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Abstract

An aquifer containing a skin zone is considered as a two-zone system. A mathematical model describing the head distribution is
presented for a slug test performed in a two-zone confined aquifer system. A closed-form solution for the model is derived by
Laplace transforms and Bromwich integral. This new solution is used to investigate the effects of skin type, skin thickness, and
the contrast of skin transmissivity to formation transmissivity on the distributions of dimensionless hydraulic head. The results indi-
cate that the effect of skin type is marked if the slug-test data is obtained from a radial two-zone aquifer system. The dimensionless
well water level increases with the dimensionless positive skin thickness and decreases as the dimensionless negative skin thickness
increases. In addition, the distribution of dimensionless well water level due to the slug test depends on the hydraulic properties of
both the wellbore skin and formation zones.
� 2005 Published by Elsevier Ltd.
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1. Introduction

A slug test is one of the aquifer test methods com-
monly used to investigate aquifer parameters. The test
involves an instantaneous removal/injection of a small
volume of water from/into a well [7]. An instantaneous
head change is thus imposed within a well and the recov-
ery/falloff of water level is continuously measured using
a pressure transducer that connects to a data logger. The
aquifer parameters, e.g., transmissivity and storativity,
can then be obtained if the slug-test data is analyzed.

Ferris and Knowles [12] originally introduced the
analysis procedure from slug-test data. They derived
an approximate solution for describing the water level
change within the test well. The transmissivity is esti-
mated based on a straight line, which represents residual
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head versus inverse time. Employing an electrical analog
model of the well-aquifer system, Bredehoeft et al. [4]
demonstrated that Ferris and Knowles’ approximation
is valid only for very late test time. Using the modified
Thiem equation for the unconfined and steady state con-
ditions, Bouwer and Rice [3] presented a procedure for
determining the hydraulic conductivity or transmissivity
for the unconfined aquifers. Using results from an elec-
tric analog model, they obtained two empirical formulas
related to the effective radius for the partially and fully
penetrating wells. Later, Bouwer [2] provided informa-
tion on using Bouwer and Rice’s method for testing
the validity of falling level tests, the application of the
method to the confined aquifers, the effect of well diam-
eter, and the computer processing of field data. Cooper
et al. [8] obtained a solution including the well storage
analogous to a heat conduction problem provided by
Carslaw and Jaeger [6]. Cooper et al. [8] applied their
solution to a ground-water flow system and made a
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Nomenclature

T Transmissivity
S Storativity
r Radial distance from the centerline of the

well
rw Radius of the well
rc Radius of the standpipe
rs Radial distance from the well centerline to

the outer skin envelope
t Time from the start of the test
H Hydraulic head distribution
H0 Initial hydraulic head in the wellbore skin

and formation zones
H Hydraulic head in the Laplace domain
q2 pS/T
p Laplace variable
J0(Æ), Y0(Æ) Bessel functions of the first and second

kinds of order zero
J1(Æ), Y1(Æ) Bessel functions of the first and second

kinds of order one

I0(Æ), K0(Æ) Modified Bessel functions of the first and
second kinds of order zero

I1(Æ), K1(Æ) Modified Bessel functions of the first and
second kinds of order one

j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T 1S2=T 2S1

p
f T2/T1

g S2/S1

a S2r2
w=r2

c

b T 2t=r2
c

q r/rw

qc rc/rw

qs rs/rw
�h H=H0

h H/H0

k2
1 fp/g

k2
2 p

Subscripts
1, 2 Wellbore skin, formation
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family of type curves. They used a matching approach
for the slug-test data to estimate aquifer parameters.
However, the aquifer parameters obtained by this tech-
nique may be very rough because the shape of a type
curve is rather insensitive to the value of aquifer storage
[19], especially, if the storage is very small. Kipp [17]
constructed a set of type curves that enables the well
water level response data from the slug tests to be ana-
lyzed if the inertial parameter is large. Pandit and Miner
[23] provided an automatic fitting procedure to deter-
mine the aquifer parameters when analyzing the slug-
test data obtained from a confined aquifer. Marschall
and Barczewski [20] presented an analysis of slug tests
in the frequency domain for evaluating the solution of
Cooper et al. [8]. Their solution is in terms of Kelvin
functions [18], and the slug-test data is transformed
using numerical Fourier transforms to determine aquifer
parameters. Such an approach can avoid evaluating the
integrand, which is an oscillatory function and difficult
to evaluate.

Using the infinitesimally thin skin concept, Ramey
and Agarwal [24] reported a solution to the drill-stem
test (DST) problem with an inversion integral and
related short- and long-time approximating forms. The
skin effect describing the damage or improvement to
the region surrounding a well is represented by a skin
factor. Ramey et al. [25] presented semi- and double-
log type curves, which combine the effects of the well
storage and wellbore skin, to determine the formation
permeability and skin effect by analyzing the slug-test
data. Faust and Mercer [11] provided an infinite-aquifer
solution for the response of slug tests to investigate the
effect of a finite-thickness skin. They assumed that the
skin has a much lower permeability than that of the
adjacent formation. Under this condition, the skin effect
can lead to very low estimates of hydraulic conductivity
if using the type-curve fitting method of Cooper et al.
[8]. Moench and Hsieh [21] commented on the evalua-
tion of slug tests in a finite-thickness skin by Faust
and Mercer [11]. They showed that when the specific
storage of the skin is negligibly small, the finite-thickness
skin solution becomes equivalent to the infinitesimally
thin skin solution. Under a finite-thickness skin condi-
tion, the skin properties control the early time response,
whereas the formation properties relate to the late time
response. Further, Sageev [26] investigated the effects of
the well storage and wellbore skin in a confined aquifer
system. He obtained a similar result to that of Moench
and Hsieh [21]. Karasaki et al. [16] developed various
slug-tests models and related solutions for linear flow,
radial flow with boundaries, two zone, and concentric
composite aquifer systems. They provided type curves
for each solution and noted that slug tests suffer the
problem of non-uniqueness in matching the test data
to type curves. Butler and Healey [5] investigated the
estimate of hydraulic conductivity obtained through
the pumping or slug test. They indicated that the
hydraulic conductivity estimate from a pumping test
is, on the average, larger than that from a series of slug
test in the same formation.

An aquifer is considered as a radial two-zone (or
composite) system if the formation properties near the
well is apparently changed due to the well drilling or
development. Well drilling causes the invasion of drilling
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Fig. 1. Schematic diagram of the well and aquifer configurations.
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mud into the aquifer and may produce a positive well-
bore skin that has lower permeability than that of the
original formation. On the other hand, the extensive well
development and/or substantial spalling and fracturing
of the borehole wall may increase the permeability of
the formation around a well. Under such circumstances,
the disturbed formation is referred to as a negative well-
bore skin. Moench and Hsieh [22] presented a Laplace-
domain solution for the well response to a drill-stem test
in the presence of skin. They found that the standard
methods of analysis are adequate for open-well slug tests
and may differ markedly in the pressure response for
pressurized slug tests. Karasaki [15] used the time con-
volution method of Duhamel’s theorem to evaluate the
solution of Moench and Hsieh [22]. The systematized
procedure and analysis method were proposed for a
drill-stem test. Recently, Yang and Gates [31] con-
structed a finite-element model for a slug test in a con-
fined aquifer system considering the effect of a finite-
thickness skin. They suggested that the effect of a
wellbore skin on the estimate of hydraulic conductivity
for low-permeability mediums could be minimized by
the use of the late-time data.

A mathematical model describing the head distribu-
tions in the skin and formation zones is presented for
a slug test performed in a two-zone confined aquifer.
The objective of this paper is to derive a new analytical
solution in terms of hydraulic head for slug tests con-
ducted in such a radial two-zone system. The solution
is solved by applying Laplace transforms to the govern-
ing equations and related boundary conditions of the
model and the Bromwich integral [13] to the Laplace-
domain solution. The solution in the time domain is
expressed in terms of an integral that covers a range
from zero to infinity and has an integrand consisting
of complicate products terms of Bessel functions. This
newly derived solution is evaluated by numerical
approaches and compared with that of Cooper et al.’s
solution [8] for a uniform media and the results of
numerical inversion from the Laplace-domain solution.
The solution is employed to investigate the effects of
skin type, skin thickness, and the contrast of skin trans-
missivity to formation transmissivity on the distribu-
tions of dimensionless hydraulic head.
2. Mathematical derivations

2.1. Mathematical statement

Fig. 1 displays the well and aquifer configurations for
a radial two-zone confined aquifer system. The assump-
tions made for this aquifer system are: (1) the aquifer is
homogeneous, isotropic, infinite-extent, and with a con-
stant thickness, (2) the well is fully penetrating and with
a finite radius, (3) the initial head is constant and uni-
form throughout the whole aquifer, and (4) the vertical
flow gradients are negligible. Under these assumptions,
the governing equations for the head distributions in
the skin and formation zones can respectively be written
as

o2H 1

or2
þ 1

r
oH 1

or
¼ S1

T 1

oH 1

ot
; rw 6 r 6 rs ð1Þ

and

o
2H 2

or2
þ 1

r
oH 2

or
¼ S2

T 2

oH 2

ot
; rs 6 r <1 ð2Þ

where the subscripts 1 and 2, respectively, denote the
skin and formation zones; H (or H(r, t)) is hydraulic
head; r is radial distance from the well centerline; rw is
well radius; rs is radial distance from the well centerline
to the outer skin envelope; t is time from the start of test;
S is storativity; and T is transmissivity.

The hydraulic heads are initially assumed to be zero
in both the skin and formation zones, that is

H 1ðr; 0Þ ¼ H 2ðr; 0Þ ¼ 0; r > rw ð3Þ
The initial condition for hydraulic head in a well is

H 1ðrw; 0Þ ¼ H 0 ð4Þ
where H0 is the initial hydraulic head in aquifer. When
r = rw, the hydraulic head represents the well water level
if the well loss is negligible. The hydraulic head in the
formation tends to zero as r approaches infinity, that is

H 2ð1; tÞ ¼ 0 ð5Þ
The conservation of mass at a well requires that

pr2
c

oH 1

ot

� �
r¼rw

¼ 2prwT 1

oH 1

or

� �
r¼rw

ð6Þ

where rc is the standpipe radius. The hydraulic head is
continuous at the interface between the skin and forma-
tion zones, i.e.,
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H 1ðrs; tÞ ¼ H 2ðrs; tÞ; t > 0 ð7Þ
and the continuity of flow rate between the skin and for-
mation zones requires

T 1
oH 1ðrs; tÞ

or
¼ T 2

oH 2ðrs; tÞ
or

; t > 0 ð8Þ
2.2. Closed-form solutions

The Laplace-domain solution for the hydraulic heads
in both the skin and formation zones can be obtained by
taking Laplace transforms of Eqs. (1)–(8). The results
for H 1 and H 2 are respectively expressed as

H 1 ¼
rwS2H 0

T 1q1

�U1I0ðq1rÞ þ U2K0ðq1rÞ
W1U1 þW2U2

� �
ð9Þ

and

H 2 ¼
rwS2H 0

q1rs

K0ðq2rÞ
W1U1 þW2U2

� �
ð10Þ

where q2
1 ¼ pS1=T 1; q2

2 ¼ pS2=T 2; g = S2/S1; a ¼ S2r2
w=r2

c ;
p is the Laplace variable [28]; I0(Æ) and K0(Æ) are respec-
tively the modified Bessel functions of the first and sec-
ond kinds of order zero; and I1(Æ) and K1(Æ) are
respectively the modified Bessel functions of the first
and second kinds of order one. Variables W1, W2, U1,
and U2 are respectively defined as

W1 ¼ �gq1rwI0ðq1rwÞ þ 2aI1ðq1rwÞ ð11Þ
W2 ¼ gq1rwK0ðq1rwÞ þ 2aK1ðq1rwÞ ð12Þ
A1ðr; uÞ ¼ Y 1ðrsuÞY 0ðrsjuÞJ 0ðruÞ � J 1ðrsuÞY 0ðrsjuÞY 0ðruÞ½ �

�
ffiffiffiffiffiffiffiffiffiffi
S2T 2

S1T 1

r
Y 0ðrsuÞY 1ðrsjuÞJ 0ðruÞ � J 0ðrsuÞY 1ðrsjuÞY 0½

A2ðr; uÞ ¼ J 1ðrsuÞJ 0ðrsjuÞY 0ðruÞ � Y 1ðrsuÞJ 0ðrsjuÞJ 0ðruÞ½ �

�
ffiffiffiffiffiffiffiffiffiffi
S2T 2

S1T 1

r
J 0ðrsuÞJ 1ðrsjuÞY 0ðruÞ � Y 0ðrsuÞJ 1ðrsjuÞJ 0½

B1ðuÞ ¼ gðrwuÞ
J 1ðrsuÞJ 0ðrsjuÞY 0ðrwuÞ � Y 1ðrsuÞJ 0ðrsjuÞJ 0ð½

�
ffiffiffiffiffiffiffi
S2T 2

S1T 1

q
J 0ðrsuÞJ 1ðrsjuÞY 0ðrwuÞ � Y 0ðrsuÞJ 1½

(

� 2a
J 1ðrsuÞJ 0ðrsjuÞY 1ðrwuÞ � Y 1ðrsuÞJ 0ðrsjuÞJ 1ðrw½

�
ffiffiffiffiffiffiffi
S2T 2

S1T 1

q
J 0ðrsuÞJ 1ðrsjuÞY 1ðrwuÞ � Y 0ðrsuÞJ 1ð½

(

B2ðuÞ ¼ gðrwuÞ
J 1ðrsuÞY 0ðrsjuÞY 0ðrwuÞ � Y 1ðrsuÞY 0ðrsjuÞJ 0ð½

�
ffiffiffiffiffiffiffi
S2T 2

S1T 1

q
J 0ðrsuÞY 1ðrsjuÞY 0ðrwuÞ � Y 0ðrsuÞY½

(

� 2a
J 1ðrsuÞY 0ðrsjuÞY 1ðrwuÞ � Y 1ðrsuÞY 0ðrsjuÞJ 1ðrw½

�
ffiffiffiffiffiffiffi
S2T 2

S1T 1

q
J 0ðrsuÞY 1ðrsjuÞY 1ðrwuÞ � Y 0ðrsuÞY 1ð½

(

U1 ¼ T 1q1 �K1ðq1rsÞK0ðq2rsÞ þ
ffiffiffiffiffiffiffiffiffiffi
S2T 2

S1T 1

r
K0ðq1rsÞK1ðq2rsÞ

� �
ð13Þ

and

U2 ¼ T 1q1 I1ðq1rsÞK0ðq2rsÞ þ
ffiffiffiffiffiffiffiffiffiffi
S2T 2

S1T 1

r
I0ðq1rsÞK1ðq2rsÞ

� �
ð14Þ

When r = rw, the well water level in the Laplace domain,
H w, obtained from Eq. (9) is

H w ¼
rwS2H 0

T 1q1

�U1I0ðq1rwÞ þ U2K0ðq1rwÞ
W1U1 þW2U2

� �
ð15Þ

The time-domain solutions of Eqs. (9) and (10) obtained
using the Bromwich integral [13, p. 624] are respectively

H 1ðr; tÞ ¼
2grwH 0

p

Z 1

0

e
�T 1

S1
u2t

� A1ðr; uÞB1ðuÞ þ A2ðr; uÞB2ðuÞ
B2

1ðuÞ þ B2
2ðuÞ

du ð16Þ

and

H 2ðr; tÞ ¼
4grwH 0

p2rs

Z 1

0

e
�T 1

S1
u2t

� J 0ðrjuÞB2ðuÞ � Y 0ðrjuÞB1ðuÞ
B2

1ðuÞ þ B2
2ðuÞ

du
u

ð17Þ

with
ðruÞ� ð18Þ

ðruÞ� ð19Þ

rwuÞ�

ðrsjuÞJ 0ðrwuÞ�

)

uÞ�

rsjuÞJ 1ðrwuÞ�

)
ð20Þ
and
rwuÞ�

1ðrsjuÞJ 0ðrwuÞ�

)

uÞ�

rsjuÞJ 1ðrwuÞ�

)
ð21Þ



H.-D. Yeh, S.-Y. Yang / Advances in Water Resources 29 (2006) 1479–1489 1483
where u is a dummy variable and j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T 1S2=T 2S1

p
.

Note that J0(Æ) and Y0(Æ) are respectively the Bessel func-
tions of the first and second kinds of order zero; and
J1(Æ) and Y1(Æ) are respectively the Bessel functions of
the first and second kinds of order one. Eqs. (16) and
(17) are the closed-form solutions for hydraulic head
distributions in the skin and formation zones, respec-
tively. The detailed derivation of Eq. (16) is described
in Appendix A. Eq. (17) for hydraulic head distribution
in the formation can be obtained in a similar manner.

From Eq. (16), the change of water level in the well,
i.e., r = rw, is

H wðrw; tÞ ¼
2grwH 0

p

Z 1

0

e
�T 1

S1
u2t

� A1wðuÞB1ðuÞ þ A2wðuÞB2ðuÞ
B2

1ðuÞ þ B2
2ðuÞ

du ð22Þ

with
A1wðrw; uÞ ¼ Y 1ðrsuÞY 0ðrsjuÞJ 0ðrwuÞ � J 1ðrsuÞY 0ðrsjuÞY 0ðrwuÞ½ �

�
ffiffiffiffiffiffiffiffiffiffi
S2T 2

S1T 1

r
Y 0ðrsuÞY 1ðrsjuÞJ 0ðrwuÞ � J 0ðrsuÞY 1ðrsjuÞY 0ðrwuÞ½ � ð23Þ
and
A2wðrw; uÞ ¼ J 1ðrsuÞJ 0ðrsjuÞY 0ðrwuÞ � Y 1ðrsuÞJ 0ðrsjuÞJ 0ðrwuÞ½ �

�
ffiffiffiffiffiffiffiffiffiffi
S2T 2

S1T 1

r
J 0ðrsuÞJ 1ðrsjuÞY 0ðrwuÞ � Y 0ðrsuÞJ 1ðrsjuÞJ 0ðrwuÞ½ � ð24Þ
2.3. Dimensionless solutions

The dimensionless hydraulic head, h, is usually
defined as

h ¼ H 0 � HðtÞ
H 0 � Hi

ð25Þ

where Hi is the well water level immediately after removal
or injection and H(t) is the well water level at time t.

Dimensionless parameters are defined as

b ¼ T 2t
r2

c

; f ¼ T 2

T 1

; q ¼ r
rw

; qc ¼
rc

rw

; qs ¼
rs

rw

ð26Þ
where b is dimensionless time; f is a ratio of formation
transmissivity to skin transmissivity; q is the dimension-
less distance from the centerline of well; qc is the dimen-
sionless radius of standpipe; and qs is the dimensionless
radial distance from the centerline of well to the outer
skin envelope. The positive skin is defined for f > 1
and the negative skin for f < 1. Also, an aquifer is
homogeneous and no skin exists when f = 1 and may
be called a uniform aquifer.
The Laplace-domain solutions, Eqs. (9), (10), and
(15), can respectively be expressed in dimensionless form
as

�h1 ¼ f
�/1I0ðk1qÞ þ /2K0ðk1qÞ

w1/1 þ w2/2

� �
ð27Þ

�h2 ¼
f
qs

K0ðk2qÞ
w1/1 þ w2/2

� �
ð28Þ

and

�hw ¼ f
�/1I0ðk1Þ þ /2K0ðk1Þ

w1/1 þ w2/2

� �
ð29Þ

where k2
1 ¼ fp=g; k2

2 ¼ p; and

w1 ¼ �fpI0ðk1Þ þ 2ak1I1ðk1Þ ð30Þ
w2 ¼ fpK0ðk1Þ þ 2ak1K1ðk1Þ ð31Þ
/1 ¼ �k1K1ðk1qsÞK0 k2qsð Þ þ fk2K0ðk1qsÞK1ðk2qsÞ ð32Þ
and

/2 ¼ k1I1ðk1qsÞK0ðk2qsÞ þ fk2I0ðk1qsÞK1ðk2qsÞ ð33Þ

Note that the Laplace-domain solutions of Eqs. (27)–
(29) were also given in Moench and Hsieh [22].

Similarly, the time-domain solutions for head distri-
butions in the skin and formation zones, Eqs. (16) and
(17), can be respectively expressed in dimensionless form
as

h1ðq; bÞ ¼
2g
p

Z 1

0

e�
gb
fasw2

� A1ðq;wÞB1ðwÞ þ A2ðq;wÞB2ðwÞ
B2

1ðwÞ þ B2
2ðwÞ

dw ð34Þ

and
h2ðq; bÞ ¼
2g
p

Z 1

0

e�
gb
fasw2 2

pqs

� J 0ðqjwÞB2ðwÞ � Y 0ðqjwÞB1ðwÞ
B2

1ðwÞ þ B2
2ðwÞ

dw
w

ð35Þ
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where w = rwu; and
A1ðq;wÞ ¼ Y 1ðqswÞY 0ðqsjwÞJ 0ðqwÞ � J 1ðqsuÞY 0ðqsjwÞY 0ðqwÞ½ �

�
ffiffiffiffiffi
fg

p
Y 0ðqswÞY 1ðqsjwÞJ 0ðqwÞ � J 0ðqswÞY 1ðqsjwÞY 0ðqwÞ½ � ð36Þ

A2ðq;wÞ ¼ J 1ðqswÞJ 0ðqsjwÞY 0ðqwÞ � Y 1ðqswÞJ 0ðqsjwÞJ 0ðqwÞ½ �

�
ffiffiffiffiffi
fg

p
J 0ðqswÞJ 1ðqsjwÞY 0ðqwÞ � Y 0ðqswÞJ 1ðqsjwÞJ 0ðqwÞ½ � ð37Þ

B1ðwÞ ¼ gwð Þ
J 1ðqswÞJ 0ðqsjwÞY 0ðwÞ � Y 1ðqswÞJ 0ðqsjwÞJ 0ðwÞ½ �
�

ffiffiffiffiffi
fg
p

J 0ðqswÞJ 1ðqsjwÞY 0ðwÞ � Y 0ðqswÞJ 1ðqsjwÞJ 0ðwÞ½ �

( )

� 2a
J 1ðqswÞJ 0ðqsjuÞY 1ðwÞ � Y 1ðqswÞJ 0ðqsjuÞJ 1ðwÞ½ �
�

ffiffiffiffiffi
fg
p

J 0ðqswÞJ 1ðqsjwÞY 1ðwÞ � Y 0ðqswÞJ 1ðqsjwÞJ 1ðwÞ½ �

( )
ð38Þ
and
B2ðwÞ¼ gwð Þ J 1ðqswÞY 0ðqsjwÞY 0ðwÞ�Y 1ðqswÞY 0ðqsjwÞJ 0ðwÞ½ ��
ffiffiffiffiffi
fg
p

J 0ðqswÞY 1ðqsjwÞY 0ðwÞ�Y 0ðqswÞY 1ðqsjwÞJ 0ðwÞ½ �
� �

�2a J 1ðqswÞY 0ðqsjwÞY 1ðwÞ�Y 1ðqswÞY 0ðqsjwÞJ 1ðwÞ½ ��
ffiffiffiffiffi
fg
p

J 0ðqswÞY 1ðqsjwÞY 1ðwÞ�Y 0ðqswÞY 1ðqsjwÞJ 1ðwÞ½ �
� �

ð39Þ
In addition, the dimensionless water level at a well, Eq.
(22), can also be expressed as

hwð1; bÞ ¼
2g
p

Z 1

0

e�
gb
faw2

� A1wðwÞB1ðwÞ þ A2wðwÞB2ðwÞ
B2

1ðwÞ þ B2
2ðwÞ

dw ð40Þ

where

A1wð1;wÞ¼ Y 1ðqswÞY 0ðqsjwÞJ 0ðwÞ�J 1ðqsuÞY 0ðqsjwÞY 0ðwÞ½ �
�

ffiffiffiffiffi
fg

p
Y 0ðqswÞY 1ðqsjwÞJ 0ðwÞ� J 0ðqswÞY 1ðqsjwÞY 0ðwÞ½ �

ð41Þ
and

A2wð1;wÞ¼ J 1ðqswÞJ 0ðqsjwÞY 0ðwÞ�Y 1ðqswÞJ 0ðqsjwÞJ 0ðwÞ½ �
�

ffiffiffiffiffi
fg

p
J 0ðqswÞJ 1ðqsjwÞY 0ðwÞ�Y 0ðqswÞJ 1ðqsjwÞJ 0ðwÞ½ �

ð42Þ
3. Verification of solutions

The Laplace-domain solutions, Eqs. (9) and (10), and
the time-domain solutions, Eqs. (34) and (35), for a two-
zone aquifer system are compared with the existing
solution for a uniform aquifer under the same well con-
figuration and geologic formation. The Laplace-domain
solution for the hydraulic head in a uniform medium
presented by Cooper et al. [8] is

H ¼ H 0rwSK0ðqrÞ
Tq qrwK0ðqrwÞ þ 2aK1ðqrwÞ½ � ð43Þ
It can be shown that both Eqs. (9) and (10) reduce to Eq.
(43) if the hydraulic properties of the skin are equal to
the hydraulic properties of the aquifer, i.e., f = g = 1.
Similarly, Eqs. (34) and (35) reduce to

hðq;bÞ¼ 2

p

Z 1

0

e�
b
aw2

� J 0ðqwÞ wY 0ðwÞ�2aY 1ðwÞ½ ��Y 0ðqwÞ wJ 0ðwÞ�2aJ 1ðwÞ½ �
wJ 0ðwÞ�2aJ 1ðwÞ½ �2þ wY 0ðwÞ�2aY 1ðwÞ½ �2

dw

ð44Þ
which indeed is the solution presented by Cooper et al.
[8] for dimensionless hydraulic head distribution in a
uniform medium.

The Laplace-domain solution of Eq. (29) and the
time-domain solution of Eq. (40) for a well water level
consist of products of Bessel functions. These functions
are approximated by the formulas given in Abramowitz
and Stegun [1] and Watson [29] and the function evalu-
ations are accelerated using the Shanks method
[27,30,32]. The values of Bessel functions in Eqs. (29)
and (40) are computed at least to ten decimal places,
and thus have the same accuracy as those listed in Abra-
mowitz and Stegun [1]. The work valuated the Bessel
functions has been presented in Yang and Yeh [32].
The inverse Laplace transform of Eq. (29) is evaluated
by the routine INLAP of IMSL [14] with accuracy to
five decimal places. This routine was developed based
on an algorithm originally proposed by Crump [9] and
modified by de Hoog et al. [10]. This method approxi-
mates the Laplace inversion by expressing the trans-
formed function in a Fourier series.

Fig. 2 illustrates the curves of the integrand in Eq. (40)
versus w for qc = 0.5, qs = 10, g = 1, b = 0.1, and
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a = 10�1 when f = 0.1, 1 or 10. The figure shows that
these curves oscillate over some cycles and quickly die
out if the skin presents (f 5 1). On the other hand, the
curve only has a single peak for a uniform medium
(f = 1). Thus, the closed-form solution for dimensionless
water level at the well, Eq. (40), can be easily evaluated by
using a numerical integration approach. The integration
is carried out by the Gaussian quadrature for the ranges
from zero to infinite. The approach of numerical calcula-
tions for Eq. (40) is similar to that of Yeh et al. [33].
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Fig. 3. Plots of dimensionless well water level versus dimensionless
time (b) estimated by the closed-form solution, the numerical inversion
from the Laplace-domain solution, and those given in Cooper et al. [8]
for qc = 0.5, qs = 10, and f = g = 1 when a = 10�1 or 10�5.
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Fig. 2. A plot of the integrand in Eq. (40) versus w for qc = 0.5,
qs = 10, g = 1, b = 0.1, and a = 0.1 when f = 0.1, 1 or 10.
Comparisons between the evaluated results of the
closed-form solution of Eq. (40) and those obtained by
a numerical inversion from Eq. (29) provide a cross
check for the accuracy of both solutions. Under a uni-
form medium condition (f = g = 1), Fig. 3 shows the
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Fig. 4. Plots of dimensionless well water level versus dimensionless
time (b) estimated by the closed-form solution and the numerical
inversion from the Laplace-domain solution for qc = 0.5, qs = 10,
g = 1, and a = 10�1–10�5 when f = 0.1. The line presents the closed-
form solution and the circle presents the numerical inversion from the
Laplace-domain solution.
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time (b) estimated by the closed-form solution and the numerical
inversion from the Laplace-domain solution for qc = 0.5, qs = 10,
g = 1, and a = 10�1–10�5 when f = 10. The line presents the closed-
form solution and the circle presents the numerical inversion from the
Laplace-domain solution.
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curves of dimensionless well water level versus dimen-
sionless time (b) for qc = 0.5 and qs = 10 when
a = 10�1 or 10�5. The figure indicates that the results
obtained by a numerical Laplace inversion agree extre-
mely well with those of the closed-form solution and
Cooper et al. [8]. Under a two-zone condition, the
dimensionless well water level versus dimensionless time
with qc = 0.5, qs = 10, g = 1, and a = 10�1–10�5 are
shown in Fig. 4 for f = 0.1 and in Fig. 5 for f = 10.
The values of dimensionless well water level obtained
by a numerical Laplace inversion are consistent with
those of the closed-form solution to five decimal places.
This indicates that the closed-form solution for a two-
zone system yields correctly evaluated results when esti-
mated by a numerical approach. Note that the modified
Crump method fails to converge for the Laplace-domain
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Fig. 6. Plots of dimensionless hydraulic head versus dimensionless time for q
f = 10.
solution when the dimensionless time is very small
(b < 0.001 for f = 0.1 and b < 0.01 for f = 10) as indi-
cated in Figs. 4 and 5. In contrast, the numerical integra-
tion approach applied to the time-domain solution
works well for all range of dimensionless times.
4. Results and discussion

The curves of dimensionless well water level versus
dimensionless time are developed to investigate the
impacts of the skin type, skin thickness, and the contrast
of skin transmissivity to formation transmissivity on
dimensionless head distribution. For ease of compari-
sons, g and qc are respectively chosen as one and 0.5.
In addition, all function evaluations for these solutions
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are under double precision and accurate to five decimal
places.

4.1. Effect of skin type

Fig. 6 displays the curves of dimensionless hydraulic
head versus dimensionless distance for qs = 5, a =
10�5, and b ranging from 10�4 to 10 when (a) f = 0.1,
(b) f = 1, and (c) f = 10. For the case without a skin
zone, the dimensionless hydraulic head gradually
decreases when increasing radial distance as shown in
Fig. 6b. If a finite-thickness skin the present, both
Fig. 6a and c demonstrate that the relation of dimen-
sionless hydraulic head versus dimensionless distance
exhibits two curves with different slope joined at the
interface (qs = 5). A negative skin, which has a higher
transmissivity than the formation, has a curve with rel-
ative mild slope in the skin zone and with steeper slope
in the formation zone. In contrast, a positive skin has a
very steep slope in the skin zone due to the lower trans-
missivity and a relative flat slope in the formation zone.
The dimensionless hydraulic head at the well always
decreases with increasing dimensionless time (b); on
the other hand, the dimensionless hydraulic head in
the formation zone increases at the beginning of the test,
and then decreases at large-dimensionless time (say,
b > 1 or 10). In addition, the dimensionless hydraulic
head for an aquifer with a negative skin stabilizes more
quickly than that with a positive skin.

4.2. Effect of skin thickness

Fig. 7 displays two sets of curves to investigate the
influence of skin thickness (rs � rw) on dimensionless well
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Fig. 7. A plot of dimensionless well water level versus dimensionless
time for a = 10�5 and qs = 5, 10, 50, and 100 when f = 0.1 or 10.
water level for a = 10�5 and qs = 5, 10, 50, and 100 when
f = 0.1 or 10. The figure indicates that the dimensionless
skin thickness (i.e., qs � 1) effects the dimensionless well
water level at intermediate time, as b ranging from 0.01
to 10 for f = 0.1 and from 1 to 100 for f = 10. However,
the dimensionless well water level diminishes to zero at
large-dimensionless time. For a positive skin condition,
the dimensionless well water level increases with dimen-
sionless skin thickness. A larger dimensionless well water
level reflects the effect of a smaller hydraulic conductivity
for a positive skin. In contrast, the dimensionless well
water level decreases as dimensionless skin thickness
increases if a negative skin is present.

4.3. Effect of contrast of skin transmissivity

to formation transmissivity

A plot of dimensionless well water level versus dimen-
sionless time for qs = 10 and a = 10�5 when f = 0.1, 0.5,
1, 5, and 10 is displayed in Fig. 8. This figure shows the
curves of dimensionless well water level for the system
under the conditions with no skin (i.e., f = 1), negative
skin (i.e., f = 0.1 or 0.5), and positive skin (i.e., f = 5
or 10). A smaller transmissivity of a positive skin (in
contrast to aquifer transmissivity) produces a smaller
flow rate from the well toward the formation and results
in a higher dimensionless well water level. Therefore, a
larger value of f has a higher dimensionless well water
level. On the other hand, a larger transmissivity of a neg-
ative skin (in contrast to aquifer transmissivity) yields a
larger flow rate across the wellbore and results in a lower
dimensionless well water level. Thus, a smaller value of f
results in a lower dimensionless well water level. The
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Fig. 8. A plot of dimensionless well water level versus dimensionless
time for qs = 10 and a = 10�5 when f = 0.1, 0.5, 1, 5, and 10.
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figure demonstrates that the system with a positive skin
has the highest dimensionless well water levels, the sys-
tem without the skin give the second highest, and the
one with a negative skin yield the lowest at the same
dimensionless time. Fig. 8 also indicates that the
differences of dimensionless well water level between
the two-zone and uniform medium systems are negligi-
bly small at small- and large-dimensionless times (say,
b < 10�1 and b > 102). Contrarily, the differences of
dimensionless well water level for the system under dif-
ferent skin condition are quite large at intermediate-
dimensionless time.
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Fig. 9. A plot of the closed contour integration of H for the Bromwich
integral [13].
5. Conclusions

A new analytical solution (in the time domain) has
been developed for slug tests in a well, which is installed
in a radial confined aquifer system with a finite-
thickness skin. This solution is derived from a radial
two-zone ground-water flow equation using Laplace
transforms and the Bromwich integral. In a uniform med-
ium condition, the dimensionless well water levels com-
puted from the closed-form solution agree very well
with these of the Laplace-domain solution and Cooper
et al. [8]. We have shown that numerical inversion fails
to evaluate the Laplace-domain solution if the dimension-
less time is very small. On the other hand, the present ana-
lytical solution can be evaluated numerically for the entire
time domain with accuracy to the fifth decimal place.

Under a radial two-zone condition, i.e., with a posi-
tive or negative skin, the dimensionless well water levels
computed from the closed-form solution match with
those of the Laplace-domain solution to at least five dec-
imal places. This provides a double check to make sure
that the closed-form and Laplace-domain solutions are
correctly evaluated. The distributions of dimensionless
hydraulic head in a uniform medium are significantly
different from these in a two-zone aquifer with a positive
or negative skin. The relation of dimensionless hydraulic
head versus dimensionless distance exhibits two curves
with different slope joined at the interface. The dimen-
sionless hydraulic head of a negative skin more quickly
stabilizes than that of a positive skin. Obviously, the
magnitude of dimensionless hydraulic head strongly
depends on the hydraulic properties of both the skin
and formation zones.

The dimensionless skin thickness affects the dimen-
sionless well water level at intermediate-dimensionless
time. The dimensionless well water level increases with
dimensionless positive skin thickness and decreases as
dimensionless negative skin thickness increases. The dis-
tributions of dimensionless well water level in a two-zone
aquifer system significantly differ from those in a uni-
form medium. The dimensionless well water levels are
smaller for the system with a negative skin than those
with a positive skin at the same dimensionless time.
The difference of dimensionless well water level between
the two-zone and uniform medium systems decreases sig-
nificantly with a because a smaller storage coefficient has
less effect on dimensionless well water level.
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Appendix A. Derivation of Eq. (16)

The inverse Laplace transforms of Eq. (9) in the time
domain can be obtained using the Bromwich integral
[13] as

H 1 ¼
1

2pi

Z nþi1

n�i1
eptH 1 dp ðA:1Þ

where p = complex variable, i = imaginary unit, and
n = large, real, and positive constant, so that all the
poles lie to the left of line (n � i1, n + i1).

A single branch point with no singularity (pole) at
p = 0 exists in the integrand of Eq. (9). Thus, this inte-
gral requires the Bromwich integral for the Laplace
inversion. The closed contour of integrand is shown in
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Fig. 9 with a cut of p plane along a negative real axis,
where d is taken sufficiently small to exclude all poles
from the circle about the origin. The closed contour con-
sists of the part AB of the Bromwich line from minus
infinity to infinity, semicircles BCD and GHA of radius
R, lines DE and FG parallel to the real axis, and a circle
EF of radius d about a origin. The integration along the
small circle EF around an origin as d approaches zero is
carried out using the Cauchy integral and the value of
the integral is equal to zero. The integrals taken along
BCD and GHA tend to zero as R approaches infinity.
Consequently, Eq. (9) can be replaced by the sum of
integrals along DE and FG. In other words, the integral
can be written as

H 1 ¼ lim
d!0

R!1

1

2pi

Z
DE

eptH 1 dp þ
Z

FG
eptH 1 dp

� �
ðA:2Þ

For the first term on the right-hand-side (RHS) of
Eq. (A.2) along DE, we introduce the new variable
p = u2e�piT1/S1 and use the formulas [6, p. 490]

Kv ze�
1
2pi

	 

¼ � 1

2
pie�

1
2vpi½�J vðzÞ � iY vðzÞ� ðA:3Þ

and

Iv ze�
1
2pi

	 

¼ e�

1
2vpiJ vðzÞ ðA:4Þ

where v = 0,1,2, . . .The first term on the RHS of Eq.
(A.2) then leads to

H 1DE ¼ �
rwgH 0

pi

Z 1

0

e
�T 1

S1
u2t ½A2ðuÞ � iA1ðuÞ�
½B1ðuÞ þ iB2ðuÞ�

du ðA:5Þ

Likewise, introducing p = u2epiT1/S1, the integral
along FG gives minus the conjugate of Eq. (A.5) as

H 1FG ¼
rwgH 0

pi

Z 1

0

e
�T 1

S1
u2t ½A1ðuÞ þ iA2ðuÞ�
½B1ðuÞ � iB2ðuÞ�

du ðA:6Þ

The closed-form solution of Eq. (16) can then be ob-
tained by combining Eqs. (A.5) and (A.6).
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