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SUMMARY

A mathematical model describing the hydraulic head distribution for a constant-head test performed in a
well situated at the centre of a patchy aquifer is presented. The analytical solution for the mathematical
model is derived by the Laplace transforms and the Bromwich integral method. The solution for the
hydraulic head has been shown to satisfy the governing equations, related boundary conditions, and
continuity requirements for the hydraulic head and flow rate at the interface of the patch and outer regions.
An efficient numerical approach is proposed to evaluate the solution, which has an integral covering an
integration range from zero to infinity and an integrand consisting the product and square of the Bessel
functions. This solution can be used to produce the curves of dimensionless hydraulic head against
dimensionless time for investigating the effect of the contrast of formation properties on the dimensionless
hydraulic head distribution. Define the ratio of outer-region transmissivity to patch-region transmissivity
as a: The dimensionless hydraulic head for a ¼ 0:1 case is about 2.72 times to that for a ¼ 10 case at
dimensionless large time (e.g. t5106) when the dimensionless distance ðrÞ equals 10. The results indicate
that the hydraulic head distribution highly depends on the hydraulic properties of two-zone formations.
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1. INTRODUCTION

The determination of hydraulic parameters through an aquifer test is commonly used in site
characterization. The constant-flux and constant-head tests are two different kinds of aquifer
tests. The former requires maintaining a constant well discharge (or injection) and measure the
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drawdowns at observation wells. The constant-head test is frequently carried out in a single well
for which a constant head must be maintained in order to measure the transient flow rate across
the wellbore. The constant-head test is suitable to use in the low-permeability formations for
estimating aquifer parameters.

An aquifer having a small region of anomalous hydrogeological properties may be
called a well in a cylindrical inhomogeneity (patchy aquifer). A patchy aquifer may have the
radius of heterogeneous cylinder (patchy region) up to 60m [1] and can be considered
as a composite aquifer system. During well construction, a wellbore skin of finite thickness
may be developed due to the invasion of drilling mud into the adjacent formation or the
removal of fine particles from the surrounding formation by extensive well development;
consequently, the original homogeneous aquifer may become a composite aquifer system
also. In any case, the thickness of skin zone may range from a few millimeters to several
meters, and thus must be considered in pumping-test-data analyses [2]. Barker and
Herbert [1] gave a Laplace-domain solution for the problem of a well pumped with
a constant rate and situated at the centre of disc of a patchy aquifer. Actually, the
aquifer is generally of low transmissivity in the patch region and of relatively high
transmissivity in the outer region under most field conditions [1, 2]. Concepts of the
infinitesimal and finite-thickness regions with a heterogeneous property in contrast to
that of the outer region are commonly used to investigate the effect of the patch region on
the result of well constant-head tests. Streltsova [3, 4] considered an infinitesimal hetero-
geneous aquifer and used the skin factor to represent the heterogeneous aquifer effect.
Novakowski [5] developed a Laplace-domain solution for the transient flow rate across the
wellbore for composite aquifers with considering the effects of the finite-thickness heterogeneous
aquifer and well partial penetration. Curves of dimensionless hydraulic head versus
dimensionless time were developed to investigate the influences of the finite-thickness
heterogeneous aquifer and well partial penetration on the hydraulic head distribution.
Markle et al. [6] developed a model for composite aquifer with a partially penetrating well
that has a finite-thickness heterogeneous aquifer and intersects a single vertical fracture. Their
results show that the finite-thickness heterogeneous aquifer and the well partial penetration
can affect the transient flow rate across the wellbore. For a constant-head test in a radial
composite aquifer system, Chang and Chen [7] gave the Laplace-domain solutions for the
hydraulic heads and flow rate across the wellbore. However, their solution for the head
distribution in an undisturbed aquifer is incorrect. In this study, we derive a closed-form
solution (i.e. time-domain solution) to describe the hydraulic head distribution for a constant-
head test in a patchy aquifer with a fully penetrating well. The solution is expressed in an
integral form that has an integration range from zero to infinity. The integral is difficult to
evaluate due to the integrand not only consisting of the product and square of the Bessel
functions, but also having a singularity at the origin. Therefore, we present a numerical
approach including a root-search scheme, the Gaussian quadrature, and the Shanks method to
evaluate this solution. This approach is in a very efficient way when evaluating the solution.
Finally, the effects of hydrogeological properties and thickness of the patch region on
dimensionless hydraulic head distribution are explored. In addition, for dealing with the
problem of the well constant-head test, this new solution can be used as a fundamental tool for
testing and benchmarking numerical codes, performing sensitivity analysis for model
parameters, and even identifying the hydrogeological properties when coupling with an
optimization algorithm in the test-data analyses.
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2. PROBLEM STATEMENT

2.1. Groundwater flow equations

A patchy aquifer system with a well for pumping tests is depicted in Figure 1. The confined
aquifer consists of two regions with transmissivities T1 for rw4r4r1 in the patch region and T2

for r5r1 in the outer region. Assumptions made for the confined-aquifer solution are: (1) the
aquifer is homogeneous, isotropic, and has infinite-extent with a constant thickness, (2) the well
is fully penetrated with a finite radius, and (3) the initial hydraulic head is constant and uniform
throughout the whole aquifer. Using these assumptions, the equations which express the
combination of mass balance and Darcy’s law through the patch and outer regions are,
respectively,

@2h1
@r2
þ

1

r

@h1
@r
¼

S1

T1

@h1
@t
; rw4r4r1 ð1Þ

and

@2h2
@r2
þ

1

r

@h2
@r
¼

S2

T2

@h2
@t
; r14r51 ð2Þ

where the subscripts 1 and 2, respectively, denote the patch region around the wellbore and the
outer region, h is the hydraulic head distribution, T is the transmissivity, S is the storage
coefficient, r is the radial distance from the centre of well, rw is the radius of well, r1 is the outer
radius of the patch region (or the cylinder radius of the patch region), and t is the time from the
start of test. These two equations represent the hydraulic heads within the patch and outer
regions, respectively.

The hydraulic heads are initially assumed to be zero within both the patch and outer regions,
that is

h1ðr; 0Þ ¼ h2ðr; 0Þ ¼ 0 for r > rw ð3Þ

As r approaches infinity, the derivative of hydraulic head with respect to the radial distance
tends to zero. Such a boundary condition for the outer region may be specified as

@h2ð1; tÞ
@r

¼ 0 ð4Þ

Impermeable layer

Impermeable layer
r1

Wellbore
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rw
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Figure 1. Schematic diagram of the well and patchy aquifer configurations.
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The boundary condition for maintaining a constant head at r ¼ rw is given by

h1ðrw; tÞ ¼ hw ð5Þ

where hw is the constant head around the wellbore at any time.
The continuities of hydraulic head and flow rate at the interface of the patch and outer

regions, respectively, require

h1ðr1; tÞ ¼ h2ðr1; tÞ ð6Þ

and

T1
@h1ðr1; tÞ

@r
¼ T2

@h2ðr1; tÞ
@r

ð7Þ

2.2. Derivation of closed-form solutions

Applying the Laplace transform on (1) and (2) subject to the initial condition (3), the solutions
of the transformed governing equations with four unknown constant can be obtained. Similarly,
the transformed boundary conditions of (4)–(7) can be obtained when taking the Laplace
transform. The Laplace-domain solutions in the patch and outer regions can then be obtained
by substituting the transformed boundary conditions into the solutions of the transformed
governing equations subsidiary formulas. The results of %h1 and %h2 expressed for the patch and
outer regions are, respectively,

%h1 ¼
hw

p

f1I0ðq1rÞ � f2K0ðq1rÞ
f1I0ðq1rwÞ � f2K0ðq1rwÞ

ð8Þ

and

%h2 ¼
hw

p

�K0ðq2rÞ
½r1q1�½f1I0ðq1rwÞ � f2K0ðq1rwÞ�

ð9Þ

where q21 ¼ pS1=T1; q22 ¼ pS2=T2; p is the Laplace variable [8], I0ð�Þ and K0ð�Þ are, respectively,
the modified Bessel functions of the first and second kinds of order zero, and

f1 ¼

ffiffiffiffiffiffiffiffiffiffi
S2T2

S1T1

r
K0ðq1r1ÞK1ðq2r1Þ � K1ðq1r1ÞK0ðq2r1Þ ð10Þ

and

f2 ¼

ffiffiffiffiffiffiffiffiffiffi
S2T2

S1T1

r
I0ðq1r1ÞK1ðq2r1Þ þ I1ðq1r1ÞK0ðq2r1Þ ð11Þ

where I1ð�Þ and K1ð�Þ are the modified Bessel functions of the first and second kinds of order one,
respectively. Note that the solutions of (8) and (9) were also given by Chang and Chen [7].
However, their hydraulic head in the outer region is slightly different from (9). They gave a term
r1q2; instead of r1q1; in the denominator of hydraulic head in the outer region.

The time-domain solutions of (8) and (9) obtained by employing the method of the Bromwich
integral [9] are

h1 ¼ hw þ
2hw

p

Z 1
0

e�ðT1=S1Þu2t ½A1ðu; rÞB2ðuÞ � A2ðu; rÞB1ðuÞ�
½B2

1ðuÞ þ B2
2ðuÞ�

du

u
ð12Þ
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and

h2 ¼ hw �
4hw

p2r1

Z 1
0

e�ðT1=S1Þu2t ½J0ðkruÞB1ðuÞ þ Y0ðkruÞB2ðuÞ�
½B2

1ðuÞ þ B2
2ðuÞ�

du

u2
ð13Þ

where

A1ðu; rÞ ¼

ffiffiffiffiffiffiffiffiffiffi
S2T2

S1T1

r
½J0ðr1uÞY1ðkr1uÞY0ðruÞ � Y0ðr1uÞY1ðkr1uÞJ0ðruÞ�

� ½J1ðr1uÞY0ðkr1uÞY0ðruÞ � Y1ðr1uÞY0ðkr1uÞJ0ðruÞ� ð14Þ

A2ðu; rÞ ¼

ffiffiffiffiffiffiffiffiffiffi
S2T2

S1T1

r
½Y0ðr1uÞJ1ðkr1uÞJ0ðruÞ � J0ðr1uÞJ1ðkr1uÞY0ðruÞ�

� ½Y1ðr1uÞJ0ðkr1uÞJ0ðruÞ � J1ðr1uÞJ0ðkr1uÞY0ðruÞ� ð15Þ

B1ðuÞ ¼

ffiffiffiffiffiffiffiffiffiffi
S2T2

S1T1

r
½J0ðr1uÞY1ðkr1uÞY0ðrwuÞ � Y0ðr1uÞY1ðkr1uÞJ0ðrwuÞ�

� ½J1ðr1uÞY0ðkr1uÞY0ðrwuÞ � Y1ðr1uÞY0ðkr1uÞJ0ðrwuÞ� ð16Þ

and

B2ðuÞ ¼

ffiffiffiffiffiffiffiffiffiffi
S2T2

S1T1

r
½Y0ðr1uÞJ1ðkr1uÞJ0ðrwuÞ � J0ðr1uÞJ1ðkr1uÞY0ðrwuÞ�

� ½Y1ðr1uÞJ0ðkr1uÞJ0ðrwuÞ � J1ðr1uÞJ0ðkr1uÞY0ðrwuÞ� ð17Þ

where k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T1S2=T2S1

p
; J0ð�Þ and Y0ð�Þ are, respectively, the Bessel functions of the first and

second kinds of order zero, and J1ð�Þ and Y1ð�Þ are, respectively, the Bessel functions of the first
and second kinds of order one. Equations (12) and (13) are the closed-form solutions of
hydraulic heads within the patch and outer regions. Detailed derivation for the solution is given
in Appendix A.

2.3. Dimensionless variables

As a mean of expressing the solution in dimensionless form, the following dimensionless
variables are defined: a ¼ T2=T1; b ¼ S2=S1; t ¼ T2t=S2r

2
w; r ¼ r=rw; r1 ¼ r1=rw; %hD1 ¼ %h1=hw;

%hD2 ¼ %h2=hw; hD1 ¼ h1=hw; and hD2 ¼ h2=hw where a represents the ratio of outer-region
transmissivity to patch-region transmissivity (ratio of the transmissivity), b represents the
ratio of outer-region storage coefficient to patch-region storage coefficient (ratio of storage
coefficient), t represents the dimensionless time during the test, r represents the dimensionless
distance from the centre of well, r1 represents the dimensionless thickness of the
patch region, %hD1 represents the dimensionless hydraulic head in the Laplace domain within
the patch region, %hD2 represents the dimensionless hydraulic head in the Laplace domain within
the outer region, hD1 represents the dimensionless hydraulic head in the time domain within the
patch region, and hD2 represents the dimensionless hydraulic head in the time domain within
the outer region.
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The Laplace-domain solutions of (8) and (9) on dimensionless hydraulic head in a patchy
aquifer are, respectively,

%hD1 ¼
1

p

f1I0ðq1rÞ � f2K0ðq1rÞ
f1I0ðq1Þ � f2K0ðq1Þ

ð18Þ

and

%hD2 ¼
1

p

½f1I0ðq1r1Þ � f2K0ðq1r1Þ�K0ðq2rÞ
½f1I0ðq1Þ � f2K0ðq1Þ�K0ðq2r1Þ

ð19Þ

Accordingly, (12) and (13) can also be, respectively, expressed in dimensionless form as

hD1 ¼ 1þ
2

p

Z 1
0

e�btw
2=a ½AD1ðw;rÞBD2ðwÞ � AD2ðw; rÞBD1ðwÞ�

½B2
D1ðwÞ þ B2

D2ðwÞ�
dw

w
ð20Þ

and

hD2 ¼ 1�
4

p2r1

Z 1
0

e�btw
2=a ½J0ðkrwÞBD1ðwÞ þ Y0ðkrwÞBD2ðwÞ�

½B2
D1ðwÞ þ B2

D2ðwÞ�
dw

w2
ð21Þ

where w ¼ rwu;

AD1ðw; rÞ ¼
ffiffiffiffiffiffi
ab

p
½J0ðr1wÞY1ðkr1wÞY0ðrwÞ � Y0ðr1wÞY1ðkr1wÞJ0ðrwÞ�

� ½J1ðr1wÞY0ðkrwÞY0ðrwÞ � Y1ðr1wÞY0ðkr1wÞJ0ðrwÞ� ð22Þ

AD2ðw;rÞ ¼
ffiffiffiffiffiffi
ab

p
½Y0ðr1wÞJ1ðkr1wÞJ0ðrwÞ � J0ðr1wÞJ1ðkr1wÞY0ðrwÞ�

� ½Y1ðr1wÞJ0ðkr1wÞJ0ðrwÞ � J1ðr1wÞJ0ðkr1wÞY0ðrwÞ� ð23Þ

BD1ðwÞ ¼
ffiffiffiffiffiffi
ab

p
½J0ðr1wÞY1ðkr1wÞY0ðwÞ � Y0ðr1wÞY1ðkr1wÞJ0ðwÞ�

� ½J1ðr1wÞY0ðkr1wÞY0ðwÞ � Y1ðr1wÞY0ðkr1wÞJ0ðwÞ� ð24Þ

and

BD2ðwÞ ¼
ffiffiffiffiffiffi
ab

p
½Y0ðr1wÞJ1ðkr1wÞJ0ðwÞ � J0ðr1wÞJ1ðkr1wÞY0ðwÞ�

� ½Y1ðr1wÞJ0ðkr1wÞJ0ðwÞ � J1ðr1wÞJ0ðkr1wÞY0ðwÞ� ð25Þ

The aquifer properties are constant through the whole aquifer if the aquifer is homogeneous.
Accordingly, both a and b are equal to unity and the variables q1 and q2 in (18) and (19),
respectively, are set to equal q: The Laplace-domain solutions of (18) and (19) reduce to the
solution for a uniform formation as

%hD ¼
1

p

K0ðqrÞ
K0ðqÞ

ð26Þ

In addition, the solutions of (20) and (21) describing the dimensionless hydraulic head
distributions can then algebraically reduce to

hDðt;rÞ ¼ 1�
2

p

Z 1
0

e�tw
2 ½J0ðwÞY0ðrwÞ � Y0ðwÞJ0ðrwÞ�

½J2
0 ðwÞ þ Y2

0 ðwÞ�
dw

w
ð27Þ
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Notably, (27) is identical to the solution given in Reference [10, p. 335, (6)] for a heat conduction
problem. Equation (27), or in a slightly different form, can also be seen in some engineering
applications, e.g. Goldstein [11] in a viscous fluid problem; Carslaw and Jaeger [12], Harvard’s
problem report [13], and Jaeger [14] in the heat conduction problems; Hantush [15] in the
groundwater problem. Peng et al. [16] presented an efficient numerical approach to evaluate (27)
with accuracy to five decimal places and for very wide ranges of dimensionless distances and
times.

3. NUMERICAL STUDY

3.1. Curves of the integrand

The patchy aquifer system will reduce to a homogenous (uniform) aquifer system if a ¼ 1 (i.e.
T1 ¼ T2). In contrast, the aquifer has T1 > T2 for a51 and T15T2 for a > 1: In the following
discussion, the ratio of storage coefficient b and dimensionless time t are chosen as one.
Figures 2(a)–(c) show the curves of integrands in (20) and (21) against the argument w for
r1 ¼ 3 ðr1 ¼ 3rwÞ and a ¼ 0:1; 1 and 10 when t ¼ 1: Figures 2(a) and (b) demonstrate the plots
of integrand in (20) for r ¼ 2 ðr ¼ 2rwÞ and 3. Within the patch region (i.e. 14r4r1), the curve
contains infinite sinuous waves and has the same roots for various values of a: When a41; the
curve of integrand is smooth since the amplitudes of oscillatory waves after the first zero-root
are all smaller than 10�45: The amplitude of the wave increases with a but for larger w the
amplitude and tends toward zero. Note that each wave has two peaks for the case with a51 and
r43: Figure 2(b) shows that the sinuous waves of integrand in (21) for r ¼ 10 when a ¼ 0:1; 1
or 10. As a increases the waves decrease in amplitude but increase in wavelength.

Figure 3 is an analysis of the effect of different sizes of patch regions, i.e. r1 ¼ 3 and 5 and
a ¼ 0:1 and 10, for r ¼ 10 when t ¼ 1: The roots on the integrand for r1 ¼ 3 are slight smaller
than those for r1 ¼ 5 if a ¼ 0:1: On the contrary, the roots for r1 ¼ 3 are slight larger than those
for r1 ¼ 5 if a ¼ 10: The patch regions change from 3 to 5; consequently, the roots shift slightly
along the dimensionless distance. Obviously, the differences of the roots are not apparent for the
different sizes of patch regions. Thus, the thickness of the patchy region has significant effect on
the integrands. Figures 2 and 3 demonstrate the patterns of curves that are helpful in obtaining
the roots of integrands which will be used when (20) and (21) are computed numerically.

3.2. Numerical integrations

The improper integrals of (20) and (21) cannot be directly evaluated due to the complexity of
both the Bessel functions and their products terms appeared in integrands. Each integral is
transformed as a sum of infinite series and each term of series represents an area under the
integrand and between two consecutive roots. The roots of integrand can be obtained by a root-
search scheme along a horizontal axis [16]. The Shanks method [17] is applied to accelerate the
convergence when evaluating the infinite series.

In a root-search scheme, an initial guess value is required to approximate the roots of the
integrand along the w-axis. For r > 1 a reasonable step size for a uniform solution is
D ¼ p=ðr� 1Þ; [13]. This is also an appropriate choice for a patchy-aquifer solution when r is
small, choosing the step size as D results in a good approximation for the first few roots of
integrands in (20) and (21). The first root, w1; is then approximated by p=ðr� 1Þ: Therefore, the
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step size D1 from the origin to the first root approximately equals p=ðr� 1Þ: However, using the
step size D1 to estimate the large roots of the integrand will be very poor when r is large. Thus, a
different approach for determining the step size is needed for large r: A reasonable approach for
the second step size is chosen D2 ¼ w1; and the second root w2 is approximately equal to 2w1:
Similarly, the remaining step sizes Di are chosen as wi�1 � wi�2; and the remaining roots are
approximately equal to wi ¼ wi�1 þ Di where i ¼ 3; 4; . . . :

The integrands in (20) and (21) are oscillatory functions as displayed in Figures 2(a)–(c).
A curve with double-peak waves can be observed for the case with a > 1 and 14r4r1; in
contrary, a curve with single-peak waves can be seen for the case that r > r1: Obviously, the
roots for the case with double peaks are difficult to obtain by the conventional root-search
approaches such as Newton’s method. The bisection method may be slow in convergence when
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Figure 2. Plots of integrands in (20) and (21) versus w for t ¼ 1 and a ¼ 0:1; 1 and 10 when:
(a) r ¼ 2; (b) r ¼ 3; and (c) r ¼ 10:
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employing to obtain the roots, yet the advantage of this method is that it is guaranteed to work
[18]. The bisection method is thus adopted to obtain the sequent roots of integrands in this
study. The initial step size is chosen as Di=10 for the ith root to ensure that the first guess root
ðw1

i ¼ wi�1 þ Di=10Þ is smaller than the target root ðwiÞ: The integrands in (20) and (21), FðwiÞ;
are evaluated in a forward direction (i.e. wk

i ¼ wi�1 þ kDi=10; k ¼ 1; 2; . . .) until the condition
Fðwk

i Þ � Fðw
kþ1
i Þ50 is met to ensure that a target root lies between wk

i and wkþ1
i : The bisection

procedure is applied to search each root successively until the criterion FðwiÞ510�20 is met.
The values of integrands in (20) and (21) become infinity as w close to zero and approach zero

for large w as indicated in Figures 2(a)–(c). Apparently, (20) and (21) are not easy to accurately
evaluate especially when w is very close to the origin (singular point). Harvard’s problem report
[13] provided an approach when a ¼ 1 using an infinite series expansion to remove the
singularity of integrand at the origin. Their approach can evaluate the integrand with good
accuracy for a uniform aquifer system when w contains a singular point. However, their
approach does not work in removing the singularity when a=1: Thus, the following approach
using small increment is proposed in the evaluations of (20) and (21). Let e be a very small value,
say 10�20: Starting from e; the Gaussian quadrature [18] is employed to perform the numerical
integration for (20) and (21) piecewise along the w-axis. The distance between two adjacent roots
of integrand is divided into several small step sizes. Within each step, both the six-term and ten-
term formulas of the Gaussian quadrature are used to carry out the integration for the same
area under the integrand. The integration results after applying the six-term and ten-term
formulas within a small step size are, respectively, defined as A6 and A10: The absolute difference
of these two results is defined as DA ¼ jA10 � A6j: If DA > 10�7; a half-step size ðDw=2Þ
will be used and the same integration procedure will be repeatedly applied until DA510�7:
If DA510�7; the same step size ðDwÞ is used when 10�84DA410�7; otherwise, a double step
size ð2DwÞ is used (i.e. DA510�8) for next step. This procedure ensures that each integration
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Figure 3. Plots of integrand in (21) versus w for t ¼ 1; r ¼ 10; and a ¼ 0:1 and 1 when
the patch region r1 ¼ 3 or 5.
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result over a small step has the accuracy at least to seven decimal places. The initial step size,
Dwi; for evaluating (20) and (21) is chosen as ðwi � wi�1Þ=2: The proposed integration procedure
is adopted over the w-axis. Note that the last step size should be chosen such that the end of the
step should be located right at a larger root. In short, the area between any two adjacent roots,
which represents a term of infinite series, is obtained simply by adding the sum of the integration
results form those small steps within the roots. Finally, the evaluation of infinite series may have
the problem of slow convergence. Therefore, we employ the Shanks method to accelerate the
convergence when evaluating the summation of alternating series.

4. RESULTS

Because of no published information on the storage coefficient of patchy aquifer, several
investigators (e.g. References [2, 5, 19]) assumed that the storage coefficients of the patch and
outer regions are the same to simplify the problems. Accordingly, dimensionless storage, b; is set
as unity in this study. Equations (20) and (21), the time-domain solutions, are evaluated by the
proposed approach. In addition, all evaluations are conducted in double-precision format and
the convergence criterion for the Shanks method is chosen as 10�5: The curves of dimensionless
hydraulic head versus dimensionless time are developed to investigate the influences of the
patchy aquifer properties and thickness on the hydraulic head distribution in a patchy aquifer
system.
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Figure 4. The effect of hydrogeological properties in the patch region on the shape of curves for r1 ¼ 3 and
r ¼ 2 and 10 when a ¼ 0:1; 1 or 10.
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Figure 4 exhibits the curves of dimensionless hydraulic head versus dimensionless time for
r1 ¼ 3 and r ¼ 2 and 10 when a ¼ 0:1; 1 or 10. Note that the dimensionless thickness of the
patch region is equal to r1 � 1: At either r ¼ 2 or r ¼ 10; the case of a ¼ 0:1 yields the highest
dimensionless hydraulic head, the case of a ¼ 1 the second highest, and the case of a ¼ 10 the
lowest under the same dimensionless time. Lower transmissivity in the patch region produces
lower flow rate toward the outer region during the well test and results in smaller dimensionless
hydraulic head in the patch and outer regions. On the other hand, larger transmissivity in the
patch region yields larger flow rate across the wellbore and results in larger dimensionless heads
in the patch and outer regions. Table I depicts the ratio of the dimensionless patch-aquifer
hydraulic head to the dimensionless single-aquifer hydraulic head when the dimensionless
thickness of the patch region, r1; equals 3. At r ¼ 2; the ratio may reach 1.48 if a ¼ 0:1 and 0.53
if a ¼ 10 when dimensionless time is very small (say, t ¼ 10); on the other hand, the ratio is 1.05
if a ¼ 0:1 and 0.72 if a ¼ 10 when dimensionless time is very large (say, t51010). In addition, at
r ¼ 10; the ratio may reach 3.41 if a ¼ 0:1 and 0.03 if a ¼ 10 when t ¼ 10; in contrast, the ratio
is 1.09 for a ¼ 0:1 and 0.55 for a ¼ 10 when t51010: Those results demonstrate that the
difference of dimensionless hydraulic heads between the patch and outer regions for a > 1 is
larger than that for a51; especially the dimensionless time is very small.

Figure 5 displays the plot of dimensionless hydraulic head versus dimensionless distance for
r1 ¼ 3 and t ¼ 1; 102; 104 and 106 when a ¼ 0:1 or 10. This figure demonstrates the effects of
the hydrogeological properties of the patch region on the shape of curves of the dimensionless
hydraulic head. The head increases with dimensionless time in both the patch and outer regions;
contrarily, the head decreases with increasing dimensionless radial distance. Note that Figure 5
indicates that the dimensionless hydraulic head for a ¼ 0:1 case is about 2.72 times to that
for a ¼ 10 case at dimensionless large time (e.g. t5106) when the dimensionless distance ðrÞ
equals 10. At the interface of the patch and outer regions (i.e. r ¼ r1 ¼ 3), the slopes of curves

Table I. The ratio of dimensionless patch-aquifer hydraulic
head to dimensionless single-aquifer hydraulic head for r1 ¼

3 and r ¼ 2 and 10 when a ¼ 0:1 or 10.

r ¼ 2 r ¼ 10

t hD;0:1:1 hD;10:1 hD;0:1:1 hD;10:1

1:0Eþ 01 1.48 0.53 3.41 0.03
1:0Eþ 02 1.27 0.59 1.62 0.19
1:0Eþ 03 1.18 0.60 1.34 0.27
1:0Eþ 04 1.14 0.62 1.24 0.33
1:0Eþ 05 1.11 0.64 1.19 0.38
1:0Eþ 06 1.09 0.66 1.16 0.42
1:0Eþ 07 1.08 0.68 1.13 0.46
1:0Eþ 08 1.07 0.69 1.11 0.49
1:0Eþ 09 1.06 0.71 1.10 0.52
1:0Eþ 10 1.05 0.72 1.09 0.55

Note that hD;0:1:1 denotes the ratio of dimensionless hydraulic head
when a ¼ 0:1 to dimensionless aquifer hydraulic head when
a ¼ 1; hD;10:1 denotes the ratio of dimensionless hydraulic head
when a ¼ 10 to dimensionless aquifer hydraulic head when a ¼ 1:
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Figure 5. A plot of dimensionless hydraulic head versus dimensionless distance for r1 ¼ 3 and t ¼ 1; 102;
104 and 106 when a ¼ 0:1 or 10.
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Figure 6. The curves of dimensionless hydraulic head versus dimensionless time for r ¼ 10 and r1 ranges
from 1 (uniform aquifer) to 5 when a ¼ 0:1 or 10.
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are markedly different because of the contrast of transmissivity between the patch and outer
regions. When a51; the slope of curve within the patch region is obviously smaller than that
within the outer region due to the fact of larger transmissivity of the patch region demonstrated
in Figure 5. In contrast, the slope of curve within a patch region is larger than that within the
outer region when a > 1: Obviously, the presence of the patch region influences the hydraulic
head distribution in a patchy aquifer.

The effect of the patch-region thickness on dimensionless hydraulic head distribution is
depicted in Figure 6 where the curves are plotted against dimensionless time at r ¼ 10 and
dimensionless thickness of the patch region ðr1Þ ranging from 2 to 5 when a ¼ 0:1; 1 or 10. This
figure demonstrates that increasing dimensionless patch-region thickness increases dimension-
less hydraulic head for a ¼ 0:1 and decreases dimensionless hydraulic head for a ¼ 10:

5. CONCLUSIONS

The mathematical model describing the radial groundwater flow in a confined patchy aquifer
system is present for well constant-head tests. The closed-form solution expressed in term of
hydraulic head is derived by the Laplace transforms and the Bromwich integral method. In
addition, we also have proven that the solution satisfies the governing equations, boundary
conditions, and continuity requirements at the interface of the patch and outer regions. An
efficient numerical approach is proposed to evaluate the solution. The numerical approach
includes a root-search scheme for finding the consecutive roots of integrand, the Gaussian
quadrature for performing the numerical integration, and the Shanks method for accelerating
the convergence when evaluating the Bessel functions and the alternating infinite series
transformed from the integral. Finally, the influences of the properties and thickness of the
patch region on dimensionless hydraulic head distribution are explored. This new time-domain
solution can be used for identifying the aquifer parameters, verifying the numerical code, or
studying the effect of the contrast of the formation properties on the hydraulic head
distribution. Three conclusions are drawn as follows:

1. The effect of hydraulic head in a patchy aquifer system for T15T2 is larger than that for
T1 > T2: At r ¼ 2; the ratio may reach 1.48 if a ¼ 0:1 and 0.53 if a ¼ 10 when
dimensionless time is very small; on the other hand, the ratio is 1.05 if a ¼ 0:1 and 0.72 if
a ¼ 10 when dimensionless time is very large. In addition, at r ¼ 10; the ratio may reach
3.41 if a ¼ 0:1 and 0.03 if a ¼ 10 when dimensionless time is very small; in contrast, the
ratio is 1.09 for a ¼ 0:1 and 0.55 for a ¼ 10 when dimensionless time is very large.

2. The presence of the finite-thickness patch region around a test well substantially influences
the shape of hydraulic head distribution. The curve developed for the case with a finite
thickness of the patch region shows an abrupt change in slope at the interface of the patch
and outer regions. This indicates that the hydraulic head distribution depends on the
hydraulic properties of both the patch and outer regions.

3. The thickness of the patch region significantly affects the distribution of dimensionless
hydraulic head in a patchy aquifer system. The dimensionless hydraulic head for a ¼ 0:1
case is about 2.72 times to that for a ¼ 10 case at dimensionless large time (e.g. t5106)
when the dimensionless distance ðrÞ equals 10. It is to conclude that a thicker patch region
give higher hydraulic head when T1 > T2 and lower hydraulic head when T15T2:
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APPENDIX A: DERIVATIONS OF (12) AND (13)

The inverse Laplace transforms of (8) and (9) in the time domain can be obtained by using the
Laplace inversion integral [9] as

h1 ¼
1

2pi

Z aþi1

a�i1
ept %h1 dp ðA1Þ

and

h2 ¼
1

2pi

Z aþi1

a�i1
ept %h2 dp ðA2Þ

where p is a complex variable and a is a large, real, positive constant, so much so that all the
poles lie to the left of line ða� i1; aþ i1Þ:

The integrands in (8) and (9) contains a branch point at p ¼ 0 on the cut plane. Thus, these
integrations may require the usage of the Bromwich contour integrals for the Laplace inversion.
The closed contour of integrand is shown in Figure A1 with a cut along the negative real axis,
where d is a small positive number.

A single branch point with a singularity (pole) at p ¼ 0 exists in the integrand in (8).
Accordingly, this integration can be carried out by the use of contour integral. The integrals
taken along BCD and GHA tend to zero as R!1: Consequently, (8) can be superseded by the
sum of integrals along DE and FG, and the small circle EF around the origin as d! 0: In other
words, the integral can then be written as

h1 ¼ lim
d!0
R!1

1

2pi

Z
EF

ept %h1 dpþ
Z
DE

ept %h1 dpþ
Z
FG

ept %h1 dp

� �
ðA3Þ

 �

y

C

A

B

D

G

H

x

F

ER

Figure A1. A plot of the closed-contour integration of the %h1 and %h2 as a function of p ¼ xþ yi for
calculating the inverse Laplace transform.
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Along the small circle EF as d! 0; introducing the limiting form into the first term on the
right-hand side (RHS) of (A3) obtains

h11 ¼ lim
p!0

p
hw

p

f1I0ðq1rÞ � f2K0ðq1rÞ
f1I0ðq1rwÞ � f2K0ðq1rwÞ

� �
ðA4Þ

As p! 0; q1 and q2 approach to zero. Thus, I0ð0Þ and I1ð0Þ approach one and zero,
respectively, and K0ð0Þ and K1ð0Þ become indefinite. The result of (A4) can be obtained as

h11 ¼ hw ðA5Þ

For the second term on the RHS of (A3) along DE, we introduce the change of variable
p ¼ u2e�piT1=S1; and use the formulas [10, p. 490, (25) and (26)]

Kvðze�ð1=2ÞpiÞ ¼ � 1
2
pie�ð1=2Þvpi½�JvðzÞ � iYvðzÞ� ðA6Þ

and

Ivðze�ð1=2ÞpiÞ ¼ e�ð1=2ÞvpiJvðzÞ ðA7Þ

where v ¼ 0; 1; 2; . . . : The second term on the RHS of (A3) leads to

h12 ¼ �
hw

pi

Z 1
0

e�ðT1=S1Þu2t A1ðuÞ þ iA2ðuÞ
B1ðuÞ þ iB2ðuÞ

du

u
ðA8Þ

Likewise, introducing p ¼ u2epiT1=S1; the integral along EF gives minus the conjugate of (A8)
as

h13 ¼
hw

pi

Z 1
0

e�ðT1=S1Þu2t A1ðuÞ � iA2ðuÞ
B1ðuÞ � iB2ðuÞ

du

u
ðA9Þ

The closed-form solution of (12) can then be obtained by combining (A5), (A8), and (A9).
Also, the closed-form solution of (13) can be obtained in a similar manner.

APPENDIX B: PROOF OF THE CLOSED-FORM SOLUTION

This section gives the proof that the time-domain solution satisfies the governing equation,
boundary conditions, and continuity requirements at the interface of the patch and outer
regions. For the outer boundary, r!1; one has J1ð1Þ ¼ 0 and Y1ð1Þ ¼ 0: Taking the
derivative of (13) with respect to r and letting r!1 gives

@h2
@r

����
r!1
¼ �

4hw

p2r1

Z 1
0

e�ðT1=S1Þu2t ½�kuJ1ð1ÞB1ðuÞ � kuY1ð1ÞB2ðuÞ�
½B2

1ðuÞ þ B2
2ðuÞ�

du

u2

¼ 0 ðB1Þ

Therefore, the outer boundary condition of (4) is satisfied.
When r ¼ rw; A1ðu; rwÞ ¼ B1ðuÞ and A2ðu; rwÞ ¼ B2ðuÞ; consequently, the integrand in (12)

becomes zero. Thus, one obtains the result of (5) which is the boundary condition for
maintaining a constant head around the well.

Letting r ¼ r1 and using the formula [12]

J1ðuÞY0ðuÞ � J0ðuÞY1ðuÞ ¼ 2=ðpuÞ ðB2Þ
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Equations (14) and (15), respectively, become

A1ðu; r1Þ ¼ � ½J1ðr1uÞY0ðr1uÞ � Y1ðr1uÞJ0ðr1uÞ�Y0ðkr1uÞ

¼
�2
pr1u

Y0ðkr1uÞ ðB3Þ

and

A2ðu; r1Þ ¼ ½J1ðr1uÞY0ðr1uÞ � Y1ðr1uÞJ0ðr1uÞ�J0ðkr1uÞ

¼
2

pr1u
J0ðkr1uÞ ðB4Þ

Substituting (B3) and (B4) into (12) yields (13). Here we have shown the continuity of hydraulic
head between the patch and outer regions.

Taking the derivatives of A1ðu; rÞ and A2ðu; rÞ with respect to r and letting r ¼ r1; respectively,
gets

@A1ðu; rÞ
@r

����
r¼r1

¼
2

pr1

ffiffiffiffiffiffiffiffiffiffi
S2T2

S1T1

r
Y1ðkr1uÞ ðB5Þ

and

@A2ðu; rÞ
@r

����
r¼r1

¼
�2
pr1

ffiffiffiffiffiffiffiffiffiffi
S2T2

S1T1

r
J1ðkr1uÞ ðB6Þ

Furthermore, letting r ¼ r1 and multiplying by T1 on both sides after taking the derivative of
(12) with respect to r yields

T1
@h1
@r

����
r¼r1

¼
4hw

p2r1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2T1T2

S1

r Z 1
0

e�ðT1=S1Þu2t ½J1ðkr1uÞB1ðuÞ þ Y1ðkr1uÞB2ðuÞ�
½B2

1ðuÞ þ B2
2ðuÞ�

du

u
ðB7Þ

Similarly, one can get

T2
@h2
@r

����
r¼r1

¼
4hw

p2r1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2T1T2

S1

r Z 1
0

e�ðT1=S1Þu2t ½J1ðkr1uÞB1ðuÞ þ Y1ðkr1uÞB2ðuÞ�
½B2

1ðuÞ þ B2
2ðuÞ�

du

u
ðB8Þ

Therefore, we obtain

T1
@h1
@r

����
r¼r1

¼ T2
@h2
@r

����
r¼r1

ðB9Þ

Again, we have shown the continuity of flow rate between the patch and outer regions.
We can carry similar steps demonstrated above by taking the first and second derivatives with

respect to r and the derivative with respect to t for (12) and (13) to prove that the time-domain
solutions satisfy the governing equations, (1) and (2). McLachlan [20, pp. 192–197] gave the
formulas

@J0ðruÞ
@r

¼ �uJ1ðruÞ ðB10Þ

@J1ðruÞ
@r

¼ u
1

ru
J1ðruÞ � J2ðruÞ

� �
ðB11Þ
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and

2

ru
J1ðruÞ ¼ J2ðruÞ þ J0ðruÞ ðB12Þ

Similarly,

@Y0ðruÞ
@r

¼ �uY1ðruÞ ðB13Þ

@Y1ðruÞ
@r

¼ u
1

ru
Y1ðruÞ � Y2ðruÞ

� �
ðB14Þ

and

2

ru
Y1ðruÞ ¼ Y2ðruÞ þ Y0ðruÞ ðB15Þ

Based on formulas (B10)–(B12), one can obtain

@2J0ðruÞ
@r2

þ
1

r

@J0ðruÞ
@r

¼ �u2J0ðruÞ ðB16Þ

Likewise,

@2Y0ðruÞ
@r2

þ
1

r

@Y0ðruÞ
@r

¼ �u2Y0ðruÞ ðB17Þ

After taking the first and second derivatives with respect to r for A1ðu; rÞ and using formula
(B17), one can get

@2A1ðu; rÞ
@r2

þ
1

r

@A1ðu; rÞ
@r

¼

ffiffiffiffiffiffiffiffiffiffi
S2T2

S1T1

r
½J0ðr1uÞY1ðkr1uÞð�u2Y0ðruÞÞ � Y0ðr1uÞY1ðkr1uÞð�u2J0ðruÞÞ�

� ½J1ðr1uÞY0ðkr1uÞð�u2Y0ðruÞÞ � Y1ðr1uÞY0ðkr1uÞð�u2J0ðruÞÞ� ðB18Þ

Applying (14) obtains

@2A1ðu; rÞ
@r2

þ
1

r

@A1ðu; rÞ
@r

¼ �u2A1ðu; rÞ ðB19Þ

Similarly, one can get

@2A2ðu; rÞ
@r2

þ
1

r

@A2ðu; rÞ
@r

¼ �u2A2ðu; rÞ ðB20Þ

Substituting (12) into (1) and using (B19) and (B20), the left-hand side of (1) yields

@2h1
@r2
þ

1

r

@h1
@r
¼

2hw

p

Z 1
0

e�ðT1=S1Þu2t ½�u
2A1ðu; rÞ�B2ðuÞ � ½�u2A2ðu; rÞ�B1ðuÞ

½B2
1ðuÞ þ B2

2ðuÞ�
du

u
ðB21Þ

Taking the derivative of (12) with respect to t and multiplying by S1=T1; the RHS of (1) yields

S1

T1

@h1
@t
¼

2hw

p

Z 1
0

e�ðT1=S1Þu2t ½�u
2A1ðu; rÞ�B2ðuÞ � ½�u2A2ðu; rÞ�B1ðuÞ

½B2
1ðuÞ þ B2

2ðuÞ�
du

u
ðB22Þ

Since (B21) equals (B22), we have shown that the closed-form solution of (12) satisfies (1).
Likewise, one can prove that (13) satisfies (2) also.
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