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Combined Frame Memory Motion Compensation for Video Coding

Nelson Yen-Chung Chang and Tian-Sheuan Chang

Abstract—The frame memory has long been the dominant
component in a video decoder in terms of energy, area, and
latency. We proposed a non-combined frame memory motion
compensation (CFMMC) for video decoding which facilitates the
characteristic of the perfect-matched macroblock (MB) to avoid
unnecessary memory access and to save energy. The statistic
result confirms that some sequences have more than 70% of MBs
being perfect-matched MB. The CFMMC hardware architecture
is further evaluated for latency, area, and energy. The hardware
architecture shows that with SRAM-base frame memory, the
equivalent gate count can be reduced by 37.7%, and the energy
consumption and the latency may also be improved for sequences
with enough percentage of perfect-matched MBs. Since the ben-
efit of the CFMMC is highly dependent on the percentage of
perfect-matched MBs, it is best suited for applications with large
portion of static background, such as video surveillance, video
telephony, and video conferencing.

Index Terms—Frame memory, MPEG-4, motion compensation,
video decoding, zero-skipping.

I. INTRODUCTION

ESPITE that the latest video coding standard provides
much better compression performance as well as extra
functionalities, all video coding standards are still consist of
motion compensation, transform, and entropy coding. Among
these common video coding tasks, motion compensation in-
volves extensive frame memory access. Consequently, the
frame memory access becomes the dominating part in the
energy consumption of a video decoder. In addition, the re-
quirement of storing the great amount of the frame data would
result in a frame memory which occupies most of the silicon
area in motion compensation. Therefore, the optimization of the
frame memory architecture is of great significance in reducing
the area and energy consumption of motion compensation.
The most common frame memory architecture for video
coding without bidirectional prediction is the ping-pong frame
memory (PPEM), which stores the reconstructed current frame
and the reference frame in two memories. The PPFM swaps
the role of the reconstructed current frame memory and the
reference frame memory upon the completion of each frame’s
motion compensation. As a result, the PPFM requires a memory
size of two frames and often accounts for approximately half
of the energy consumption in a video decoder [1].
Motivated by the fact that the PPFM is very area and energy
consuming, we proposes the combined frame memory (CFM)
architecture that combines the reconstructed current frame
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memory and the reference frame memory into one single
memory. This architecture uses the presence of the macroblock
(MB) with zero motion vector and no residue to reduce the area
and energy consumption. This type of MB is identical in the
reference frame and the reconstructed current frame. Therefore,
copying the MB from the reference frame to the reconstructed
current frame can be eliminated in the CFM.

There are two contributions in this work. First, the statistical
analysis and the concept of the non-combined frame memory
motion compensation (CFMMC) are presented. The percentage
of MBs without motion and residue is investigated. The other
contribution is the evaluation result of the CFMMC architec-
ture. The implementations of the CFMMC and the ping-pong
[frame memory motion compensation (PPFMMC) are compared.
The evaluation result suggests that the CFMMC is suitable for
applications with much still background, such as video surveil-
lance, video telephony, and video conference.

The rest of the paper is organized as follow: the next section
presents the related work on motion compensation. Section III
presents the statistics analysis and the concept of the proposed
CFMMC. Section IV presents and discusses the hardware archi-
tecture of the prototype CFMMC. Finally, Section V concludes
the CFMMC.

II. RELATED WORK

To reduce the size of the frame memory, [2]-[4] adopted a
merged-frame approach that stored the reference frame and the
reconstructed frame together using one frame memory with the
size slightly larger than one frame. Along with the reduced size
frame memory and local buffers, these works claimed that the
merged-frame approach is capable of reducing the power con-
sumption. Among these works, [2] and [3] proposed an in-place
storage optimization for video decoders. The in-place storage
used a buffer to store the reference frame data that are over-
lapped with the reconstructed current frame data in a snake-
like manner. To handle the complex address generation and the
control, they implemented a prototype using software. [4] also
proposed a similar merged-frame memory architecture for mo-
tion estimation and compensation in an encoder. Although these
works successfully reduced the frame memory size, none of
them mentioned further improving the performance of motion
compensation by exploiting the characteristic of MBs without
motion and residue.

Moshnyaga’s works [1], [5] on motion estimation reported
the presence of block-data whose content remain unchanged
between the adjacent frames. These unchanged block-data are
facilitated to eliminate frame memory writes and computations
during the motion estimation. In order to reduce memory writes
for the unchanged block-data, Moshnyga’s work also adopted
the merged-frame approach when the coding pattern has no
B-frame. Although the result shown was quite well for the test
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TABLE I
PERCENTAGE OF PERFECT-MATCHED MBS WHEN QP = 16

Test sequences QCIF (%)  PSNR(db) Bitrate(kb/s) CIF (%) PSNR(db)  Bitrate(kb/s)
container (A) 91.74 30.51 149.3 88.91 31.28 464.6
mother_daughter (A) 81.42 32.29 94.9 77.65 34.34 275.6
hall (A) 86.21 30.75 160.3 83.86 32.60 482.8
akiyo (A) 91.32 3227 114.9 89.09 34.53 3214
coastguard (B) 1035 29.15 1792 2.69 29.67 698.0
foreman (B) 24.49 30.32 176.7 23.38 31.37 560.0
news (B) 82.53 30.44 172.4 83.01 32.50 491.8
stefan (C) 15.71 27.48 361.1 20.90 29.09 12747
mobile (C) 10.93 26.18 4423 3.39 27.02 17242

sequences listed in their works, the experiment result on video
sequences with great amount of motion was absent.

In summary, to the authors’ best knowledge, the motion com-
pensation for video decoding that adopts the merged-frame ap-
proach and exploits the inter-frame correlation at the same time
has not been thoroughly investigated.

III. METHOD

A. Statistics of Perfect-Matched MB

A perfect-matched MB is one that has zero-valued MV and
no residual. The reconstruction of such MB does not require
the summation of the motion compensated (predicted) MB and
the residual MB. For instance, a NOT-CODED MB in MPEG-4
[6] is a MB with zero-valued MV and no residual; hence a
NOT-CODED MB is a perfect-matched MB. If a MB is a per-
fect-matched MB, the MB data read from the reference frame
memory is the same as the MB data written to the reconstructed
current frame memory in the PPFM. Since the perfect-matched
MB would be read and written with the same content at the
same location, there is an opportunity to eliminate the redun-
dant memory access for a perfect-matched MB. To eliminate
the repeat accesses for a perfect-matched MB, the content of
the perfect-matched MB must be in the reconstructed frame
memory before motion compensation. The only way to achieve
this without extra memory access is to merge the reconstructed
frame memory with the reference frame. Therefore, it is neces-
sary to use the merged-frame approach to eliminate the memory
accesses of a perfect-matched MB.

The percentage of perfect-matched MBs within a frame,
which is denoted as Py here on, determines the amount of the
memory access that can be eliminated. Table I lists the average
Py of QCIF and CIF sized sequences. The corresponding PSNR
and bitrate for each sequence is also provided in Table I. The
statistics were gathered from running MPEG-4 VM 18 [7] with
the quantization parameter (QP) set to 16. The parenthesis next
to each sequence represents the class it belongs as classified in
[7]. Class “A” to “C” represents different levels of spatial detail
and amount of movement, where class “A” is the lowest class
and class “C” is the highest class. The statistics shows that lower
class test sequences, such as akiyo, container, mother_daughter,
news, and hall, have more than 70% of perfect-matched MBs
in average. Other test sequences with more motion, such as
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Fig. 1. Impact of different QP values on the percentage of NOT-CODED MB
in MPEG-4 for QCIF sequences.

foreman, stefan, coastguard, and mobile, have less than 30% of
perfect-matched MBs.

Fig. 1 illustrates the impact of different QP values on Py for
the QCIF sequences. For most of the sequences with high Py,
the highest P, appeared when QP = 16. However, for most
of the sequences with low Py, their Py were significantly in-
creased until QP = 24. After QP > 24, the increase became
insignificant. It could be that the reconstructed frame’s quality
would be extremely bad for QP > 24 so that the residue became
increasingly larger, and resulted the P} to decrease. Neverthe-
less, for the sequences with low Py, mobile video applications
should result in higher P, than those listed in Table I when
QP > 16 (Akiyo QCIF with QP = 16, bitrate = 115 kb/s,
PSNR = 32.28 dB).

B. Combined Frame Memory

The CFM architecture adopts the merged-frame approach
with an additional look-up table. Unlike the merged-frame
approach in [2], [3], we introduced an additional look-up table
to indicate whether the predicted pixel data are in the frame
memory or in the local buffers. The CFM architecture consists
of three major parts described as follows.
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e Main frame memory (MFM): The MFM stores the refer-
ence frame data and the reconstructed frame data together.
In which the upper part of the MFM stores the recon-
structed current frame data, whereas the lower part of the
MFM stores the reference frame data. The size of MFM is
as large as one single frame, i.e., 176 x 144 x 1.5 bytes for
QCIF.

* Vector range strip buffer (VRSB): The VRSB is a rectan-
gular strip of memory that works as an exchange buffer
for the reference data. If one MB of reference data in the
MEFM is to be updated by a reconstructed current MB, this
reference MB would be copied into the VRSB as a backup
in case the subsequent MB needs it. This avoids the ref-
erence frame data from being ruined by the reconstructed
current frame data. The size of the VRSB is determined by
the height of the vector range and the width of a frame, i.e.,
16 x (1764 16) x 1.5 bytes for QCIF with the vector range
of [-16 : +15] for both horizontal and vertical directions.

* Dirty table (DT): The DT is the look-up table that keeps
record of which pixels in the MFM are updated. If a MB
in the MFM is updated by the reconstructed current frame
data, the corresponding dirty bits of this MB will be set.
This indicates that the reference pixels in that MB are
stored in the VRSB for backup as mentioned earlier. If the
subsequent MB requires the reference pixels of this MB,
these reference pixels will be read from the VRSB instead
of the MFM. The size of the DT varies according to the
size of the VRSB, i.e., (176 4+ 16)/16 bits for QCIF with
the vector range of [—16 : +15] for both horizontal and
vertical directions.

Fig. 2 illustrates the flow chart of the CFMMC. When pro-
cessing a perfect-matched MB, the CFMMC does not need any
memory access since the reference MB and the reconstructed
MB are the same and both reside within the MFM at the same
location. The only operation carried out is the updating of the
index in the DT. For the non-perfect-matched MB case, the
CFMMC first checks the DT to determine where the predicted
MB pixels are stored. Each pixel in the predicted MB is either
read out from the MFM or the VRSB according to the cor-
responding dirty bit. After the predicted MB is read out, it is
summed with the residual to reconstruct the reconstructed MB.
Then the current reference MB in the MFM must be copied into
the VRSB before the reconstructed MB is written to the same
location. Finally, the reconstructed MB is written back to the
MFM, and the DT and its index are updated at the end. Fig. 3
illustrates the motion compensation process for two consecu-
tive non-perfect-matched MBs. The reconstruction computation
[Fig. 3, Stepl (2)] is performed while the backup of the refer-
ence pixels [Fig. 3, Step2 (4)] is taking place.

IV. HARDWARE IMPLEMENTATION

A. Architecture of the Combined Frame Memory Motion
Compensation

The architecture of the CFMMC is illustrated in Fig. 4,
which consists of five major parts. The first part includes the
mvprocessor, the pblk and inblk offsets generators, and the
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Fig. 2. Flowchart of motion compensation process in the CFMMC.

dirty table. This part pre-processes the key information that is
needed by the memory accessor, such as the motion vector of
the chroma component, the pblk offsets (the offsets between the
current block and the predicted blocks), the inblk offsets (the
offsets of predicted pixels within the predicted blocks), and the
dirty status. The second part is the memory accessor. This part
plays the major role of generating the addresses to the MFM
and the VRSB and multiplexing data among the memories and
buffers. The third part is the motion compensation controller
which coordinates the tasks among the modules and also
interfaces the control signals. The fourth part is the filter and
reconstructor, which generates the subpel samples and adds
the predicted pixels with the residual pixels. Both the CFMMC
and PPFMMC use the same filter and reconstructor design.

The memories of the MFM and VRSB are implemented using
single-port SRAM [8] with 8-bit data width. The ratio between
the energy consumption of the MFM and VRSB is defined as
the k value. If k is larger, the energy reduction should be larger.
This is likely to be the case when using DRAM for the MFM. In
contrast, using SRAM for the MFM would yield smaller k value,
thus reducing the energy reduction. The reduction amount of the
SRAM MEFM case can be considered as the lower bound of the
energy reduction.

B. Comparison of Latency and Area

The latency of the CFMMC and PPFMMC hardware archi-
tectures are both dominated by the memory access time. The
latencies of processing different MB modes are different. Take
the MB modes in MPEG-4 Simple Profile for example. Table II
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Fig. 4. Block diagram of the CFMMC hardware.

lists the definition of different MB modes and their processing
latencies in the two prototypes.

The processing operations of INTRA MBs and INTER-
INTRA MBs are similar. Both the CFMMC and PPFMMC
check the MB mode (Cyp 1 cycle) first, which re-
quires one cycle. Then they directly write the residue
(CwRr_RES_MB 384 cycle) into the frame memory ac-
cording to the MB’s position. As a result, the total latencies

of processing an INTRA MB in both architectures and pro-
cessing an INTER-INTRA MB in the PPEFMMC are the same,
which is 385 cycles. To process an INTER-INTRA MB in the
CFMMC, CFMMC must backup the collocated reference MB
(CBKUP_REF_MB = 384 cycle) into the VRSB and update the
dirty table (CuppaTe_pT = 1 cycle). Consequently, the total
latency of processing an INTER-INTRA MB is 770 cycles.

The latency to process an INTER or INTER4V MB
in the CFMMC includes the latencies of identifying
the MB mode, computing the chroma’s motion vec-
tors (CocaroMA_MV 3 cycle), reading the predicted
pixels (Crp_rREF_MB 384 cycle), backup the refer-
ence pixels, and writing back the reconstructed pixels
(Cwr_REC_MB 384 cycle). The reconstruction compu-
tation is performed while the backup operation is taking place.
Therefore, the latency of processing a MB is 1,157 cycles. In
contrast, the latency of PPFMMC does not include the latency
of the backup operation and dirty table update. As a result,
the total latency of processing an MB in the PPEFMMC is
772 cycles.

For NOT-CODED MBs, the CFMMC does not perform any
memory access; the total latency of processing a NOT-CODED
MB only takes one cycle. The one cycle latency is spent to up-
date the dirty table. On the contrary, the PPEFMMC has to per-
form the same operations of reading and writing the ping-pong
frame memory. Consequently, the latency of processing a NOT-
CODED MB is exactly the same as that of processing an INTER
or INTER4V MB, which is 772 cycles.

If Py is high enough, the latency of processing one frame may
be reduced because of the latency reduction for NOT-CODED
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TABLE II

LATENCIES OF DIFFERENT MB MODES

MB Modes Description PPFMMC Latency (cycles) CFMMC Latency (cycles)
in I- 385 385
INTRA ;ntra MB in I
rames Cwup_mopetCwr_rEs_MB Cwn_mopetCwr_rEs_mp
- 385 770
INTER_INTRA !m]r,afc"ded MB
n F-frames Cwas_mopetCwr_res s Cus_mopetCarup_rer MstCwr res mstCuppate pr
Inter MB. swith 772 1157
nter wi
INTER C +C +C
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nter Wi
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Fig. 5. Power consumption comparison of the PPEFMMC and the CFMMC for Py =20% and 80%.

MBs; otherwise, the extra latency overhead for INTER_INTRA,
INTER, and INTER4 V MBs would increase the overall latency.

The prototypes of the CFMMC and PPFMMC architectures
are both synthesized from Verilog RTL design using UMC
0.18-pm 1P6M CMOS technology.! Both designs are synthe-
sized with the clock constrained at 50 MHz, which is more
than enough to perform real-time decoding even for CIF frame
size. The memory size of the CFMMC is 42.3% smaller then
that of the PPFMMC. On the other hand, the logics part’s gate
count of the CFMMC is 40 064, which is 42.9% larger than that
of the PPFMMC. However, the total equivalent gate count of
the CFMMC (including memories) is actually 37.7% smaller
compared with that of the PPFMMC.

C. Simulation Setup

The prototypes are verified by running two types of test pat-
terns. The first type is manually created with Py ranging from
none to 90% with 10% step size. In this test pattern, the mo-
tion vectors are all set to zero and the residues are generated
randomly. All the residues within a MB have the same value.
The length of these test patterns is three QCIF frames with IPP
video coding pattern. These test patterns can help evaluate the
power consumption of video sequences with different F,. The

'UMC Free-of-Charge Libraries. [Online]. Available: http://www.umc.com/
english/design/b_3.asp

other type of the test pattern is the actual data from the video se-
quences used in the previous sections. Therefore, the MB types,
the motion vectors, and the residues are all real data gathered
from the video decoder. However, the length of these real test
patterns is reduced to only 15 QCIF frames due to the file size
limitation of the switching activity record. These 15 frames are
excerpted from the first 15 frames of each video sequences.

D. Architecture Energy Consumption Comparison

The gate-level power is reported by using Power Compiler
[9]. The signal switching activities are gathered by running at
50 MHz for both the CFMMC and PPEFMMC. The reason to
use such a high clock rate is to increase the numerical order
of the reported power, which corresponds to the energy of pro-
cessing 109 CIF frames in one second. This can make the com-
parison of the energy consumption between the CFMMC and
the PPFMMC easier.

Fig. 5 compares the energy consumption between the
CFMMC and PPFMC running the manually created test pat-
terns. The energy consumed by the logics and memory are
shown for Py =20% and 80%. For the CFMMC, the memory’s
energy consumption is sensitive to Py while the logics part’s
energy consumption remains almost unchanged despite the
different Py values. In contrast to the CFMMC’s energy
consumption being sensitive to Py, the PPFMMC’s energy
consumption is independent of F.
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Fig. 6. Plot of the energy reduction percentages of the CFMMC at different Fy.

TABLE III
ENERGY REDUCTION PERCENTAGE OF THE REAL TEST PATTERNS

Energy reduction
percentage (%) compared
with the PPFMMC

Py of the first 15 frames

Test sequences (%)

container (A) 92.93 1545
mother_daughter (A) 92.83 15.80
hall (A) 95.96 17.19
akiyo (A) 96.87 18.44
container (A) 9293 15.45
coastguard (B) 34.95 -18.06
foreman (B) 29.39 -21.89
stefan (C) 15.66 -30.66
Mobile (C) 7.47 -31.67

Fig. 6 plots the CFMMC’s percentage of energy reduction
over different P values. The percentage is defined as the ratio
between the reduced energy and PPFMMC’s energy. There are
two lines related to the CFMMC architectures. One is the line
for the memories themselves, the other one is for the overall
CFMMC architecture. The line of the CFMMC architecture has
smaller slope than the slope of the CFMMC memories line. This
is because the energy consumed by the logics reduces the energy
reduction. On the other hand, the line of the CFMMC memories
has a slightly smaller slope compared with the slopes of the the-
oretical lines with £ =4 and 2. The theoretical lines are derived
based on memory access energy only. However, the logics and
memories still consume energy even when there’s no memory
access, thus compromising the theoretical energy model.

The energy reduction percentages of the real test patterns
are listed in Table III. The Py found in the first 15 frames of
each test sequences are also listed. For those test sequences with
Py >70%, the energy consumptions are reduced by 11%—18%.
For sequences with much lower F;, the energy consumptions
are increased by 18%-32%.
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V. CONCLUSION

We proposed a CFMMC architecture which is potential
in reducing the energy consumption. The statistics on per-
fect-matched MB under different QPs and resolutions are
investigated for the well known video sequences. We found that
when the percentage of perfect-matched MBs (Fy) is higher
than 50%. For these cases, the CFMMC is likely to reduce
both the latency and the energy consumptions due to memory
accesses.

The hardware implementation of the CFMMC only requires
62.3% of the silicon area used to implement the PPFMMC.
The CFMMC architecture is also capable of reducing the en-
ergy consumption by up to 16% when Py >70%. However,
the CFMMC suffers from energy consumption and latency in-
creases when Py is not high enough. Consequently, these limi-
tations limit the application of CFMMC into video surveillance,
video telephony, and video conferencing. For these applications,
the CFMMC shall guarantee its latency and energy reduction
capability.
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