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Abstract

Multidimensional scaling (MDS) is a statistical tool for constructing a low-dimension configuration to represent the relationships among

objects. In order to extend the conventional MDS analysis to consider the situation of uncertainty under group decision making, in this paper the

interval-valued data is considered to represent the dissimilarity matrix in MDS and the rough sets concept is used for dealing with the problems of

group decision making and uncertainty simultaneously. In addition, two numerical examples are used to demonstrate the proposed method in both

the situation of individual differences scaling and the conventional MDS analysis with the interval-valued data, respectively. On the basis of the

results, we can conclude that the proposed method is more suitable for the real-world problems.

q 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

The goal of multidimensional scaling (MDS) is to represent

the relationships among objects by constructing a configuration

of n points in low dimension from pairwise comparisons of

similarities/dissimilarities among a set of n objects. The

dissimilarities can be calculated by Euclidean distance or

other weighted distance such as Manhattan or maximum value

distances. Generally, MDS can be categorized into metric

MDS and non-metric MDS according to whether the

dissimilarity values are quantitative or qualitative. More

detailed discussions about MDS can refer to Mead (1992)

which reviews the development of MDS.

Although MDS has been successfully used in various areas

such as psychophysics, sensor analysis, and marketing, the

issues of group decision making and uncertainty should be

considered for more applications. The first problem, which also

called individual differences scaling, involves assessing the

dissimilarities by more than one person. It is clear that the

dissimilarity matrix may be inconsistent in this situation. The

other problem is uncertainty, which is caused by human

subjective interpretation or incomplete information. In this

paper, we propose a method, which can deal with the problems
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of group decision making and uncertainty in the MDS analysis

simultaneously using the concept of rough sets.

Several algorithms such as EMD (McGee, 1968), CEMD

(McGee, 1968), INDSCAL (Carroll & Chang, 1970), and

ACOVS (Jöreskog, 1970) have been proposed to handle the

problem of group decision making in MDS. These methods

are generally based on the monotonic transformation of the

observed dissimilarities or weighting the subject space to

obtain a compromise solution. However, due to the

limitations of human judgment and incomplete information,

it is hard even for experts to quantify the dissimilarity value

of certain pairs of objects. In this situation, interval-valued

data are more suitable to represent human imprecision.

Although this idea of interval-valued data for MDS has

been developed in Denceux and Masson (2000, 2002), it

should be highlighted that their method only deal with the

problem of group decision making or human imprecision.

However, in this paper, we deal with the problems of group

decision making and human imprecision simultaneously. We

will use a numerical example to discuss the problem of

their method in Section 2.

In this paper, the degree of uncertainty can be represented as

two cycles. The possibility of the actual output falls into the

internal cycle, which is also called the lower approximation, is

higher than the external cycle, which is also called the upper

approximation based on the opinions of experts. However, we

should also concern both cycles especially when the actual

output falls into the area of the external cycle may cause

substantial loss or earnings.
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Table 2

The interval-valued dissimilarity matrix given by Expert 2

D2 O1 O2 O3 O4

O21 0

O22 (2,10) 0

O23 (3,10) (2,10) 0

O24 (4,10) (3,10) (2,10) 0

Table 3

The final interval-valued dissimilarity matrix

D O1 O2 O3 O4

O1 0

O2 (1,10) 0

O3 (1,10) (1,10) 0

O4 (1,10) (1,10) (1,10) 0
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In addition, a reduced model, which is suitable for a single

decision maker with interval-valued data, is derived for

extending the proposed method. Two numerical examples are

used to demonstrate the proposed method. From the numerical

results, we can conclude that the proposed method can well

handle the problems of group decision making and human

imprecision simultaneously in the MDS analysis. More

information can be obtained using the proposed method by

the decision maker.

The rest of this paper is organized as follows. In Section 2,

we describe the problem of individual differences scaling with

interval-valued data. The approximation space, which is

derived using the concept of rough sets, is given in Section

3. In Section 4, we will present the proposed method. Two

numerical examples are used in Section 5 to show the proposed

method. Discussions are presented in Section 6 and

conclusions are given in Section 7.

2. The problem of interval-valued data in individual

differences scaling

Individual differences scaling is used to handle the problem,

which more than one person evaluate the dissimilarity matrix

in the MDS analysis. This method requires one dissimilarity

matrix for each subject and all subjects are assumed to have the

same underlying configuration for each object. A simple

method for dealing with this problem is to average the pairwise

dissimilarities and to form a single dissimilarity matrix.

However, this method has been critical for obtaining the poor

results (Ashby, Maddox, & Lee, 1994) and it also prevents

analyzing the differences among participants. In order to

overcome the above problems, many algorithms mentioned in

Section 1 have been proposed to take individual differences

into account.

Although these algorithms have been widely used in various

fields, these methods do not consider the problem of human

imprecision or incomplete information. The concept of the

interval-valued data has been incorporated into the MDS

analysis in Denceux and Masson (2000, 2002) for considering

human subjects, but it works only in the situation of one person

to assess dissimilarity matrix under the situation of uncertainty

rather than group decision making. We can use a numerical

example to highlight the problem of Denoeux and Masson’s

method when considering the situations of individual differen-

cing scaling and uncertainty simultaneously.

Assume there are four objects in the MDS analysis and

two experts are asked to assess the dissimilarity matrix using

the interval-valued data as shown in Tables 1 and 2,

respectively.
Table 1

The interval-valued dissimilarity matrix given by Expert 1

D1 O1 O2 O3 O4

O11 0

O12 (1,8) 0

O13 (1,7) (1,8) 0

O14 (1,6) (1,7) (1,8) 0
Based on Tables 1 and 2, we can determine the final

interval-valued dissimilarity matrix by Eq. (1)

DZ ½dKjk;d
C
jk � c isj; dKjk Zmin

i
½dijk�;

dCjk Zmax
i
½dijk�

(1)

where D is the interval-valued dissimilarity matrix and dijk
denotes the dissimilarity value in the jth row and the kth

column with the ith expert. The final interval-valued

dissimilarity matrix can be represented as shown in Table 3.

On the basis of Table 3, we can see that the dissimilarity

matrix seems irrational and is too wide to provide any useful

information for the decision maker. Although this example is

the extreme situation in the real world, we can understand that

Denoeux and Masson’s method is not suitable for the situations

of individual differences scaling and uncertainty simul-

taneously. Next, in order to derive the proposed method, we

will first describe the concept of the approximation space using

rough sets theory in Section 3.
3. Approximation space with rough sets concept

Rough sets, which were proposed by Pawlak (1982), are

mathematical algorithms to deal with the problem of vagueness

or uncertainty. Rough sets have been used in the area

of multicriteria decision analysis (Greco, Matarazzo, &

Slowinski, 2001; Pawlak & Slowinski, 2001), variable

reduction (Beynon, 2001), knowledge acquisition (Grzymala-

Busse, 1988; Pawlak, 1997), etc. to solve the uncertainty

problem in the real word applications. One main advantage of

rough sets is that rough sets do not need any pre-assumption or

preliminary information about data such as the degree of

membership function (Grzymala-Busse, 1988; Pawlak, Grzy-

mala-Busse, Slowinski, & Ziarko, 1995). Recently, rough sets

and fuzzy sets theory are used together to complement each

other (Chakrabarty, Biswas, & Nanda, 2000; Mordeson, 2001;

Radzikowska & Kerre, 2002) rather than compete it (Dubois &

Prade, 1991). More detailed discussions about the processes of

rough sets theory can be referred to (Walczak & Massart,

1999).
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Fig. 1. Concepts of the lower and upper radii between two objects.
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The original concept of the approximation space in rough

sets can be described as follows. Given an approximation space

aprZ ðU;AÞ (2)

whereU is the universe which is a finite and non-empty set, and

A is the set of the attributes. On the basis of the approximation

space, we can define the lower and upper approximations of a

set as follows.

Let X be a subset of U and B3A. Then, the lower

approximation of X in A can be represented as

aprðAÞZ fxjx2U; IndðBÞ3Xg (3)

and the upper approximation of X in A can be represented as

aprðAÞZ fxjx2U; IndðBÞhXsfg (4)

where

IndðBÞZ fðxi; xjÞ2U!U; f ðxi; aÞZ f ðxj; aÞ ca2Bg: (5)

Note that Eq. (3) represents the least composed set in A

contained by X which is called the best upper approximation of

X in A and Eq. (4) represents the greatest composed set in A

contained by X which is called the best lower approximation.

After constructing the upper and lower approximations, the

boundary can be represented as

BNðAÞZ aprðAÞKaprðAÞ (6)

On the concepts of the approximation spaces, we can derive

the proposed method for dealing with the problems of

individual differences scaling and uncertainty in the MDS

analysis.
4. Individual differences scaling with rough sets concept

From the rough sets concept, we can define the lower and

upper dissimilarity matrices to describe the situation of

individual differences scaling with the interval-valued data

using the follow equations

aprðDjkÞZh
n

iZ1
dijk Z ðdKjk* ; d

*K
jk Þ c jsk (7)
and

aprðDjkÞZg
n

iZ1
dijk Z ðdCjk* ; d

*C
jk Þ c jsk (8)

where Djk is the interval-valued dissimilarity of the jth row and

the kth column, dijk denotes the interval-valued dissimilarity of

the jth row and the kth column with the ith individual. In

addition, dKjk* , d
�K
jk denote the left and right values of the lower

dissimilarity and dCjk� , d
�C
jk denote the left and right values of the

upper dissimilarity. Then, the boundary can be determined as

the following equation:

BNðDjkÞZ aprðDjkÞKaprðDjkÞ (9)

The boundary of the dissimilarity matrix can be interpreted

as the uncertain degree of the pure upper approximation. Next,

we depict two cycles as shown in Fig. 1 to describe the

concepts of the proposed method. In this figure, the concept of

uncertainty can be represented by extending the point to the

cycle and the radius r indicates the degree of uncertainty. For

example, the radius rj� indicates the uncertain degree of the

lower approximation in the jth object and the radius r*j denotes

the uncertain degree of the upper approximation in the jth

object. Obviously, the uncertain degrees of the upper

approximation are larger than the lower approximation.

In addition, on the basis of Fig. 1 we can describe the

relationships among objects using the following equations

djk Z dCjk* Kðrj* Crk* Þ (10)

djk Z dKjk* C ðrj* Crk* Þ (11)

djk Z d*C
jk Kðr*j Cr*k Þ (12)

djk Z d*K
jk C ðr*j Cr*k Þ (13)

where djk denotes the dissimilarity value between the centers cj
and ck, dCjk* and dKjk* denote the maximum and minimum

dissimilarities between the lower approximations rj� and rk� ,

respectively, and the maximum and minimum dissimilarities

between the upper approximations r*j and r*k can be denoted as

d*C
jk and d*K

jk , respectively.

From rough sets concept, we can summarize that the internal

cycle (i.e. the lower approximation) indicates the intersection of



Table 6

The interval-valued dissimilarity matrix given by Expert 3 in Example 1

D3 A1 A2 A3 A4 A5

A31 0

A32 (4,6) 0

A33 (5,8) (6,9) 0

A34 (2,4) (3,6) (6,8) 0

A35 (5,7) (9,10) (4,7) (4,5) 0

Table 5

The interval-valued dissimilarity matrix given by Expert 2 in Example 1

D2 A1 A2 A3 A4 A5

A21 0

A22 (2,6) 0

A23 (6,9) (5,8) 0

A24 (1,4) (5,7) (7,8) 0

A25 (4,7) (8,10) (4,6) (5,6) 0
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the experts’ agreements and the external cycle (i.e. the upper

approximation) indicates the union of the experts’ agreements.

Since the internal and external cycles are the different degrees of

uncertainty, we should minimize the sum of uncertainty to

obtain the optimal radii. That is, we can transform the above

problems into the followingmathematical programmingmodel:

min
Xn

jZ1

ðr*j Crj* Þ (14)

s:t: d�Kjk %d*
K
jk c jsk (15)

d�Cjk Rd*
C

jk c jsk (16)

dKjk*%dKjk c jsk (17)

dCjk*RdCjk* c jsk (18)

d�Kjk RdKjk* R0 c jsk (19)

rj* ; r
*
j R0 c jZ 1;.; n (20)

By substituting Eqs. (15)–(18) by Eqs. (10)–(13), we can

derive the optimum lower and upper radii using the following

linear programming model:

min
Xn

jZ1

ðr*j Crj* Þ (21)

s:t: r*j Cr*k R
1

2
ðd*

C
jk Kd*

K
jk Þ c jsk (22)

rj* Crk*R
1

2
ðdCjk*Kd

K
jk* Þ c jsk (23)

r*j Rrj*R0 c jZ 1;.; n (24)

In addition, we can also reduce the proposed method by

defining the pessimistic index (PI) for considering the situation

of a single decision maker. The pessimistic index can be

presented by the following equation

rj* Z hr*j ; 0%h%1 (25)

where h is the pessimistic index which can be assigned by the

expert. When hZ0, then rj�Zcj indicates the most optimistic

situation, i.e. the lower approximation is equal to zero. On the

other hand, when hZ1, then rj* Zr*j indicates the most

pessimistic situation. The problem of finding the optimal

upper and lower radii can be derived by solving the following
Table 4

The interval-valued dissimilarity matrix given by Expert 1 in Example 1

D1 A1 A2 A3 A4 A5

A11 0

A12 (3,7) 0

A13 (7,9) (6,8) 0

A14 (2,3) (4,6) (6,8) 0

A15 (5,8) (9,10) (5,7) (4,7) 0
linear programming model:

min
Xn

jZ1

ðr*j Crj* Þ (26)

s:t: r*j Cr*k R
1

2
ðd*

C
jk Kd*

K
jk Þ c jsk (27)

rj* Z hr*j ; 0%h%1; (28)

r*j R0 c jZ 1;.; n (29)

Note that it is clear that the possibility model (Denceux &

Masson, 2002) is one special case (i.e. hZ0) of the proposed

method. Next, we used two numerical examples to demonstrate

the two situations of the proposed method.

5. Numerical examples

In this paper, in order to provide the convenient results for

decision making, the configuration map is only represented

using two dimensions. Next, we first use a numerical example

to demonstrate how the interval-valued data can be used in the

situation of individual differences scaling using the rough sets

concept.

Example 1. Assume there are three experts to assess the

dissimilarity matrix using the interval-valued data and the

dissimilarity matrices can be represented in Tables 4–6,

respectively.

By using Eqs. (7) and (8), we can construct the lower and

upper dissimilarity matrices in Tables 7 and 8, respectively.
Table 7

The lower dissimilarity matrix in Example 1

D* A1 A2 A3 A4 A5

A1 0

A2 (4,6) 0

A3 (7,8) (6,8) 0

A4 (2,3) (5,6) (7,8) 0

A5 (5,7) (9,10) (5,6) (5,5) 0



Table 8

The upper dissimilarity matrix in Example 1

D* A1 A2 A3 A4 A5

A1 0

A2 (2,7) 0

A3 (5,9) (5,9) 0

A4 (1,4) (3,7) (6,8) 0

A5 (4,8) (8,10) (4,7) (4,7) 0

Table 9

The interval-valued dissimilarity matrix given in Example 2

D A1 A2 A3 A4 A5 A6

A1 0

A2 (4,6) 0

A3 (5,8) (1,3) 0

A4 (1,3) (4,7) (4,5) 0

A5 (1,3) (4,6) (3,5) (5,7) 0

A6 (5,8) (1,3) (1,2) (2,4) (3,6) 0

PI 0.3 0.5 0.5 0.2 0.1 0.7

J.-J. Huang et al. / Expert Systems with Applications 31 (2006) 525–530 529
The lower dissimilarity matrix is the intersection of all

dissimilarity matrices and the upper dissimilarity matrix is

the union of all dissimilarity matrices.

From the lower and upper approximation matrices, we can

calculate every cycle’s lower and upper radii by solving Eqs.

(21)–(24) and the configuration can be depicted as shown in

Fig. 2.

Example 2. Next, we use another numerical example to

demonstrate how to apply the proposed method for the

situation of only one decision maker. This example has six

objects and the dissimilarity value is given using the interval-

valued data as shown in Table 9. The last row represents the

degrees of pessimistic index.

On the basis of Eqs. (26)–(29), we can derive the upper and

lower radii by solving the linear programming model and the

corresponding 2D configuration can be depict as shown in

Fig. 3.

As shown in Fig. 3, the configuration map also shows the

internal and external cycles to represent the degrees of

uncertainty even with a single expert. Next, we describe the

discussions according to our two numerical examples in

Section 6.
6. Discussions

In Section 5, we demonstrate two numerical examples to

show the applications of individual differences scaling using

the interval-valued data using the rough sets concept. The main

concept is that the degrees of uncertainty can be represented

using the concept of the cycle. When the cycle is bigger, the

degrees of uncertainty or vagueness are increasing. However,

the degree of uncertainty is different when the method of group

decision making is adopted. In this paper, the internal cycle,
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Fig. 2. The 2D configuration with rough sets concept in Example 1.
which is also called the common ground, denotes the all

evaluators’ intersection. In contrast, the external cycle denotes

the all the evaluators’ union. Using those two cycles, we can

incorporate the different degrees of uncertainty under the

situation of group decision making in the MDS analysis.

In addition, we can highlight the differences of each cycle

and show various situations of uncertainty as shown in Fig. 2.

For example, in the first numerical example, even {A3} and

{A4} have the same external cycle, but the internal cycles are

different. This situation indicates that they have different

degrees of uncertainty, i.e. {A4} is more uncertain than {A3}.

In order to extend the application of the proposed method,

try to consider the application of the MDS analysis in

clustering. When we cluster data, the closer position is

considered to be the same cluster in MDS analysis. However,

if we consider the situation of uncertainty among data, it may

obtain different results.

We can use an example to show this situation. Assume the

2D configuration can be depicted as shown in Fig. 4.

On the basis of Fig. 4, we can see that although {A3} is

close to {A5, A6} rather than {A1, A2}, it is sensible to cluster

{A1, A2, A3} to the same cluster by considering the degree of

uncertainty. The same situation can be found in {A4, A5, A6}.

In addition, in order to extend the proposed method in the

conventional MDS with the interval-valued data, we can use

the pessimistic index to represent the acceptable uncertainty.

Compared with the proposed method, in the conventional MDS

analysis there are only the center value, which is presented in

the 2D configuration. We can consider that the conventional

MDS is one special case of the proposed method with the crisp

data and the pessimistic index is equal to zero. However, since
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Fig. 4. The application of the proposed concept for clustering.
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the problem of uncertainty usually exist in the real word, the

proposed method should be more suitable in this situation.

On the basis of the implementation, we can see the

differences between the proposed method and the model of

(Denceux & Masson, 2000, 2002). First, in the proposed

method each center point has two cycles, in which the internal

cycle represents the optimistic situation and the external cycle

represents the pessimistic situation. However, in Masson and

Denceux’s possibility model, only one cycle, called the

pessimistic situation, is used to represent uncertainty. Second,

the proposed method is suitable for the situation of individual

differences scaling and uncertainty simultaneously. In addition,

from Fig. 4 we know that even if each cycle has the same upper

radius, it does not necessarily have the same lower radius, and

vice versa.

Our method is not only applicable for individual differences

scaling, but is also suitable for the conventional MDS analysis

by incorporating the pessimistic index. On the basis of the

numerical examples, we can conclude that the proposed

method can show more information among objects’ relation-

ships. This is useful for decision makers to make critical

decisions under the situation of uncertainty.

7. Conclusions

Although uncertainty and vagueness usually exist in the

real-world problems, the degree of uncertainty can be reduced

when we have some useful information. This information can

be obtained from expert’s common ground and used for

knowledge discovery. In this paper, the conventional individ-

ual differences scaling is extended to describe the situation of

human subjects or uncertainty using the interval-valued data.

The different degrees of uncertainty are divided into two cycles

using the rough sets concept. The internal cycle describes
the situation in which experts think the actual outputs surely

fall and the external cycle is the situation in which experts think

the actual outputs possibly fall. In addition, two numerical

examples are used to demonstrate the processes of the proposed

method. On the basis of the results, we can conclude that the

proposed method is suitable for both individual differences

scaling and conventional MDS under the situation of

uncertainty.
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Jöreskog, K. G. (1970). A general method for analysis of covariance structures.

Biometrika, 57(2), 239–251.

McGee, V. E. (1968). Multidimensional scaling of n sets of similarity

measures: A non-metric individual differences approach. Multivariate

Behavioral Research, 3(3), 233–248.

Mead, A. (1992). Review of the development of multidimensional scaling

methods. The Statistician, 41(1), 27–39.

Mordeson, J. N. (2001). Rough set theory applied to (fuzzy) ideal theory. Fuzzy

Sets and Systems, 121(2), 315–324.

Pawlak, Z. (1982). Rough set. International Journal of Computer and

Information Sciences, 11(5), 341–356.

Pawlak, Z. (1997). Rough set approach to knowledge-based decision support.

European Journal of Operational Research, 99(1), 48–57.

Pawlak, Z., Grzymala-Busse, J., Slowinski, R., & Ziarko, W. (1995). Rough

sets. Communications of the ACM, 38(11), 88–95.

Pawlak, Z., & Slowinski, R. (2001). Rough set approach to multi-attribute

decision analysis. European Journal of Operational Research, 72(3), 1–47.

Radzikowska, A. M., & Kerre, E. E. (2002). A comparative study of fuzzy

rough sets. Fuzzy Sets and Systems, 126(2), 137–155.

Walczak, B., & Massart, D. L. (1999). Rough sets theory. Chemometrics and

Intelligent Laboratory Systems, 47(1), 1–16.


	Interval multidimensional scaling for group decision using rough set concept
	Introduction
	The problem of interval-valued data in individual differences scaling
	Approximation space with rough sets concept
	Individual differences scaling with rough sets concept
	Numerical examples
	Discussions
	Conclusions
	References


