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In a fractured medium, there is an interconnected system of fracture planes dividing
the porous rock into a collection of matrix blocks. The fracture planes, while very thin,
form paths of high permeability. Most of the fluids reside in matrix blocks, where they
move very slow. Let € denote the size ratio of the matrix blocks to the whole medium
and let the width of the fracture planes and the porous block diameter be in the same
order. If permeability ratio of matrix blocks to fracture planes is of order €2, microscopic
models for two-phase, incompressible, immiscible flow in fractured media converge to a
dual-porosity model as € goes to 0. If the ratio is smaller than order €2, the microscopic
models approach a single-porosity model for fracture flow. If the ratio is greater than
order €2, then microscopic models tend to another type of single-porosity model. In this
work, these results will be proved by a two-scale method.

Keywords: Homogenization; fractured media; dual-porosity model; two-scale conver-
gence.
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1. Introduction

We discuss the homogenization for two-phase, incompressible, immiscible flow in
fractured media with small-sized matrix blocks. The two phases are oil “0” phase
and water “w” phase. Within a fractured medium, there is an interconnected system
of fracture planes dividing the porous rock into a collection of matrix blocks. The
fracture planes, while very thin, form paths of high permeability. Most of the fluids
reside in matrix blocks, where they move very slow. Primary flow in the medium
occurs within the fractures with local exchange of fluids between the fractures and
the matrix blocks. No flow is allowed between blocks, and fluids in matrix blocks
must enter the fracture planes to move great distance.

Let € be the size ratio of the matrix blocks to the whole medium and let the
width of the fracture planes and the porous block diameter be in the same order. If
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permeability ratio of matrix blocks to fracture planes is assumed to be of order £2,
from physical point of view, microscopic models for the two-phase flow converge to
a dual-porosity model as € tends to 0.”'* In this limit model, the whole medium is
regarded as a porous medium consisting of two superimposed continua, a continuous
fracture system and a discontinuous system of matrix blocks. Matrix blocks play
the role of global sources, representing the exchange of fluids between matrix blocks
and the fractures. Flow equations are formulated by mass conservation principles
for each continuum, and global sources are included in fracture equations. Fracture
quantities are used to define boundary conditions for the equations in the matrix
blocks (see Refs. 8, 11, 16, 17 and references therein). Numerical simulation shows
that saturation evolutions of the model in fracture system and matrix blocks are
in different time scales. '° If the permeability ratio is smaller than order ¢2, flow
in matrix blocks contributes very little to the fracture system. The microscopic
models converge to equations for fracture flow as € goes to 0. If the ratio is greater
than order 2, fluid flow in matrix blocks moves very fast. Saturations in matrix
blocks are almost constant. In this case, microscopic models converge to a special
type of single-porosity model. Some problems in similar situation (for example,
homogenization of heat equation in fractured media based on permeability ratio)
were studied in Refs. 10 and 19. Their results indicate that if the ratio is smaller
than order €2, the corresponding macroscopic equation is an equation for fracture
flow. If the ratio is of order €2, it is a fracture flow equation with a source due to
the flow in matrix blocks and is a time-delay equation. If the ratio is greater than
order €2, it is a fracture flow equation plus a source from matrix blocks but not a
time-delay equation. These results are consistent with ours.

Our intention is to show the convergence of the microscopic models for the above
three cases in two-scale sense rigorously. Two-scale method was initially defined
and had been applied to a diffusion process in highly heterogeneous media.®® The
method was also used to derive a model for flow in a partially fissured medium,'?
and used to prove the convergence of microscopic models to a dual-porosity model
in a reduced pressure formulation'! for ratio €2 case.

The rest of the paper is organized as follows: In Sec. 2, we state microscopic
model for two-phase flow in fractured media. Notation and assumption will be given
in Sec. 3. Then in Sec. 4, we present main results, i.e. the convergence of microscopic
models in two-scale sense. Some known results needed for the proof of main results
will be recalled in Sec. 5. The main result is proved in Sec. 6.

2. Microscopic Model for Small-Sized Matrix Blocks

We consider a porous medium € C R3, which is a two-connected domain with a
periodic structure. Let Y := [0,1]% be a cell consisting of a matrix block domain
Y, completely surrounded by a connected fracture domain Y, and we denote by I'
the matrix-fracture interface in the cell Y. Let X(y) be the characteristic function
of Y,, extended Y-periodically to R?. The medium ) contains two subdomains, Q5
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and Q° , representing the system of fracture planes and matrix blocks respectively,
and satisfying Q5, C {z € QX (xv/e) = 1},05 = Q\ Q. Let I'* := 005N oA, N
be that part of the interface of 027, with Q% that is interior to .

For the fracture subdomain ch, we denote porosity by ®¢, absolute permeability
by K¢, saturation of oil phase by S¢ € [0, 1], capillary pressure by T (5¢), the relative
permeability by A, (S¢), phase pressure by P2, and a function depending on gravity
by G¢, for a = w,0. ¢°, k%, s, v(s%), Ao (5%), 15, g5, for @ = w, 0, in subdomain QF,
represent the same quantities as those denoted by upper case symbol in the fracture
subdomain. Let (> 0) be a constant. The conservation of mass in each phase, with
the Darcy’s law, can be written as, in QE, t>0,

—0%(2)0,5° = V- (K°(2)Aw (S7)V(P; = G5)) =0, (2.1)

A
% (2)0,5° =V - (K*(2) Ao (S7)V(F5 — G)) = 0, (2.2)

Y(S%) =P — P, (2.3)

in QF,,t>0,
—¢%(2)0es” — €7V - (K (2) A (s5) V(DG — 95)) =0, (2.4)
¢ (2)0s" — 27V - (k*(2) Ao (5°) V(P — 92)) = 0, (2.5)
v(s%) = pg — PS- (2.6)
Phase fluxes and pressures are required to be continuous on interface I'?, ¢t > 0,

a=w,o,

K (2)Aa(S%)V(Ps = Go)v = 27k (2)a(s°) V (15, — g2 )V, (2.7)

P =13, (2.8)

where v is the unit vector outer normal to I'°. The boundary 092 of Q2 includes
I'1, Ty, which satisfying I'y N Ty = 0, Q2 = I'; UT'5. The boundary conditions are
given by, for @« = w, 0,

Ke(x)Ao(SF)V(P; —G,)n=0, only, (2.9)
P:=Pyo, only, (2.10)
where n is the unit vector outer normal to I'y. Initial conditions are
S%(z,0) = S5(z),  in QF, (2.11)
s%(x,0) = s5(x), in 5,. (2.12)

3. Notation and Assumption
The notations used in this paper are:
Q:=0QxY, Q:=QxY;ifi=fm

O(2e) = {z € Q: dist(x, 09Q) > 2¢},
Q= {x:x €Yo +7j) CQ2e) for j € Z3},
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05 = Q\ Q¢ , and
Qi={z:zee(Y +5)NQ eV +j) CQ2e) for j € Z3}.
Q8 =0 xY,,. B :=Bx(0,t)if B=9Q,09,,Q5,0° and i = f,m.

Ry =Rt U{0}. "y(t) := w is time difference. For any set B, Xj is
the characteristic function of B, dual X, is the dual space of X, s; (resp. 1 —s,) is
the residual matrix oil (resp. water) saturation.

For 1 <r < oo, L7, (Y) is the Banach space of functions in L], (R*) which are

Y-periodic. Wi (Y) iI; the Banach space of Y-periodic extensions to R? of the func-
tions in WL (Y') for which the boundary values agree on the opposite sides of the
boundary dY, and its norm is the usual norm of W (Y). C22 (V) is the space of Y-
periodic and infinitely differentiable functions in R3. If B is a Banach space and X
is a measure space, then L"(X;B) denotes the space of rth power norm-summable
functions on X with values in B and C§°(X;B) is the infinitely differentiable B-
valued functions with support in X. L"(Q7; L1 (Y;)) := {¢ € L"(QT; LT (Y)) :
Y(z,y,t) = 0ify € Y\Vi} for i = fym. L"(QT; WL (Y,,)) == {¢ : ¥, Vb €
LH(QT; L7 (V) } LT HY () o= LA WI2(Y,0)). LAQT; HY (V) =
{ € L2(QT; HY(Y;)) 1 0 = 0 on Y, ). WS () == {¢p € W™ (Q) = o)|p, = 0} for
ieNandr>1.U:=W%Q).

If T:[0,1) — Ry (vesp. v : [s;,8,) — RY) is onto and strictly increasing, we
denote by YT~ (resp. v~!) the inverse function of T (resp. v). We also define J :
[0,1) — [s1,8,) by J(2) := v~ 1(Y(z)), and denote by J ! the inverse function of 7.

Pb,c = Pb,o - Pb,w;

A(2) = Aw(2) + Ao(2), for z € 0, 1],

Az) == Aw(2) + Ao (2), for z € [0,1],
FAwAo dY

R(:) = [ SR0od forze ) (3.1)
* JAwAG

Az = [ RO, for 2 € 0.50)

M(z) = / )\V‘:\)\OZ—Z(é)df, for z € s, s,).

Next let us make the following assumptions: For a« = w, o,

Al Ay, Ay (resp. Ao, Xo) : [0,1] — [0,1] are continuous and decreasing (resp.
increasing), and Ay (1 —2) oc 29, A\ (s, — 2) o 292, Ag(2) o 293, Ao (s + 2)

294 for 2z < 1,
A2. Y :[0,1) = RS (v: [s1,s,) — Ry) is onto, increasing and a locally Lipschitz
ax( . )
T X ey, 92(2) > 0,

A3, VAGAEL € L=((0,1)), AwAoZ2 € LY((s1,51)),

continuous function, and inf, ¢ 1)
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A4, A 3/2 f — .A( (€)))d¢ for z < 1 as well as
3/2 z) fl 2 — A(Y(1 = 22)))d¢ for z < 1,
A5, La(z ):’\T( (z ))forzE(O 1),
A6. 0Py € LY(QT), Py € L2(0,T; HY(Q)), G5, g5, € L>=(0,T; WL (Q)),
AT. ¢ = ¢(%), k* = k(Z), where ¢, k are smooth Y-periodic functions,
A8. ®°, K¢, s5 — & K 55 in L?(Q2), and VGE, — VG, in L2(Q7),
A9. v <P K ¢k <o, and y3 < T H(Py ), S5, T 1(s5) < 1— s,
A10. Ty # 0, and Q C R? (resp. Y,,, C Y) is open, bounded, and connected with
Lipschitz boundary T'y UT (resp. 0Ys,), Q5, :={z: 2z € e(Y,, + j) C Q(2¢)
for j € Z*} and Q5 = O\Qe |

where d;,7;,7 = 1,...,4 are positive constants.

Remark 3.1. In Al, relative permeability A, (resp. A,) is assumed to be an
increasing function of oil saturation, and in the neighborhood of oil residue sat-
uration 0 (resp. s;) it is proportional to a power function. Ay, Ay have similar
properties in the neighborhood of water residue saturations as Ay, A\o. A2 says cap-
illary pressures Y, v are increasing with respect to saturation. Usually, the deriva-
tive of capillary pressure Y’(z) (resp. v'(z)) tends to co as z — 0 or 1 (resp. s;
or s,). It also requires fracture capillary pressure increases faster than capillary
pressure of matrix blocks. A3 allows the differential equations with degeneracy at
two ends (see also Refs. 15-17), a characteristic of a porous medium equation. A4
is the restriction on relative permeability and capillary pressure in fractures. In
fact, if d;,i = 1,...,4 (see Al) are large enough (depending on capillary pres-
sure), A4 holds. A5 requires that relative phase mobility functions in fractures
and matrix blocks are almost the same. Initial and boundary saturations are away
from both ends, see A9. By A10, Q? is an open, bounded and connected with
Lipschitz boundary. By A1-3 and (3.1), M is bounded and strictly increasing in
[s1,8r), so one can extend M to R such that it is still continuous and strictly
increasing.

4. The Main Result

We study the convergence of the microscopic models for two-phase flow in fractured
media as € goes to 0. If w = 1, the limit model is a dual-porosity model. In this
case, domain acts as a porous medium consisting of two superimposed continua,
a continuous fracture system () and a discontinuous system of matrix blocks Q,,.
Primary flow occurs in fracture system. Flow in matrix blocks plays the role of global
sources in the whole fracture system. The model includes two systems of equations,
one for flow in fracture system and the other for flow in matrix block system. The
two systems are coupled through global sources. If w > 1, flow in matrix blocks
moves so slow that it does not enter fracture system much. So the limit model is
a single-porosity model and contains equations for fracture flow only. Contrary to
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w > 1, flow in matrix blocks spreads very fast for 0 < w < 1 case. Saturations
are constant in space in the limit model, which is another type of single-porosity
model. Details are described below:

4.1. For w =1 case

Let © C R? be the medium. Equations for fracture flow are, for € Q, ¢t > 0,
—09S — V, - (KA (S)Va(Py — Gw)) = ¢, (4.1)

D0S — V- (KA (S)V(Py — Go)) = o, (4.2)
Y(S)= P, — Py.

® is porosity, K is permeability field, S is oil saturation, Y(S) is capillary pressure,

Ao (o = w,0) is relative permeability of a-phase, P, denotes phase pressure, G, is

a function depending on density, gravity and position, and ¢, is the matrix-fracture

source.

Above each point x € Q is suspended topologically a matrix block Y, C R3.
Equations for flow in a matrix block are, for x € Q, y € Y,,,, £ > 0,

—$dys — Yy - (khw(5)Vypuw) =0, (4.4)
¢Oes — Vy - (kXo(s)Vypo) =0, (4.5)
v(s) = Po — Pw- (4.6)

Fach lower case symbol denotes the quantity on Y,,, corresponding to that denoted
by an upper case symbol in the fracture system.

The matrix-fracture sources are given by, for x € Q, t > 0,
-1

QO(mvt) = m v ¢8t5(xayvt)dy = _QW(mvt)a (47)

where |Y,,| is the volume of Y;,,. The boundary conditions for fracture system are,
fort >0, « =w,o,

KA (S)Vi(Py—Go) n=0, forzely, (4.8)
Py =Py, forxzely,

where n is the unit vector outward normal to I'y. On interface, pressures are con-
tinuous, i.e. for t > 0, z € Q, y € IY,,, a = w,o0,

Pa(T,y,t) = Pa(x,t). (4.10)

Initial conditions are
S(xz,0) = So(z), forxzeQ, (4.11)
s(z,y,0) = so(x), forzeQ, yev,. (4.12)

Next we give a definition of a weak solution of (4.1)-(4.12). {S,s, Py, Do, =
w,0} is a weak solution of (4.1)-(4.12) if R(S) € L*0,T;H'()),
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M(s) € LA(QT; HY(Y,,)), Pa € L7(0,T;WHT(Q)), pa € L™(QT;WET(Y,,)) for
1 <r<2aswell as (4.3), (4.6), (4.8)-(4.12) and the following equations hold:
[easa- [ kasve, -cova- [ 20,
or or or, Tl

—(b(?ts
Yon|

/ 80,5 Got [ KASIV(P, - Go) VG = /Q ) dy G,

/ POss M — / EAw(s)VypwVym =0,

/ PO s 192 +/ kAo (s)VypoVyn2 = 0,
or or

m m

for any Cla <2 € LQ(O,T,Z/{) and N2 € LQ(QT; H&(Ym))

Theorem 4.1. Under A1—10 and w = 1, a subsequence of weak solutions of (2.1)—
(2.12) converges in two-scale sense to a weak solution of (4.1)~(4.12) (convergence
in two-scale sense is given in Sec. 5).

A two-phase flow problem for ratio €2 case was also considered in Ref. 11. Their
result is basically the reduced pressure formulation of (4.1)—(4.12). However, their

interface condition (see (4.51) of Ref. 11) is fOS (/Ao I ()ag = [ [Asdadu(£)qe

for x € Q, y € 9Y,,, which is different from (4.10).

4.2. For @ > 1 case

Equations in Q are

—09,S — V- (KAW(S)V(Py — Gy)) = 0, (4.13)
B9,S — V- (KAo(S)V(P, — Go)) = 0, (4.14)
T(S) = P, - P, (4.15)

where @, K, 5,Y(S), Ay (5), P, Go(a = w,0) are the same quantities as those in
w = 1 case. The boundary and initial conditions are, for a = w, o,

KAyW(S)V(Py —Go) -n=0, forzely, (4.16)
P, =Py, forzely, (4.17)
S(x,0) = So(x), forx e, (4.18)

where n is the unit vector outward normal to I'y. {S, P,,a = w, 0} is called a weak
solution of (4.13)-(4.18) if R(S) € L*(0,T; HY(Q)), P, € L"(0,T;WLr()) for
1 <r<2,(4.15)-(4.18) and the following equations hold

/ 00,5 ¢ — [ KAW(S)V(Py — Gy)VG = 0,
QT Qr
/ BS G+ | KA(S)V(P, — Go)V = 0,
QT Qr

for any (1, (e € L2(0,T;U).
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Theorem 4.2. Under A1-10 and w > 1, a subsequence of weak solutions of
(2.1)~(2.12) converges in two-scale sense to a weak solution of (4.13)-(4.18).

4.3. For 0 < w0 < 1 case

Equations in Q2 are

Ogs(x,t)

~00:5 = V- (KA(S)V (R~ ) = 25D [ gy)ay (4.19)
DO,S — V- (KA(S)V(Py — Go)) = ﬁ;—(ﬁ” [ oy (4.20)
T(S) = P, — Py = v(s), (4.21)

where ®, ¢, K, S, s, T(5),v(s), Aa(95), Po, Go(a = w,0) are the same quantities as
those in @ = 1 case. The boundary and initial conditions are, for o = w, o,

KA, (S)V(Py —Gy) - n=0, forzely, (4.22)
P, =Py, forzelsy, (4.23)
S(xz,0) = Sp(x), forxzeQ, (4.24)

where n is the unit vector outward normal to I'y. {S, P,,a« = w, 0} is called a weak
solution of (4.19)—(4.24) if R(S) € L*(0,T; HY(?)), P, € L™(0,T; Wb (Q)) for
1 <r<2,(4.21)-(4.24) and the following equations hold:

/ 09,5 i — [ KAW(S)V(Py — Gu) VG = / Zos@h) [ Gay ¢,
Or ok QT |Y | Yom

t
/ 89S Go+ [ KAS(S)V(P, — Go)VCs = / Gz, / S(y)dy Co,
QT or Qr |Y |

for any (1, (e € L%(0,T;U). Let us make one more assumption:

A1l A Ao % € Lo°((s1, 5,)).

Theorem 4.3. Under A1-11 and 0 < w < 1, a subsequence of weak solutions of
(2.1)-(2.12) converges in two-scale sense to a weak solution of (4.19)—(4.24).

5. Some Known Results
Let us recall some results from Refs. 1-3, 8, 11 and 13. By A10, Q% is an open,

bounded, and connected with Lipschitz boundary. So we know

Lemma 5.1.% Let 1 < r < oo and A10 hold. There is a constant vy5(Yy,r) inde-
pendent of €, and a linear continuous extension operator I, : W”(Q?) — Whr(Q)
such that

Hep = ¢ in Q% almost everywhere,
IMepllwr@) < ysllellwrr@s)-
In addition, if v6 < @ < 77, then v5 < e < 7.
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Definition 5.1. For a given ¢ > 0 and 1 < r < oo, we define a dilation operator
“—” mapping a measurable function p € L"(Q%T) to a measurable function €
L"(Qf,) by, for (z,y,t) € QF,
_ o(t°(x) +ey,t), if 5(x) +ey €5,
t) =
?(z.y,1) {0, elsewhere,

where (¢(z) :=¢j if 2 € e(Y +j), j € Z3, denoting the lattice translation point of
e-cell domain containing x.

Lemma 5.2.8 Let 1 < r < 0.
V,® =eVe in QL almost everywhere if ¢ € L"(0,T; WL (Q5,)),
{|¢|Lr(gz,;) = llellpr sy if v € LT(Q5T).
Definition 5.2. A sequence of functions ¢° in L"(Q7),1 < r < oo, is said

to be two-scale converge to ¢ in L"(QT;LI  (Y)) if, for any function ¢ €
Cse(QT;C.(Y)), we have

per

lim m,tw(x,gt)dxdt: [ el )yt
QT oT

e—0

2 , - . .
denoted by ¢* = ¢ € L"(QF; L (Y)). Besides lim. o [|¢°|| 27y = @]z or),
¢ is said to be two-scale converge to ¢ in L"(QT; L”_(Y)) strongly, and denoted

per
by ¢* 2 e L"(Q7; Ly, (Y)) strongly.

By Refs. 11, 13 and Lemma 5.2, we have
Lemma 5.3. If 1 < r < oo and if ¢ is a bounded sequence in L™(Q5T) satisfying

©F — o weakly in L"(QL),
Xa: ¢° 2 1 € LT(QT; Ly (Yin)),

per

as € — 0,

where Xo= is a characteristic function (see Sec. 3), then po = 1 in QT almost
everywhere.

By Theorem 2.28 of Ref. 2 and Lemmas 5.2-5.3 we obtain

Corollary 5.1. If ¢° € L"(Q57) and Xo: ¢° 2, ¢ e L"(QT LT (Vi) strongly
for 1 < r < oo, then @¢ converges to @ strongly in L"(QL ).

Tracing the proof of Theorem 1.8 of Ref. 3, we have

Lemma 5.4. If u® Zue LT(QT;L;’H(Y)) strongly for 1 < r < oo and if v° is a
bounded sequence in L™ (QT) satisfying v° e L7 (QT L7 (V) and 1+l =1,

per
then

lim u®(x, t)v® (z, 1)y <a:, g,t)dxdt z/ u(z,y, vz, y, )(z,y, t)dyddt,
QT

e—0 Qr

for any ¢ € C(QT;C2.(Y)).

per
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6. Proof of the Main Result

A1-10 are assumed throughout this section. We first derive a weak formulation for
(2.1)-(2.12). Multiply (2.1), (2.4) by 1 and (2.2), (2.5) by ¢, integrate over QT and
use (2.7), (2.9) to obtain

—/ %9, + KA (SE)V(PE — GE,)Vn
.

e, T
Qf

[ s [ RAVEE - Va0, (61)

€, e, T
Qum, Qum,

/ @Eat55g+/ KA (S9)V(PE — GE)VC
5" o7

+ P 0s°C + 62w/ kAo (s°)V(pS — g5)V( =0, (6.2)
n n
for functions n,¢ € L%(0,T;U). Next we define global pressures'? as

pom (e [ (B - ae))a). 69
r=a(ienn [ (e - er@)e). e

Then VP¢ = &=(S5)VPs + 42 (S5)VPS and Vp© = TW( VpS + O(SE)Vpg by

o

(2.3) and (2.6). So (6.2) can be rewritten as

/ °0,5°¢ +/ K& (Ao(S9)V(PF — G5) + VR(S%)) V¢
5"

+ [ sosct gh/ K (Mol(s5)V(p° — g2) + VM(s))VC = 0. (6.5)
Qn" o

Adding (6.1) and (6.2) to obtain, for n € L*(0,T;U),

[ KA = 65) = Au(59(G5 - G2) Vi
Qj.’T

+27 [E V0~ 60) = MV~ 00)Tn = 0. (66)
For ¢ € L*(0,T;U) N HY(QT), (2.11)—(2.12) imply

/ o °04(S°¢) + /Q . ¢°9:(5°¢)
=/§@656§(T)—/?¢>555g(0) ¢e (T / b s5C(0). (6.7)

(6.1)-(6.7), (2.3), (2.6), (2.8), (2.10) form a weak formulation of( 1)—(2.12). Let
us define

o A(Y(S9)), if z € Q3F,
T Aw(s)),  if ze Q.
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Lemma 6.1. Under A1-10, there exist functions S¢, P¢, P in ch and s, p%,ps, in
Q5. for a =w,o satisfying (6.1)-(6.7), (2.3), and (2.6)—(2.10). Moreover, 0 < S¢ <
1,8 < s® < s, and

> (WA, + < VAl )

Qa=w,0
+ || 1P|+ [VPe| + |[VR(S)| + |VA° HLQ(Q?T)
+e7 || ]+ [VDF| + [VM(s%)[ + [VA| || o gery <,

where ¢ is a constant independent of €.
Proof. Proof of the lemma can be found in Refs. 5, 6, 9, 18 and 22. O

Lemma 6.2. [|p®||z2(0,1;m1(0s,) < ¢, where ¢ is a constant independent of €.

Proof. A5, (2.8), (6.3)-(6.4) and Lemmas 5.1, 6.1 imply n := Xo: (p° — II. P®) €
L?(0,T;U). Take  above in (6.6) to get
/QE‘T k*® ()\(SE)V(p5 —g5) — Aw(s%)V(gs — gg))V(p5 —II.P%) =0.
By A1, A6, A9 and Lemmas 5.1, 6.1, we obtain
HVPEHL%Q;T) <eg, (6.8)
where ¢ is a constant independent of e. By (6.8),
||p6HL2(Q;T) S ||H5P6HL2(Q;T) + Hpe - HePEHLz(Q;T) S C7

where ¢ is a constant independent of e. O
Lemma 6.3. For sufficiently small 9,
T
/ (Se(t) —SE(t — 6)) (Ag(t) — A%(t — 6)) < ¢é,
5705
where ¢ is independent of €, 9.
Proof. By Lemma 6.1, (2.8) and A6, A9,

min(t+46,7)
C(a,t) = / 5 079(A° — A(Py.0)) (x, 7)dr € L2(0,T;U).

max(t,8)
Take ¢ above in (6.2) as well as employ Fubini’s theorem, A6 and Lemma 6.1
to get
T T
/ / °6%0705° 07O A% (x,7) + / / ¢°0%0 5700 A (x, T)
50 5 Jog

€
f m

_ / 0,5z, 1)C + / %0, (2, £)C
oy o’
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],

—— [ KAV - GIVC = [ ()0~ )V

e, T e, T
O s

T
D°6%97°5° 0O A(Py..) + / ¢°6%20 0500 A(Py.c)
6 JQe

5
f m

T T
+ / / D6%07°5° OO A(Py.) + / ¢£6207°sF 0 A(P,y..) < ¢4,
5 JQ% 6 JQs,
where ¢ is independent of € and . So the proof is complete. |
Lemma 6.4. There is a subsequence of I1.(A%|qz) converging to A* in L2(QT).

Proof. This is due to A3, Lemmas 5.1, 6.1, 6.3, and Corollary 3.6 of Chap. II of
Ref. 21. |

Lemma 6.5. For any 7(< T) and ,00(€ N) satisfying 2 < o < [ — 2, the
following inequalities hold:

CO|COT|B_5O

igngEQ:S(xat)SM Orp(xat)ﬁﬂﬂﬁma (6.9)
B—Bo
sup [{z € Q:1—p < S%(x,t) or 1 — p < p(a,t)}] < colcor] (6.10)

t<r T (B~ Bo)B-Bo)ta”
where p:= 3%, p° = T H(s%), limg_oo £3 = 1, and co is a constant independent of

7,3, €, 1. See A9 for ~s.

Proof. Define EKZ,ICM,I,C; as

~ 1, if p<z<2u
X — ) —_ - )
u(2) {0, elsewhere,

Ku(z) := /Z ;YV“ (T_l(A_l(f))) dg, for z € [0, A()),
A(Y(2p))

Nz = ) NE 1At or z 00
Rur= [ L B ETAT@) for e 0, Al

Note KM(AE),a(AE) € L*(0,T;U) by Lemma 6.1, 2 < % and A9. Take ¢ =
K,.(A®%) in (6.5) and n = @(Ae) in (6.6) to obtain, by Al, A5, A6,

/ KL (AN + [ KoA(S) T (ST) VY (S)V.A°
Q

&7 e, T
! Qf

+ | O KA + 77 / kAo (p°) X (p°) Vo (s7) VA"
<a ( KMo (S%) X, (S7)| VA | + 77 / ksAow)kZ(peﬂwﬂ) :
Q57 i

(6.11)

€,
m
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where constant ¢; is independent of ¢, u. If
/ KA /Q KA 20, (6.12)
5 ™
then (6.11)—(6.12) imply

Ao(5°) X, (5°) | VA°| + %7 /Q K Ao (0°) X (0°) |V A°|

E,T
Qf

g@\/ KeAY?X, (56)\/ K=Ao(S5)X,(S5)VY(S5)V A=
QET QE,T

\/EQW/ kA * X, \/EQW/ ke Ao (p°) X, (p°) Vo (57) VAS,

(6.13)
where constant cp is independent of &, u. A9 and (6.11)—(6.13) imply
/ O°IC, (A%)0:S° + P°KC,(A)0ps°
7 Q7
< 63(/ A32x,(5%) +SQW/ Ag/%?u(ps)). (6.14)
bANE QST
f m

Define

€

o [ Ku(ATE)de,  in 05,
Z(5%,s%, p) == Qi

o [ K@) n 9

T (2p)
(6.14) implies

QT

at2<ss,s6,u><cB( / AYPX,(5°) + 77 Ai/%(pf)). (6.15)
Q57 Q7

(6.15) and A2, A4 yield that, if 0 <t; <to <T,

12 ta
/ / OZ(S7, 5 1) < e / / Z(5%, 5%, 20), (6.16)
t1JQ t1 /9

where ¢4 is independent of t1,ts, i, . Define

fE(M)T) = 3/2 bup\/ Z 7

t<rt
A1l and (6.16) imply that, for 0 < t; <9 < T,

‘7:5(/1’th) - Fs(uvtl) < 65(t2 _tl)F€(2Nat2)a
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where ¢5 is independent of tq,t9, 1, €. By induction and A9, one obtains, for j €
N, jh<T,

(s . . By e [ .
P (i) < (0= o 17 el (22 ). (6.17)

Ifj = and 7 = jh in (6.17), then

(3 |es 7] - (3
d (2_[377-) = (ﬁ_ﬁo)wfﬁo)fﬁ}— (%’T)’ (6.18)

where fg — 1 as § — oo. Define

B—Bo
log(8—o)

_ g RER 73
B(t) == {xGQ.S (x,t) < 58 OF P (x,t) < 25}.

A4 and (6.18) imply

‘ (2 _GlesT|T® s
iggllﬁ(t)l < cgF (zﬁ,r) < (ﬁ_ﬁo)(ﬁfﬁo)fﬁf 25T )

where constant ¢g is independent of 7, 3, &, u. So proof of (6.9) is done.
_ Proof of (6.10) is similar to that of (6.9). In this case, the quantities
Xy, Ky, Ky, Z are modified as follows:

S L il =2u<2<1—p,
Hulz) = {O, otherwise,
K= | ) T (T ANQ) de, o = € [0, A(o0)),
A(Y(1—2p))
o : > Mo -1/ 4-1
K, (z) = / %20 (vl A1) e, for z € [0, A(ox),
Ar(-2m) A
o< [ Ku(AT©)de, im0,
Z(se 55 =4
o / K, (A@w(E)de, i €5,
T(1-2p)

By 2p < %, we take ¢ = K, (A®) in (6.5) and n = ﬁ(AE) in (6.6) to obtain

/ B (ANRST + [ KA (S5) X (S5)VY(ST)VA°
Qs

e, T
Qf

[ KA+ [ KAL) () V() DA

e,T e, T
Qm Qm

Scl( KEAW(SE)E(SEWAEHQW/
57

[ AT
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where constant ¢; is independent of €, . Then following the argument of (6.9), one
can get (6.10). |

Lemma 6.6. If1 <r <2,

Z (HpgHLT(O,T;W“'(Q;)) + |‘5va3HLr(Q;T)) <eg¢,

a=w,0

where ¢ is independent of €. In addition to w =1, Zgzwo ||PZHL7.(Q;T) <ec.

Proof. We define, for 2 < 5y € N,

T . 3 e
Biip, == {(a:,t) EQ?c PR <Ss },

, 3 3 .
Bs = {(x,t) EQ;’T: AT <S5t < 2_6}’ if 24+ 5y < pBeN.

Al, Lemmas 6.1, 6.5, and Holder inequality imply

/’|Vﬁrs</ Awfmﬁﬂﬁ (/ u%wwfﬁ
3’ o 3’
S@(ﬂﬁmww%> =alﬂﬁ%@wﬁ > s,
a2y Qy B=1+00
< ¢o (independent of €). (6.19)

Similar argument as (6.19) will give
e | T w c |7
/Q?T vEr+ Y /fo VRl < c. (6.20)

a=w,o
By boundary condition A6, |\Pg||LT(Q;,T) < ¢, @ =w,o. In addition to w = 1, by
Lemma 5.1, (2.8), (6.19)-(6.20),

/ m&ﬂﬂwég/ IV~ ILPS)I <.
e, T Qs T

<,
m m

So ||p2|\LT(Q;T) is bounded. m|

Lemma 6.7. s%,p%,p% (o = w,0) satisfy, for almost all x € QF,

d(y)0rs® — @IV, - (k(y)VyM(s%) + ek(y) Ao (55)V(p7 — g5)) =0, (6.21)
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in L?(0,T; H=*(Y,,)). Moreover, if w = 1, we have, for almost all x € QF,

G() 05T — Vy - (k(y) Ao (55)(Vyp§ — V) =0, (6.22)
—p(y)0rs® = Vy - (k(y)Aw () (V15 — Vg5)) =0, (6.23)

in L*(0,T; H=1(Y;)).
Proof. Let ¢ € HY(0,T; L%(Y;,)) N L2(0, T; C3°(Yy)). For x € ©, z € R3, we define

5(%%@,1?), for z € €Yy, + ¢ (x),

0, elsewhere.
Then we take ((x,t) = 5(ym+j)(m)€(x,x,t) in (6.5) and (6.7) for j € Z3 and

(Y +J) C QF,. Since supp ¢ C (Y, + j) x (0,T) and the components of QF,
are disjoint,

T T
/ / d’ssea‘ff‘gh/ / B (VM%) + Ao(5°)V (5° — 69)) V¢
0Je(Ym+j) 0Je(Ym+3)

_ / ¢ (T)C(T) — / 655 (0).
e(Ym+j) e(Ym+7)

Since x € e(Y,, + j), £°(z) = ej. Changing of variable y =
Lemma 5.2,

/OT/ ¢3=0, — 2= // (74 + XV =)Vt

i / 6T (T / $35C(0 (6.24)

for almost all z € £(Y;,, +j) C QF,,j € Z>. By Definition 5.1, (6.24) actually holds
for z € Q°. So we get (6.21). (6.22)-(6.23) can be obtained from (6.1)-(6.2) by a
similar argument as above. O

%E(I) gives, by

Let us define

§% =T (AT (I (A%2 ),
_ [T AT (AY), i AT < A(e0),
5= {1, if A* = A(c0).

Then 0 < 5¢,5 <1 by Lemmas 5.1 and 6.4. Next we shall consider w =1, w > 1,
and 0 < w < 1 cases separately.
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6.1. For w =1 case

Lemma 6.8. There is anr € (1,2) and a subsequence of {S¢, s%, S§, s5, A%, ¢°, k°,
Pe ps, a = w,o} such that, as e — 0,

Xo: P52 Xy, (y)Pa(x,t), where Po € L7(0,T; WY(Q)), Pa = Pha in T,
Xo: VP52 Xy, (y)(VPa + Vy Par(2,y,1)), where Poy € L7(QT; WI(Y)),
Xo= S5 2 So € LA L2, (V)

I (A%|as ), S°— A", S strongly in L2(QT) and pointwise,

Xo: 5° 2 Xy, (y)S(x,t) strongly,

Xa: 5%, Xo: M(s°), Xa: e VM (s )4 s, M* V,M* e L2(QT L2 .(Yin)),
Xo: D, 2 po € L7(Q7, Lier(Ym)),

Xog, 5°(T) 2 5* € L2 L2y (Yin)),

Xa: 5§ 2 50 € L2(Q; L2, (Yi)) strongly,

6% ke 2 g,k € L2(Q; L2, (Y) strongly,
M(55) = M*  weakly in L?(QT; HY(Y,,)),
5 — s weakly in L*(QT),

D5 — pa  weakly in L"(QT; W (Y,,)).

Proof. We note that II. P is bounded in L™ (0, T; W"(2)) by Lemmas 5.1 and 6.6.
So there is a subsequence of II. PZ converging weakly to P, € L"(0,T; W7 (Q)).
Since II. P = P, in I'y, P, = Py in I';. The lemma is then a direct conse-
quence of the above result, A3, A6-A9, Lemmas 5.2, 5.3, 6.1, 6.4, 6.6, and Refs. 3
and 13. O

Remark 6.1. Let us define

G° = v (A (I (A%3)).
G.— v AT AY)), if A < A(c0),
- se if A* = A(c0).
By A1, A3, Corollary 5.1, Lemma 6.8. and Ref. 3, it is easy to see that

[M(G%)|| 20, 7;11 () are bounded independently of e,
M(Go,) = M(G)  strongly in L*(QT),

V,M(G) =0

M(G?las,) = M(5%), M(G) = M* € L*(QT; H (Yon)).

(6.25)

Lemma 6.9. s5(0) = so and s° converges strongly to s in L*(QL).
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Proof. Step 1: Let ¢(t) € C'[0,T], n € C§(Q; C,.(Y)) with 57 = 0 for y € Y7.

per

We plug ¢ = 7(x, £)1(t) into (6.5) and (6.7), then
S R O N R SR S 0
on’ i’ €

+52/ny£ EEVM(s )( o1+ )¢

= [ s [ o @) (6:26)

€
Q'm

Passing to two-scale limit, we get, by Lemmas 5.4, 6.1, 6.2 and 6.8,

/ bSO (1) / KV, MAVyii() = | dsoib(0) — [ ésti(T),

Om Om
(6.27)

for ¢(t) € C[0,T], 1 € L?(; H} (Y,,)). Applying Green’s theorem for (6.27) in the
t variable yields

60us (1) / KV, M7t (1)
or

= [ ot —spis0) ~ [ ol — sy o28)
(6.28) implies 9;s € L2(QT; H=Y(Y,,)), s(0) = so, and
s(T) = s™, (6.29)

/ $Ois +/ EV, M*V,yn =0, forne L*(QF;Hi(Ym)). (6.30)
or or

m

Step 2: We claim that s® converges to s in L?(QT). Let us find ¢ ¢ €
L2(QT; H}(Y,,)) by solving, for all (x,t) € QT

—Vy(kVy°) = ¢s°, y €Yy, —Vy(kVyp) = ¢s, y €Yy,
. (6.31)
©°loy,, =0, ¢loy,, = 0.

(6.21) for w =1, (6.25), (6.31), and Green’s theorem imply

SOMET = [ oM@ - [ (ME) - MTT )V (69,6)
Q. Q. ™

_ / SM(Gas, )5* — / KV, M@ ) V0
o on”

m

[ gaw e / A(F)IVGE — gVt (6.32)
osT o

m
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Note
£12 12
—/ oo —— [ Wy [N R 633
T o, 2 o, 2
[ VM@V = [ M@ Ve (639
o5 s

By (6.29) and Lemmas 5.3, 6.8, s5(T') converges weakly to s(T) in L?(Q,,). That
implies, by (6.31), Holder inequality, and Green’s theorem,

/ 0l (7) < lim [ k19, F(T) (6.35)

Since lim._q |2\ Q°| = 0, we take limit supremum on both sides of (6.32) to obtain,
by (6.25), (6.33)-(6.35), and Lemmas 6.2, 6.8,

— Ay k| Vyepl? kYl
lim PM(sF)sF < or dM(G)s —/m (T(T) - T(O)) (6.36)

e—0 or

Take n = ¢ of (6.31) in (6.30) to obtain, by (6.25),
2 2
o= [ My [ ML) [ - m@ns w81

2 m 2 or

m

By (6.36) and (6.37),

Tim PM (5%)sF < PM*s. (6.38)
=0 Jor or,
By Remark 3.1, M is strictly increasing in R. Employing (6.38) and monotonicity
argument,?! one can easily obtain

M(s) = M*. (6.39)
By (6.38) and (6.39),

lim d(M(sF) — M(s))(s® —s) = 0.

e—0 or
Then by monotonicity of M, we see that s% converges to s pointwise almost every-
where in Q7. So 5% converges to s in L?(QT). O

Lemma 6.10. 0 < S < 1,8, < 8 < 8,00 — Dw = V(8), P, — Py = Y(S5), and
pa(%%ﬂ = Poz(xvt) fOT UAS Qay € 8Ym,05 = W, 0.

20 and

Proof. 0 < S < 1, s < s < s, are due to Egoroff’'s theorem
Lemmas 6.1, 6.5, 6.8, 6.9. Since pg — pg, = v(s%) in Q5 we get p, — pw = v(s) by
Lemmas 6.8, 6.9. Similarly, one has P, — P, = T(S). By Lemmas 5.1, 6.1, 6.6, we
have (I P)|q: — p§ € L™(Q7; Wy (Yin)),1 < r < 2. So there is a subsequence of
(II. P5)|s, — p5, converging weakly to Xy, (y)Pa(z,t) — pa € L"(Q7; Wy (Yin)) by
Lemma 6.8. So, pa(,y,t) = Pa(x,t) for y € Y. O
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Next we give the proof of Theorem 4.1.

Proof. We substitute into (6.1) a test function of the form
~ [ =
n = ((x,t) +5n<x, E’t>’

where ¢ € C5°(07), 7 € C3°(QT; C2,(Y)). Then

per

0= / 7SO+ =04 + / KNS V(P — G5)(VC 42V + V)
Q% Q%
[ o0l eam) w2 [ RN - g (V4 Vi V).
By A8 and Lemma 6.8, KA (S%) converges to KA, (S) strongly in L"(Q7),
r < oo. Passing to two-scale limit, we get, by A7-8, and Lemmas 5.4, 6.6 and 6.8,

/ o1 59,5 + / KY AW (S)(VPy + Yy Put — VG ) (VE + V)
oFf oFf

The choice of 77 = 0 gives, in Q7

Y |@70,S +V, | KYAy(S)(VPy +VyPy1—VGy)=— [ ¢disdy, (6.40)
Yf Y?n

where |Yy| is the volume of Y;. The choice of ¢ = 0 gives, by A9 and
Lemmas 6.8, 6.10,

A PW - 07 n s
v < (6.41)
(VPy +VyPy1 —VGy) v =0, ondYy,,

where v is the unit vector outward normal to 0Y;,. Let e; be the unit vector in the
Jjth direction. We denote by = the tensor whose (7, j) component is dp;/dy;, where
; is a periodic solution in Y of the auxiliary problem

Aypj =0, in Yy,
Vypj v =—e;j v, ondY,.

P, 1 of (6.41) is given by

Py1= Z Pj (y)awj (Py — Gw).
J
So (6.40) becomes

BOS + V - (KA (S)V(Py — Gu)) = % / 60, sdy, (6.42)
m Y,
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where ¢ := %(I)H, K = ‘If,—:‘fyf (I + E(y))dy, and |Y,,| is the volume of Y,,.

Proceeding as in the proof of (6.42), we obtain, by (6.2),

1

_‘I)ats +V- (KAO(S)V(PO - Go)) = m
m Ym

POpsdy. (6.43)

By (6.42) and arguing as in step 1 of Lemma 6.9, one gets
S(0) = Sp. (6.44)

By (6.22), we have, for any n € L2(QT; H}(Y,n)),
/Q;T POrs=n + /Q;T kAo (s5)VypsVyn — € /QMT kAo (55)VgEV,m = 0.
As ¢ — 0, by Lemmas 6.8 and 6.9, one obtains
or $Oes 1 + /QT kAo (5)VypoVyn = 0. (6.45)

Using the same reasoning as (6.45), we obtain, by (6.23),

/ POps m — / kEAw (s)VypwVyn = 0. (6.46)
on on

By (6.42)-(6.46) and Lemmas 6.8-6.10, we complete the proof of Theorem 4.1. O

6.2. For w > 1 case

Arguing as Lemmas 6.8, 6.10, we also have the following result:

Lemma 6.11. There is a r € (1,2) and a subsequence of {S¢,s%, S5, PS, o = w,0}
such that, as € — 0,

Xo: P 2 Xy, (y)Pa(,t), where Py € L7(0,T; WY (Q)), Po = Py o in T,
Xo: VPE 2 Xy, (y) (VP + Vy Pa i (2,y,1)), where Pay € LT(QT; WI(Y)),
Xos S5 2 So € LA L2,,(Yy)),

S¢ — S strongly in L*(Q7) and pointwise,

Xa: 5° 2 Xy, (y)S(z,t) strongly,

Xo: 57 2 s € L2(QT5 L2, (Ym)),

per

and P, — Py, = Y(5).

Lemma 6.12. ¢0;s =0 in Q%.
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Proof. We introduce F, = eZk(Ao(s°)V(p® — ¢5) + VM(s%)). Then, by
Lemmas 6.1-6.2,

||FEHL2(Q%LT) <ec. (647)

So Xo- F. 2 F* in two-scale sense.® Let ¢ € C(QT; 0, (Y)) with ¢ = 0 for

per

y € Yy. We plug ((z, Z,t) into (6.5) as a test function to obtain

1
0=— ¢6858t€+€w/ Fe (VTC+ —VyC>
Qn" " €
Passing to two-scale limit, we get, by A7, (6.47) and Lemma 6.11,
0= (bSatC.
of
So ¢drs = 0 and we complete the proof. |

Repeating the process for the proof of Theorem 4.1, one obtains Theorem 4.2
by Lemmas 6.11 and 6.12.

6.3. For 0 < w < 1 case

Lemma 6.13. There is an r € (1,2) and a subsequence of {S¢,s%, S5, A%, P5, a0 =
w,0} such that, as e — 0,

Xo: Ps 2 Xy, (y)Pa(x,1), where Po € L7(0,T; WY(Q)), Pa = Pyq in T,
Xa: VP52 Xy, (y)(VPa + Vy Par(2,y,1)), where Poy € LT(QT; WI(Y)),
Xo: S5 2 S € L2( L2, (V)

I (A%|qs ), S° — A", S strongly in L2(QT) and pointwise,

KXoz 5° ER Xy, (y)S(x,t) strongly,

Xos 57, Xoz M(5%), Xz eVM(s7) 2 5, M*, My € L2(Q7; L2, (Yin)),
M(5%) = M*  weakly in L*(QT; HY(Y,,)).

Proof. This lemma can be proved by the same argument as Lemma 6.8. O

Remark 6.2. By Lemmas 6.1 and 6.13, it is easy to see
M = M*(z,t), (6.48)
that is, M™ is independent of y € Y,,. If we define
G% i= v (A7 (IL(A]s ).

then A1, A3. Corollary 5.1, Lemma 6.13, and Ref. 3 imply that M(G¢|q: ) is a
Cauchy sequence in L?(QT).

Lemma 6.14. s© converges to s in L*(QTL). Indeed, s = s(x,t) € L*(QT).
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Proof. We assume that {s7,pe1} (resp. {s%2,p%2}) is a solution of (6.21) for e = &1
(resp. € = g2) case, and ( is a smooth function satisfying (|sy,, = 0. For convenience,

€1 < eg9. Let © € Qft N Q2. Subtracting one solution from the other and doing
integration by parts, we have

/OT/Ym (M) = M(52)) Vy (kVQ)
= [ Gm-smacs [ (m@Tm
— M(G=gz2)) Vy (KV,C)

T -
+/0/ kVy (M(Gotger) — M(G=2[g22)) V, €

m

(@77 )l
&) [ s

T
VT (el — 1) 2(1-=) = _ | L
+51/0/Ymmo<s Vo — eV, ¢+ & / & - 5]

m

(6.49)
Next we select ¢ as the solution of
Vy(kVy () = ¢(s7r — s%2) for y € Yy, (6.50)
(lov,, = 0.

[VyM(G g

We also note that, by Lemmas 5.1, 5.2, 6.1,
’NL) ) - EZHVM(QEL )

IVy M)l 201 = €5~ T lIeFVM(572)l| 1201 < ce5™ 7, (6.52)

g el _ <2 _ k 2 k 2
| @ mmeac= [ Smicro - [ Smarm, (6.5)

where ¢ is a constant independent of €1,€2. So (6.49)-(6.53), All, Remark 6.2,
and Lemmas 6.1, 6.2, 6.13 imply that M(s%) is a Cauchy sequence in L?(QT)
with limit M*. So s° converges to s = M~Y(M*) in L2(QT). By (6.48),
s = s(x,t). O

(ory <cg, =12, (6.51)

Arguing as in the proof of Theorem 4.1, one obtains Theorem 4.3 from Lem-
mas 6.13 and 6.14.
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