation requires
only a single set of parallel lane markings, the lane width,
and the camera height. Compared with existing approaches,
the proposed method has the advantage of requiring neither
the camera tilt information nor multiple sets of parallel lines.
Furthermore, an image processing algorithm is also proposed
to automatically locate the edges of the lane markings. Using
lane-marking edges and the derived focal length equation, one
can estimate the focal length and the tilt and pan angles of a
PTZ camera.

1083-4419/$20.00 © 2006 IEEE
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Fig. 1. Coordinate systems used in the PTZ camera calibration. (a) Top view of the road map on the world coordinate system. (b) Side view of the camera setup
and its coordinate systems used in calibration. (c) Road schematics used in the pixel-based coordinate system.

The rest of this paper is organized as follows. Section II
presents the derivation of camera calibration equations for the
focal length, as well as the pan and tilt angles. Section III
describes the image processing algorithms for lane-marking de-
tection. Synthetic sensitivity analysis and experimental results
of the camera parameter estimation are presented in Section IV.
Section V summarizes the contribution of this paper and future
developments. Detailed derivation of the focal length equation
is presented in Appendix A. Appendix B describes the conver-
sion between pixel coordinates and world coordinates.

II. PROPOSED CALIBRATION METHOD

The objective of camera calibration is to determine all the
required parameters for estimating the world coordinates from
the pixel coordinates (u, v) of a given point in an image frame.
In the following presentation, it is assumed that a change
in the camera height and intrinsic parameters, except for the
focal length, is negligible as the camera view changes. These
parameters can be considered as fixed in vision-based traf-
fic applications and are calibrated only once during the PTZ
camera installation. A method for computing the changeable
camera parameters, including the focal length and the pan and
tilt angles, will be presented below.

Fig. 1 illustrates three coordinate systems utilized in the
derivation, namely: 1) the world coordinate system (X,Y,Z);
2) the camera coordinate system (Xc, Yc, Zc); and 3) the
camera-shift coordinate system (U, V,W ). Fig. 1(a) depicts the
top view of a ground plane in the world coordinate system.
Lines L1, L2, and L3 represent parallel lane markings, and
point O is the origin of the world coordinate system on the
road plane. The pan angle θ is defined by the angle between
the Y axis and lane markings, f is the focal length, and w
is the width between parallel lanes. The symbol d denotes
a shift distance, which is a perpendicular distance between
the projection of the principle point of the camera and L3.
Fig. 1(b) depicts the side view of the road scene, which is used
to describe the geometrical relation between the ground plane
and the camera; the direction of vector

−−→
CO is perpendicular to

the image plane. In Fig. 1(b), φ is the tilt angle of the camera,

h is the installed camera height, and F is the length of
vector

−−→
CO. In this paper, the counterclockwise rotation is

positive in expressing the sign of the angles.
The camera-shift coordinate system can be obtained by rotat-

ing the world coordinate system an angle φ around the X axis.
The relationship between the camera-shift coordinate frame and
the world coordinate frame is given by

 U
V
W


 =


 1 0 0

0 cosφ − sinφ
0 sinφ cosφ





X
Y
Z


 . (1)

By shifting the camera-shift coordinate frame from point O
to point C along the vector

−−→
OC and inversing the V axis of

the camera-shift coordinate frame, one can obtain the camera
coordinate system. The camera coordinates of any point on the
road plane (where Z equals to zero) can be expressed as a
function of the world coordinate via a coordinate transforma-
tion between the camera-shift coordinate frame and the world
coordinate frame, i.e.,

Xc

Yc

Zc


=


 U

W
−V − F


=


 1 0

0 sinφ
0 − cosφ


 [

X
Y

]
−


 0

0
F


 . (2)

As given by the pinhole camera model [13], any point in camera
coordinates has a perspective projection on the image plane.
The relationship between pixel and camera coordinates can be
written as

u = − f
Xc

Zc
= −f X

−Y cosφ− F
(3)

v = − f
Yc

Zc
= −f Y sinφ

−Y cosφ− F
. (4)

The pixel coordinate system is shown in Fig. 1(c), in which
the rectangular region represents the sensing area of the image
sensor. Solid lines represent the lane markings that can be
observed by the camera. Dashed lines denote the lane markings
that are out of the field of view of the camera and cannot be
observed. The parallel lines in Fig. 1(a) are projected onto a set
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TABLE I
LIST OF VARIABLES FOR FOCAL LENGTH EQUATION

of lines in Fig. 1(c) that intersect at a point known as vanishing
point VP. The vanishing point lies at a position where the Y
coordinate of (X,Y,Z) approaches infinity. The coordinate
(u0, v0) of VP is given by

u0 = lim
Y →∞

u

= lim
Y →∞

(
−f X

−Y cosφ− F

)

= lim
Y →∞

(
−f Y tan θ

−Y cosφ− F

)
= f tan θ secφ (5)

v0 = lim
y→∞ v

= lim
y→∞

(
−f Y sinφ

−Y cosφ− F

)
= f tanφ. (6)

In this study, we propose to use parallel lane markings to
establish a geometrical relationship between a road plane and
its camera view. As shown in Fig. 1(a), L1, L2, and L3 intersect
the X axis and Y axis at six points; these points are denoted
by P1−P6. From the perspective model, the corresponding
coordinates of these points in the image plane can be obtained.
Through geometrical analysis, it will be straightforward to
derive the focal length equation as

am2 + bm+ c = 0 (7)

where m is f2. Table I summarizes the variables used in (7).
The detailed derivation is given in Appendix A.

The solution f2 of (7) must be positive. Accordingly, the
focal length f is

f =
√
m. (8)

Fig. 2. System architecture of image-based lane-marking determination.

Using (6), the tilt angle is given by

φ = tan−1 v0

f
. (9)

From (5), the pan angle is expressed as

θ = tan−1 u0

f secφ
. (10)

If (7) has two positive roots, then the meaningful solution
will be the one that satisfies (A24). Using the camera pa-
rameters, one can transform the pixel coordinates into their
corresponding world coordinates (X,Y, 0) [15]. The detailed
procedure is given in Appendix B.

III. DETECTION OF PARALLEL LANE MARKINGS

In this section, an image processing procedure is proposed
to automatically detect parallel lane markings in road imagery.
The complete procedure consists of background segmentation,
edge extraction, erosion, dilation, labeling, and lane-marking
analysis. Fig. 2 shows the functional block diagram of the
image processing procedure.

A. Background Segmentation and Edge Detection

Gaussian mixture model (GMM) approaches to obtaining
reliable background images have gained increasing attention
for VTMS in recent years [16]. GMMs feature effective back-
ground estimation under environmental variations through a
mixture of Gaussians for each pixel in an image frame. For
urban traffic, however, vehicles will stop occasionally at inter-
sections because of traffic light or control signals. Such kind of
transient stops will increase the weight of the nonbackground
Gaussian and degrade the segmentation quality. In this paper,
instead of exploiting conventional GMM, a histogram approach
is proposed to solve the problem. The background intensity can
be determined according to the maximum frequency in the his-
togram [17]. Moreover, the background image is segmented by
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Fig. 3. Image sequence for background segmentation.

Fig. 4. Background image generation of Fig. 3 using a group-based histogram method.

using a group-based histogram to deal with unreliable intensity
distribution caused by sensing uncertainties. The intensity that
has the maximum group-based frequency is then selected as the
background intensity fB(u, v) given by

fB(u, v)=arg max
l

{
σ∑

r=−σ

nu,v(l+r); 0≤ l+r≤(L−1)

}

(11)

where nu,v(l) is the frequency of pixels at location (u, v)
with intensity value l, σ is the predicted standard deviation of
intensity, and L is the number of intensity levels. To obtain
the intensity fB(u, v) efficiently, one only needs to calculate
the frequencies of adjacent intensity levels. This method is
very computationally efficient because it only uses addition and
comparison.

To demonstrate the effectiveness of background segmen-
tation, we show a test result using nine images of a traffic
image sequence. Fig. 3 shows the original image sequence.
Corresponding to Fig. 3, Fig. 4 depicts the generation of the
background image using the group-based histogram method.
Moving vehicles disappear in the extracted background image
as expected. A video clip of the background image genera-
tion using the proposed method can be found at http://isci.
cn.nctu.edu.tw/video/SMCB_PTZ/Attachment_1.mpg.

From the extracted background image, the edges of the lane
markings can be obtained by adopting an intensity gradient
method [18]. The detected edges of the traffic lane markings
are depicted in Fig. 5(a). To verify the detection performance,
we examine the background image together with the detected
edges, as shown in Fig. 5(b). Note that two edges appear on
both sides of the lane markings. In this design, only the right
edges are selected for further calculation. A filter is designed to
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Fig. 5. Edge maps of the background image. (a) Edge map. (b) Background image and its associated edge map. (c) Right-side edge map. (d) Denoised edge map.

Fig. 6. Linear approximation of lane markings. (a) Labeled feature map. (b) Feature map of segments with higher counts. (c) Linear approximations map.
(d) The lines that intersect the sidelines and are located within a vanishing-point region are reserved.

remove all adjacent edge pixels except those of the rightmost
edge, i.e.,

P (u, v) = 0 if
u+5∑

j=u+1

P (j, v) ≥ 1 (12)

where P (u, v) is the binary value at (u, v) in the edge map.
Fig. 5(c) depicts the filtered result. The left edges of the lane
markings are removed as expected. An erosion operation is
then employed to remove salt-and-pepper noise and shrink the
detected edge [18]. Next, a dilation operation is applied to
reconnect discontinuous features that belong to the same object
[19]. Fig. 5(d) shows the final result of edge detection. It is
clear that the salt-and-pepper noise is removed and the extracted
edges are ready for lane-marking analysis.

B. Connected-Component Labeling and
Lane-Marking Determination

As depicted in Fig. 5(d), the lane-marking segments are
longer than the features generated by other objects, such as
trees, bushes, guideposts, etc. Using a connected-component
labeling operation [20], one can classify and label the pixels
that are linked together. Fig. 6(a) shows the labeling result of the
binary image in Fig. 5(d). The count (length) of the connected
pixels can be used to determine whether the connected pixels
are features of a lane marking or not. Only those with a larger
count are preserved, whereas the rest will be removed. The
result of this operation is illustrated in Fig. 6(b). On a multilane
road, the lane markings of the road edges are normally indicated
by solid lines, whereas the lane-divider lines are marked by
broken lines. Based on this premise, the labeled segments that
have the first and the second largest number are considered as
the sides of a multilane road. They are termed as “sidelines.”

Each sideline will then be represented by a linear polynomial
equation

y = λx+ ρ (13)

where λ and ρ are real numbers. One can use a least square
approximation to obtain λ and ρ. Accordingly, the intersection
of the sidelines can be computed. It gives us the vanishing point
of parallel lane markings.

Other segments are similarly processed to obtain their first-
degree polynomial equations, as plotted in Fig. 6(c). Next, these
lines are checked whether they parallel the sidelines in the real
world. If a straight line is parallel with the sidelines, then the
intersection of the line with the sidelines needs to be located
within a vanishing point region Vr given by

Vr =
{
(u, v) :

∣∣(u− u0)2 + (v − v0)2
∣∣ ≤ 13

}
(14)

where (u0, v0) is the vanishing point. Most lines, which are not
parallel with the sidelines, will be removed by this intersection
discrimination. As shown in Fig. 6(d), only those lines satisfy-
ing (14) are reserved.

To correctly locate all the lane markings on the road, the
disconnected segments, which belong to a broken lane-divider
line, must be merged into a line for obtaining a correct least-
square linear representation. A criterion has been developed
to find those lines that are near each other. Fig. 7(a) shows
the result after merging such lines of Fig. 6(d). As shown
in Fig. 7(a), although with reduced line numbers, there still
might have extra lines existing in the image. Only the lane-
divider lines that lie inside the sidelines need to be kept, and
others must be removed as well. Exploiting the assumption
that each traffic lane is of the same width on the road, one
can apply a virtual horizontal line to intersect each candidate
line to obtain its position information in the image plane. As
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Fig. 7. Parallel lane markings and their vanishing point. (a) Parallel line map. (b) Location map of the parallel lines. (c) Parallel lane markings map.
(d) Background image and its associated parallel lane markings.

shown in Fig. 7(b), circles are used to represent the positions
of candidate lines and star symbols are used to represent the
position of the sidelines, which have already been found. As
shown in Fig. 7(b), the line with a circle that lies at the center
of those with two stars will be the lane-divider line. Fig. 7(c)
shows the detected lane markings and their vanishing point.
Fig. 7(d) illustrates the background image together with the de-
tected lane markings. This lane-marking detection algorithm is
computationally efficient compared with popular Hough trans-
form approaches. A video clip of the image processing steps
for finding parallel lane markings can be found at http://isci.
cn.nctu.edu.tw/video/SMCB_PTZ/Attachment_2.mpg.

IV. EXPERIMENTAL RESULTS

To demonstrate the performance of the proposed calibration
algorithm, we first use synthetic traffic data to carry out a
sensitivity analysis and then validate the calibration results
using actual traffic images.

A. Sensitivity Analysis

In actual applications, there might exist intrinsic or extrinsic
errors of camera calibration that cause measurement errors. For
example, the principle point might vary with zooming [21]
and will make pixel coordinates incorrect. Radial distortion
also affects the accuracy of parallel lane detection. Tilt or pan
operation will change the height of the image sensor and cause
an error in focal length estimation. To assure the robustness
of the proposed calibration method, we present a sensitivity
analysis on the focal length estimation using synthetic data
containing intrinsic and extrinsic errors.

Fig. 8(a) illustrates the synthetic traffic scene with two par-
allel lanes. The circle in the figure represents the camera. The
camera view in Fig. 8(a) is constructed according to (3) and
(4); the result is shown in the rectangular region of Fig. 8(b).
Three lines of the image view intersect one another at the
vanishing point, which is denoted by a cross in Fig. 8(b).
The camera parameters, such as tilt angle, pan angle, and
focal length, are calculated from the synthetic data using the
calibration method described in Section II. In the simulation,
the tilt angle is changed from 30◦ to 60◦, and the pan angle is
changed from −20◦ to 20◦. These angles reflect most situations
in actual VTMS applications. To emulate the effect caused

Fig. 8. Synthetic traffic scene for simulation. (a) Top view of a road scene.
(b) Road view in image plane.

by radial distortion or incorrect principle-point position, the
vanishing point is shifted two pixels upward, rightward, and
diagonally, respectively. New parallel lines are established in
accordance with the new vanishing point and the intersections
of the original lines and the u axis. Using (7), focal length
is calculated in accordance with these new parallel lines. In
the simulation, the height of the camera is set to 7.05 m and
the focal length is set to 430 pixels. The maximum error rates
calculated for the condition of translational error in horizontal,
vertical, and diagonal directions are presented in simulations
1–3 of Table II, respectively. The absolute error rates of focal
length estimation are within 4.1%. Furthermore, the result
reveals that focal length estimation is more sensitive to vertical
translational error than the horizontal one.



SONG AND TAI: DYNAMIC CALIBRATION OF PAN–TILT–ZOOM CAMERAS FOR TRAFFIC MONITORING 1097

TABLE II
MAXIMUM ERROR RATES OF FOCAL LENGTH, TILT ANGLE, AND VERTICAL POSITION UNDER DIFFERENT SIMULATED ERRORS

It is observed from the sensitivity analysis that tilt angle
estimation is also more sensitive to vertical translational error.
The absolute error rates of the tilt angle are within 4.1%.
Because the estimated parameters will be employed to estimate
the position of the vehicle in VTMS, the error rates of the
position in the image frame are calculated accordingly. The
absolute error rates of the vertical position are within 0.7% at
pixel coordinate (150, 120).

To investigate the effect of inaccurate camera height, we
introduced a height error of −0.02 m into the simula-
tion. Traffic view is generated according to the true height
(7.05 m); focal length is then estimated using the inaccurate
height data. Simulation 4 of Table II shows that the three kinds
of error rates are all within 1.7%. Detailed error rate results
are presented in Fig. 9 to examine the estimation of focal
length, tilt angle, and position. It is observed that for a tilt angle
smaller than 30◦ or an absolute pan angle greater than 20◦,
the error rates will become unacceptable. This phenomenon is
mainly caused by the fact that in the image plane the parallel
lanes and their vanishing point will deviate more seriously
due to radial distortion and incorrect principle-point position.
In addition, diagonal and height errors are also simulated.
The error rates are all within 5.6%, as shown in simulation 5
of Table II.

As for the case of translational and height errors, simulations
6–8 of Table II show the simulation results with a focal length
of 330, 530, and 730 pixels, respectively. The absolute error
rates of the focal length and tilt angle are within 6.7%, and
the absolute error rates of the vertical translational position are
within 2.3%. The results reveal that the larger the focal length,
the less the error rate.

Finally, for cases with translational and height errors, simu-
lations 9–11 of Table II show the simulation results for a height
of 6.05, 8.05, and 10.05 m, respectively. The absolute error
rates of the focal length and tilt angle are within 5.8%. The
absolute error rates of the vertical position are within 2%. The
results reveal that the higher the camera, the less the error rates.
Furthermore, the effect of height change is not obvious in the
test. From the synthetic analysis, the error rates introduced by
extrinsic and intrinsic errors are within 6.7% (focal length =
330 pixels). These error rates of position measurement are
acceptable for traffic monitoring.

B. Experiments With Actual Imagery

The proposed algorithm has been tested with image se-
quences recorded from a main road near our university. The
camera used in the experiments is a SONY EVI-D31 digital
camera. The image sequences were captured with a resolu-
tion of 352 × 240 pixels. For traffic monitoring, the camera
was installed at a height of 7.03 m, and the width between
parallel lane markings is 3.52 m. In the experiments, the
background image was first segmented and then used for the
lane-marking detection. The vanishing point and the camera
parameters, such as focal length, tile angle, and pan angle, were
calculated using (7), (9), and (10), accordingly. To validate
the estimated parameters, 12 sample features were assigned
in a traffic scene for distance measurement, as shown in
Fig. 10. The sample distances were measured manually and
compared with the estimated distances for evaluation. The
estimated distances were computed based on the calibrated
camera parameters.
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Fig. 9. Sensitivity analysis of translation and height errors.

In the first experiment, traffic image with different zoom
settings (A–D) were captured to demonstrate the robustness to
radial distortion, as shown in Fig. 11. The principle point of the
camera is practically fixed for these zoom settings. The exper-
iment results are listed in Table III. The focal lengths for the
four zoom settings are estimated to be 452.91, 496.70, 542.54,
and 592.36 pixels, respectively. Using the focal length, the
pan angles and tilt angles are calculated. The estimated mean

Fig. 10. Sample features selected for image measurement in road imagery.

and standard deviation of the tilt angle are 27.45◦ and 0.33◦,
respectively. The estimated mean and standard deviation of the
pan angle 8.01◦ and 0.07◦. These experimental results show
that the error rates of absolute mean and standard deviation are
within 2.39% and 1.49%. The proposed calibration algorithm
gives satisfactory accuracy and is robust against zoom changes.

To evaluate the robustness of lane detection with respect
to environmental illumination variation, we took imagery at
various hours of a sunny day. Six sets of image sequences are
presented to show different illumination conditions, as shown in
Fig. 12. The intensity values of the lane markings vary in these
image frames, but the lane markings always have higher intensi-
ties than their adjacent region. The gradient can be successfully
used to detect the edge of the lane markings, as discussed in
Section III. The results reveal that the lane-detection method
performs satisfactorily under different lighting conditions. This
robustness partly results from the fact that the SONY PTZ
camera has autoexposure and backlight compensation functions
to ensure that the subject remains bright even in harsh backlight
conditions.

Finally, the algorithm is evaluated with a fixed zoom under
different pose settings (A–D) of the PTZ camera, as shown
in Fig. 13. Table IV shows the experimental results of the
estimation of feature sizes, as depicted in Fig. 10. The mean
and standard deviation of the estimated focal lengths are 417.08
and 9.56 pixels, respectively. The mean and standard deviation
of the absolute error rates among these measurements are
within 2.32% and 1.58%, respectively.

The experimental results of the different zoom and view
settings show that the maximum calibration error of distance
measurement is within 5%, which is comparable to the re-
sults achieved in [11] and [12]. However, our method of-
fers improved autonomy and efficiency. A video clip of the
image processing sequence for traffic parameter estimation
can be found at http://isci.cn.nctu.edu.tw/video/SMCB_PTZ/
Attachment_3.mpg.

V. CONCLUSION

A novel algorithm has been proposed for the automatic
calibration of a PTZ camera overlooking a traffic scene. Focal
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Fig. 11. Traffic images captured under different zoom settings. (a) Image of zoom setting A. (b) Image of zoom setting B. (c) Image of zoom setting C. (d) Image
of zoom setting D.

TABLE III
CALIBRATION RESULTS UNDER DIFFERENT ZOOM SETTINGS

length equation has been derived for camera calibration based
on parallel lane markings. Subsequently, the pan and tilt angles
of the camera can be obtained by using the estimated focal
length. To locate parallel lane markings, an image processing
procedure has been developed. Synthetic data and actual traffic
imagery have been employed to validate the accuracy and ro-

bustness of the proposed method. The simulation results reveal
that the error rates of position estimation are within 2.3% under
the presence of reasonable translational and height errors. In
actual experiments, 12 feature samples in a road scene were
selected for distance measurement. The maximum error of the
distance measurement is within 5%, and the absolute mean
error is below 2.39%.

In the future, practical applications of PTZ cameras will be
further studied. For instance, most vision-based traffic surveil-
lance methods adopt a virtual window to detect vehicles [22].
If the view of the PTZ camera is changed, then the position
and size of the window must be adjusted again manually. Using
the dynamic calibration procedure developed in this paper, the
detection window can be arranged automatically. On the other
hand, the effect of lens distortion and nonfixed principal point
needs to be handled to increase the accuracy of PTZ camera
calibration.

APPENDIX A
DERIVATION OF FOCAL LENGTH EQUATION

Here, the focal length equation will be derived by using only
two parallel lines in the image. As shown in Fig. 1(a), lines L1

andL2 are two parallel lines.L1 andL2 intersect theX axis and
Y axis at P1, P2, P3, and P4; the corresponding coordinates of
these points in the image plane are expressed as

u2 =
fX2

F
= −fY1 tan θ

h cscφ
= −fαY3 tan θ

h cscφ
(A1)

u4 = − fX4

F
= −fY3 tan θ

h cscφ
(A2)

v1 =
fY1 sinφ

Y1 cosφ+ h cscφ
(A3)

v3 =
fY3 sinφ

Y3 cosφ+ h cscφ
(A4)

where X2 is the X coordinate of P2, X4 is the X coordinate of
P4, Y1 is the Y coordinate of P1, and Y3 is the Y coordinate of
P3. Dividing (A1) by (A2), we obtain α = (Y1/Y3) = (u2/u4).
Writing r as fY3 sinφ, s as Y3 cosφ, and t as h cscφ, (A3) and
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Fig. 12. Traffic images captured under different illumination conditions. (a) Image with weak shadow. (b) Image with strong shadow. (c) Image under bright
illumination. (d) Image under soft illumination. (e) Image captured at sunset. (f) Image under darker illumination.

Fig. 13. Traffic images captured under different camera pose settings. (a) Image of pose setting A. (b) Image of pose setting B. (c) Image of pose setting C.
(d) Image of pose setting D.
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TABLE IV
CALIBRATION RESULTS UNDER DIFFERENT CAMERA POSE SETTINGS

(A4) can be rewritten as

v1 =
αr

αs+ t
(A5)

v3 =
r

s+ t
. (A6)

Applying trigonometric function properties, one can easily find
the relationship between r, s, and t. Computing r2 + f2s2 and
r2t2, one can obtain

r2 + f2s2 = f2Y 2
3 (A7)

r2t2 = (fY3h)2. (A8)

Dividing (A7) by (A8), one has

r2 + f2s2

r2t2
=

1
h2
. (A9)

Solving for r and s in terms of t from (A5) and (A6), one has

r =
αv1v3 − v1v3

αv1 − αv3
t = β1t (A10)

s =
αv3 − v1

αv1 − αv3
t = β2t. (A11)

Substituting (A10) and (A11) into (A9) and using t = h cscφ,
(A9) can be rewritten as

β2
1 + f2β2

2

β2
1(h cscφ)2

=
1
h2
. (A12)

Rearranging (A12), we obtain

β2
1 + f2β2

2 = β2
1 csc2 φ. (A13)

Next, the relationship between cscφ and sec θ is derived. In
Fig. 1, the world coordinates of the camera is (0,−h cotφ, h)
and the Xcoordinates of P2 and P4 are expressed as

X4 =h cotφ tan θ − d sec θ (A14)
X2 =X4 − w sec θ. (A15)

The u coordinates of P2 and P4 in an image frame are
expressed as

u2 =
fX2

F
=

f(X4 − w sec θ)
F

(A16)

u4 =
fX4

F
. (A17)

Let X4 = qw sec θ, then X2 = (q − 1)w sec θ. Equations
(A16) and (A17) can be rewritten as

u2 =
f(q − 1)w sec θ

F
(A18)

u4 =
fqw sec θ

F
. (A19)

From (A18) and (A19), q can be expressed in terms of u1

and u2 as

q =
1

1 − u2
u4

=
1

1 − α
. (A20)

Substituting F = h cscφ into (A19), we obtain the relationship
between cscφ and sec θ as

cscφ =
qw

hu4
f sec θ. (A21)

Substituting (A21) into (A13), we obtain

β2
1 + f2β2

2 = β2
1

(
qw

hu4

)2

f2 sec2 θ. (A22)

Using the vanishing point constraints and trigonometric func-
tion properties, one can proceed to derive equations that will
determine the equation containing sec2 θ and, finally, the focal
length equation. Squaring (5) and using sec2 φ = 1 + tan2 φ,
we have

u2
0 = f2 tan2 θ + f2 tan2 θ tan2 φ. (A23)
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Inasmuch as v0 = f tanφ, (A23) can be rewritten as

u2
0 =

(
f2 + v2

0

)
tan2 θ. (A24)

Using tan2 θ = (sec2 θ − 1), (A24) yields

u2
0 + f2 + v2

0 =
(
f2 + v2

0

)
sec2 θ. (A25)

The equation containing sec2 θ is found. Dividing (A25) by
(A22), we get

u2
0 + f2 + v2

0

β2
1 + f2β2

2

=
f2 + v2

0

β2
1

(
qw
hu4

)2

f2

. (A26)

Rearranging (A26), we arrive at

am2 + bm+ c = 0 (A27)

where m is f2 and the other variables are listed Table I.
This governing equation is presented in Section II as the focal
length equation.

Next, let us discuss how the camera parameters affect the
sign of coefficient a. For simplicity, the sign of at2 is discussed
instead of the sign of a, i.e.,

at2 = Bt2 − β2
2t

2 = Y 2
3 (cos2 θ − cos2 φ). (A28)

Equation (A28) reveals that the magnitude of the tile and pan
angles affects the sign of coefficient a. Details are listed as
follows:

• a > 0 if |φ| > |θ|;
• a = 0 if |φ| = |θ| or Y3 = 0;
• a < 0 if |φ| < |θ|.

It is clear that the difference between the absolute value of
tilt and pan angles determines the sign of coefficient a. When
a = 0, the focal length equation becomes linear and the focal
length can be estimated easily. This completes the derivation of
the focal length equation.

When the vanishing point is far from the image center or
disappears (for instance, as the tilt angle is equal to 90◦)
in the image frame, (A27) cannot be used to find the focal
length. Instead, the focal length can be easily obtained by the
perspective projection equation given by

f = h
wp

w
(A29)

where wp is the width between parallel lanes in the image
frame.

APPENDIX B
CONVERSION BETWEEN PIXEL COORDINATES

AND WORLD COORDINATES

Here, we derive the transformation between pixel coordinates
and world coordinates. We will explain how focal length and

tilt angle are used to obtain the world coordinates of a feature
in the ground plane.

A pixel coordinate (u, v) is expressed as a function of the
world coordinate (X,Y,Z) as

u = − f
Xc

Zc
= −f X

−Y cosφ− F
(B1)

v = − f
Yc

Zc
= −f Y sinφ

−Y cosφ− F
. (B2)

Equation (B2) is rewritten as

vY cosφ+ vh cscφ = fY sinφ. (B3)

Dividing (B3) by cosφ, one can have

vY +
vh cscφ
cosφ

= fY
sinφ
cosφ

. (B4)

Using v0 = f tanφ, (B4) is rewritten as

vY +
vh

sinφ cosφ
= Y v0. (B5)

The solution of (B5) is

Y =
h

f

v

sin2 φ

v0

v0 − v
. (B6)

Substituting (B6) into (B1), it is easy to obtain

X =
h

f

u

sinφ

(
v

v0 − v
+ 1

)
=

h

f

u

sinφ
v0

v0 − v
. (B7)

From (B6) and (B7), one can transform the pixel coordinates
into their world coordinates.
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