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Abstract: Error propagation can seriously affect the performance of an adaptive decision feedback
equaliser (DFE), especially when operated in time-varying channel environments. Error
propagation not only affects DFE decisions, but also disturbs the DFE adaptation. The paper
focuses on improving the robustness against error propagation for the least-mean-square (LMS)
based minimum mean-squared-error DFE (MMSE-DFE). A specifically designed channel
estimator is introduced to help the DFE adaptation in the decision-directed (DD) mode. Unlike
the conventional DFE, the proposed adaptive channel-aided DFE (ACA-DFE) only adapts the
feedforward filter with the LMS algorithm. The feedback filter, however, is obtained from
the postcursors of the estimated channel convolved with the feedforward filter. As a result, the
proposed ACA-DFE can reduce the error propagation effect and perform better than the
conventional adaptive DFE.We also demonstrate that the ACA-DFE can be extended to multiple-
input multiple-out (MIMO) systems improving the performance of the conventional MIMODFE.

1 Introduction

Decision feedback equaliser (DFE) is a well-known channel
equaliser in single-input single-output (SISO) systems [1–3].
It has been widely used in digital communications to
suppress inter-symbol interference (ISI) for over several
decades. When the channel spectrum exhibits spectral nulls
due to multipath propagation, the DFE performs signifi-
cantly better than the linear equaliser (LE). Though the
maximum likelihood sequence estimator (MLSE) [4] can
have better performance than the DFE, the computational
complexity is much more higher.

A DFE incorporates a feedforward filter (FFF) operating
on the received signal to suppress precursor ISI, and a
feedback filter (FBF) operating on previously detected
symbols to suppress postcursor ISI. A DFE uses a
nonlinear decision device at the output, and the output
represents a noise-free replica of the transmitted symbol
assuming that the probability of decision error is small.
However, if a symbol is detected incorrectly, the next input
to the FBF will be in error. As this error advances through
the feedback loop, the probability of making an error in the
detection of subsequent symbols will be increased. It can
result in error propagation (EP) that causes bursts of
incorrect decisions and a corresponding increase in the
decision-error rate [5]. A number of schemes were proposed
to reduce EP for DFE. A technique combining DFE with
partial response precoding and detection was presented in
[6]. In [7–9], soft decisions and specifically designed
constraints were suggested to prevent questionable decisions

from being used in the feedback loop and thereby the
probability of error burst was reduced. Besides, a periodic
transmission of a short resetting sequence calculated based
on a certain steady-state error probability was used to
control the error behaviour of DFE [10].

Recently, much attention is paid in the development of
multiple-input multiple-out (MIMO) systems. With the
use of multiple antennas at both transmitter and receiver,
the spectral efficiency of a communication system can be
increased dramatically [11]. For high data-rate transmission,
frequency selective fading is present between pairs of
transmit and receive antennas. This brings a great design
challenge at MIMO receivers. One solution for this problem
is to use anMIMODFE, where both the FFF and the FBF
are extended to have multiple inputs and multiple outputs,
i.e., multi-dimensional FFF and multi-dimensional FBF
performing multi-dimensional channel equalisation [12–14].
For the MIMO DFE, the problem of EP is even more
severe than that of its SISO companion owing to the
complicated channel configuration and the need to detect
signal buried in ISI in addition to co-channel interference
(CCI), in addition to noise.

Since the communication environment may be time-
varying, tap weights in the DFE should be updated
dynamically for better performance [15]. The least-mean-
square (LMS) adaptive algorithm [16] is well-known for its
simplicity and robustness, and is often utilised to adapt both
the FFF and the FBF in SISO DFE systems. It can be
shown that the LMS algorithm is also attractive to the
adaptive MIMO DFE for dispersive MIMO channels
[17, 18]. As described, the EP effect will have a greater
impact in the adaptive implementation of the DFE. A
decision error not only affects the DFE future outputs, but
also disturbs the reference signal of the adaptive algorithm.
As a result, the DFE will be adapted toward an incorrect
direction. In the worst case, EP can diverge the DFE
adaptation.

The most popular design strategy for channel equalisa-
tion by far is the use of the minimum mean-squared-error
(MMSE) criterion. Its well-accepted theoretical frameworkE-mail: ymlee@ncnu.edu.tw
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and amenability to adaptive implementation make it very
attractive for practical usage. Another strategy for equaliser
design is to use the minimum bit-error rate/minimum
symbol-error rate (MBER/MSER) criterion [19]. Various
adaptive realisations for the MBER/MSER equalisation
were proposed in [20–23]. Though better results can be
obtained in terms of this criterion, there is no guarantee that
the global minimum can be reached. In addition, the
convergence rate may be slower and the computational
complexity may be higher. All these may make the MBER/
MSER equaliser less effective in time-varying channel
environments. In the following, we only consider the DFE
optimised by the MMSE criterion.

In this paper, an LMS-based MMSE-DFE is proposed
to reduce the EP effect. A particularly designed channel
estimator is introduced to the conventional DFE structure.
The resultant adaptive channel-aided (ACA) DFE can
perform better than the conventional adaptive DFE and the
EP effect can be effectively reduced. This approach is
different from those channel-estimation-based DFEs pro-
posed in [24, 25], where both the FFF and the FBF are
calculated based on the estimated channel response. Since
matrix multiplications and inversions are involved, its
computational complexity will be high for time-varying
channels. In the proposed ACA-DFE, however, the
adaptive structure is remained. Only the FFF is adapted
with the LMS algorithm, and the FBF is obtained from the
postcursors of the up-to-date estimated channel convolved
with the FFF. Generally, this will result in lower com-
putational complexity. We will also show that our SISO
ACA-DFE can be extended to an MIMO ACA-DFE.

This paper is organised as follows. In Section 2, the
background materials for the MMSE-DFE for both SISO
andMIMO systems are described. In Section 3, we propose
the new ACA-DFE and explain its operation mechanisms.
This result can be extended to use in MIMO channels
resulting an MIMO ACA-DFE. Finally, simulation results
and conclusions are presented in Section 4 and 5,
respectively. Throughout the paper, we utilise the super-
scripts ( � )*, ( � )T, and ( � )H to denote conjugation,
transposition, and Hermitian transposition, respectively,
and the operator E{ � } to denote mathematical expectation.

2 Background

2.1 Conventional DFE for SISO systems
Let the tap weights of the FFF and the FBF of a DFE be
denoted by the column vectors f with length a and b with
length b, respectively. The complex dispersive channel is
modelled by discrete path hl with 0 � l � L� 1, in which L
is the channel order. We assume that the transmitted
symbol aðkÞ is randomly generated and the noise sample
sequence nðkÞ is zero mean, white, and Gaussian distrib-
uted. The received discrete-time equivalent baseband signal
at the kth time instant can then be modelled as

xðkÞ ¼
XL�1
l¼0

hlaðk � lÞ þ nðkÞ ¼ hT aðkÞ þ nðkÞ ð1Þ

with h ¼ ½h0 h1 � � � hL�1�T and aðkÞ ¼ ½aðkÞ aðk � 1Þ � � �
aðk � Lþ 1Þ�T . Let x(k) be the input vector of the FFF

with length a, i.e. xðkÞ ¼ ½xðkÞ xðk � 1Þ � � � xðk � aþ 1Þ�T ,
and âðkÞ be the input vector of the FBF with length b,
i.e. âðkÞ ¼ ½âðk � k� 1Þ âðk � k� 2Þ � � � âðk � k� bÞ�T ,
where k is a suitably chosen decision delay. For the training
based MMSE-DFE, the error signal can then be written as

eðkÞ ¼ aðk � kÞ � ðf H xðkÞ � bH âðkÞÞ ð2Þ

Assuming decisions are correct, i.e., âðkÞ ¼ aðkÞ, we can
write the MSE as

EfjeðkÞj2g ¼ f H Rxxf � f H Rxab� f H pxa � bH RH
xa f

þ bH Raabþ bH paa � pH
xa f þ pH

aabþ s2a
ð3Þ

with Rxx ¼ EfxðkÞxH ðkÞg, Raa ¼ EfaðkÞaH ðkÞg, Rxa ¼
EfxðkÞaH ðkÞg, pxa ¼ EfxðkÞa�ðk � kÞg, paa ¼ EfaðkÞ
a�ðk � kÞg, and s2a ¼ Efaðk � kÞa�ðk � kÞg. To obtain

the optimum solution, we set the gradient of EfjeðkÞj2g
with respect to f* and b* to zero. This results in

f opt ¼ Rxx �
1

s2a
RxaRH

xa

� ��1
pxa ð4Þ

bopt ¼
1

s2a
RH

xa f opt ð5Þ

As we can see, the optimum solution relies on the
correlation matrices which cannot be known in advance,
and the matrix inverse operation in (4) requires extensive
computation. A simple alternative to find the optimum tap
weights is to use an adaptive training method. The LMS
algorithm is known to be a simple yet effective choice. The
LMS update equations for f and b are expressed as [16]

f ðk þ 1Þ ¼ f ðkÞ þ mfxðkÞe�ðkÞ ð6Þ

bðk þ 1Þ ¼ bðkÞ � mbâðkÞe�ðkÞ ð7Þ
where f ðkÞ and bðkÞ are the estimates of f opt and bopt at the

kth time instant, mf and mb are the step sizes controlling the
convergence rate, and eðkÞ is the error signal given in (2). A
typical adaptation process consists of a training mode and a
decision-directed (DD) mode. Initially, the training mode is
launched and sufficient training symbols are transmitted to
let both f ðkÞ and bðkÞ converge around the optimum.
Then, the DFE switches to the DD mode in which DFE
decisions are used as the reference signal and the DFE is
continuously adapted. However, DFE decisions may not be
always reliable, especially in time-varying channels. Deci-
sion errors not only affect the DFE future output, but also
disturb the DFE adaptation. In the worst case, the adaptive
DFE can diverge, and another training period needs to be
re-initiated.

2.2 Conventional DFE for MIMO systems
The SISO DFE can be extended to an MIMODFE for the
equalisation of MIMO channels. Here, we use M�N to
signify the configuration with M transmit and N receive
antennas, and L to indicate the maximum order for the
multi-dimensional channel. Generally, MrN is assumed.
A sequence of data symbols amðkÞ (1 � m � M) is
transmitted from the mth antenna. We define amðkÞ ¼
½amðkÞ amðk � 1Þ � � � amðk � Lþ 1Þ�T as a collection of L
successive data symbols from the mth antenna. These data
symbols are randomly generated (both in time and space
domain) and drawn from the same signal constellation with
a variance of s2a. All M data sequences are transmitted over
the MIMO channel. The sampled channel response
from the mth transmit antenna to the nth receive antenna
is given by

hnm ¼ ½h0
nm h1

nm � � � hL�1
nm �

T ð8Þ
for m ¼ 1; 2; . . . ;M and n ¼ 1; 2; . . . ;N . We can assemble
the vectors hnm into a matrix of size L�N as

Hm ¼ ½h1m h2m � � � hNm� ð9Þ
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for m ¼ 1; 2; . . . ;M . We also let nðkÞ ¼ ½n1ðkÞ n2ðkÞ � � �
nN ðkÞ�T be an N-dimensional noise vector with zero mean,
white, and Gaussian distributed elements. With the
formulation, M different symbols are simultaneously
transmitted through M antennas and received by N
antennas to yield the N-dimensional signal vector xðkÞ ¼
½x1ðkÞ x2ðkÞ � � � xN ðkÞ�T . With this premise, the received
discrete-time equivalent baseband signal vector can be
written as

xðkÞ ¼
XM
m¼1

HT
mamðkÞ þ nðkÞ ð10Þ

The formulation of theMIMODFE is similar to that of the
SISO DFE. Nevertheless, M decision devices are employed
for M different data sequences. For simplicity, we only
consider the most basic form of the MIMO DFE which
does not include any successive interference cancellation
(SIC) action [2]. To be consistent with the previous
derivation for the SISO DFE, we first arrange the structure
of the FFF into M matrices Fm, for m ¼ 1; 2; . . . ;M , with
dimension a�N, and the FBF into M matrices Bm, for
m ¼ 1; 2; . . . ;M , with dimension b�M. Both a and b
are selected to be long enough to cover the ISI effect in
the multi-dimensional channel. The matrices Fm and Bm

have the forms as

Fm ¼

f 0
m1 f 0

m2 � � � f 0
mN

..

. ..
. . .

. ..
.

f a�1
m1 f a�1

m2 � � � f a�1
mN

2
664

3
775 ¼ ½f m1 f m2 . . . f mN �

ð11Þ

Bm ¼

b0
m1 b0

m2 � � � b0
mM

..

. ..
. . .

. ..
.

bb�1
m1 bb�1

m2 � � � bb�1
mM

2
664

3
775 ¼ ½bm1 bm2 . . . bmM �

ð12Þ
To be more compact, we stack the components in the above
matrices to form the following vectors

�f m ¼ ½ f T
m1 f T

m2 . . . f T
mN �

T ð13Þ

�bm ¼ ½bT
m1 bT

m2 . . . bT
mM �

T ð14Þ
for the mth FFF and the mth FBF, respectively. Similarly,
the successive received signal of (10) for the nth antenna
can be first grouped as xnðkÞ ¼ ½xnðkÞ xnðk � 1Þ � � �
xnðk � aþ 1Þ�T , for n ¼ 1; 2; . . . ;N , and then the total
received signal vector is described as �xðkÞ ¼ ½xT

1 ðkÞ
xT
2 ðkÞ � � � xT

N ðkÞ�
T , which serves as the input to the FFF.

The most recent b decisions from the output of the mth
decision device after delay km are labelled as âmðkÞ ¼
½âmðk � km � 1Þ âmðk � km � 2Þ � � � âmðk � km � bÞ�T , for
m ¼ 1; 2; . . . ;M . Here, we assume that all decision delays
km are known at the receiver. Then, we can write the overall

decision vector as �aðkÞ ¼ ½aT
1 ðkÞ aT

2 ðkÞ � � � aT
MðkÞ�

T , which
constitutes the input to the FBF. After that, we may express
the estimate in the output of the MIMO DFE prior to the
mth decision device at the kth time instant as

ymðkÞ ¼ �f
H
m �xðkÞ � �b

H
m �aðkÞ ð15Þ

and the estimation error for it as

emðkÞ ¼ amðk � kmÞ � ymðkÞ ð16Þ
for m ¼ 1; 2; . . . ;M . We see that the error signal given in
(16) is similar to that of the SISO case except dimension

expansion. Architecture-wise, the MIMO DFE can be
treated as a generalisation of the SISO DFE, where the
scalar delay line, the taps, and the decision are replaced by
the vector delay line, the matrix taps, and the decision
vector, respectively. With reference to (4) and (5), for each
data sequence and the corresponding decision device, we
may have the optimum FFF and FBF expressed as

�f m;opt ¼ R�x�x �
1

s2a
R�x�aRH

�x�a

� ��1
p�xam

ð17Þ

�bm;opt ¼
1

s2a
RH

�x�a
�f m;opt ð18Þ

with the matrix and vector elements defined similar to those
for the SISO DFE. Again, to avoid the matrix inverse
operation in the FFF calculation, we may adopt the LMS
algorithm to find the optimum tap weights recursively. It is
not difficult to obtain the update equations for the MIMO
DFE as

�f mðk þ 1Þ ¼ �f mðkÞ þ mf�xðkÞe�mðkÞ ð19Þ

�bmðk þ 1Þ ¼ �bmðkÞ � mb�aðkÞe�mðkÞ ð20Þ
for m ¼ 1; 2; . . . ;M . Since the received signal is also
corrupted by CCI in MIMO channel environments, it
tends to make the error signal in the above update
equations more noisy. For similar ISI conditions, the
performance of the adaptive MIMO DFE is worse than
that of the adaptive SISO DFE.

3 Proposed adaptive channel-aided DFE
(ACA-DFE)

3.1 ACA-DFE for SISO systems
Figure 1 is the block diagram of the proposed ACA-DFE
for SISO systems. To obtain the channel response, we first
introduce a channel estimator in the DFE structure. Let the
coefficients of the included channel estimator be denoted as
q and its dimension is g� 1. The value of g is chosen to be
larger than or equal to that of the channel order L. For
convenience, we choose g¼L. According to Fig. 1, the
channel estimator q is tuned by a new error signal eqðkÞ,
and the cost function for the optimisation of q can be
written as

min
q

EfjeqðkÞj2g ¼ min
q

EfjxðkÞ � qH ~aðkÞj2g ð21Þ

where xðkÞ is the received signal and ~aðkÞ ¼ ½âðkÞ
âðk � 1Þ � � � âðk � gþ 1Þ�T is the input vector to the
channel estimator. Assume that decisions are correct and
input data symbols are white. We can then calculate the

input correlation matrix for q as R~a~a ¼ Ef~aðkÞ~aH ðkÞg ¼
s2aI g, where I g is a g� g identity matrix, and the cross-
correlation vector for aðkÞ and xðkÞ as p~ax ¼
Ef~aðkÞx�ðkÞg¼ s2ah�. From (21), the optimum q solved

Fig. 1 ACA-DFE in DD mode for SISO systems
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by the classical Wiener solution is

qopt ¼ R�1~a~a pax ¼ h� ð22Þ
We see that the optimum q equals the complex conjugate of
the channel response. As previous, we can use the LMS
algorithm to approach qopt recursively. The update equation
is stated as

qðk þ 1Þ ¼ qðkÞ þ mq~aðkÞe�qðkÞ ð23Þ
where qðkÞ is the estimate of qopt at the kth time instant and

mq is the step size for the adaptation. We observe that the
channel estimation problem is essentially a system identifi-
cation problem. For uncorrelated input data symbols, the
eigenvalues of the input correlation matrix are all identical,
and thus the eigenvalue spread equals unity, which is the
minimum possible value. It is well-known that the
convergence rate of the LMS algorithm is inversely
proportional to the eigenvalue spread [16]. Thus, the
convergence of qðkÞ is expected to be fast and stable.

Here, we make use of this channel estimator and propose
a new DFE structure, i.e. the ACA-DFE. Our approach
uses a basic property of the DFE, i.e., the postcursors of the
channel response convolved with the FFF is cancelled by
the FBF. For completeness, we now show the property
formally. It is simple to see that the convolution of the
channel and the FFF results in a response of length
aþ g� 1. Thus, for perfect postcursor cancellation, we
must have b � aþ g� 2� k. Without loss of generality,
we let b ¼ aþ g� 2� k. Represent the convolution of qopt

and f opt as Pf opt, where P is an ðaþ g� 1Þ � a matrix as

P ¼

h0 0 � � � � � � � � � � � � � � � 0

h1 h0 0 � � � � � � � � � � � � 0

..

. . .
. ..

.

hg�1 hg�2 � � � h0 0 � � � � � � 0

0 hg�1 hg�2 � � � h0 0 � � � 0

..

. . .
. . .

. ..
.

0 � � � 0 hg�1 hg�2 � � � h0 0

0 � � � � � � 0 hg�1 hg�2 � � � h0

..

. . .
. ..

.

0 � � � � � � � � � � � � 0 hg�1 hg�2

0 � � � � � � � � � � � � � � � 0 hg�1

2
66666666666666666666666666664

3
77777777777777777777777777775

�

ð24Þ
We can further partition P as P ¼ ½PT

r PT
p �

T , where Pr is

of dimension ðkþ 1Þ � a and Pp is of dimension
ðaþ g� 2� kÞ � a. It is not difficult to observe that
Prf opt corresponds to the precursor response of Pf opt

while Pp f opt the postcursor response. Recall that the

optimum FFF and FBF for SISO systems is calculated
using (4) and (5), respectively. With some manipulations, we
can derive

1

s2a
RH

xa ¼ Pp ð25Þ

From (5), we then obtain bopt ¼ Pp fopt. This result can be

re-stated as

bopt ¼ postfqopt � foptg ð26Þ
where # denotes the convolution operation and post{ � }
denotes the postcursor-taking operation. This result

suggests an adaptation approach for the training-based
MMSE-DFE. Let f ðkÞ and bðkÞ be the FFF and FBF at
the kth time instant. With reference to (26), we can let

bðkÞ ¼ postfqðkÞ � f ðkÞg ð27Þ
in which qðkÞ is the channel estimate at the kth time instant.
If qðkÞ converges to qopt, bðkÞ will converge to bopt too. The

difference between this approach and the conventional
method lies in that only f ðkÞ is adapted (not both f ðkÞ and
bðkÞ). For the conventional adaptive DFE in the DDmode,
the scenario is that both f ðkÞ and bðkÞ are adapted based
on the LMS update equations as given in (6) and (7). We
observe that if there is a decision error, the error will
immediately reflect to âðkÞ and then eðkÞ. Note that the
adaptation of f ðkÞ involves erroneous eðkÞ only while that
of bðkÞ involves both erroneous âðkÞ and erroneous eðkÞ.
The two error sources in (7) will make bðkÞ quite sensitive to
decision errors. Alternatively, in the proposed method, only
f ðkÞ is adapted as given in (6). By using (27) to calculate
bðkÞ, the overall DFE will perform much better. Although
the effect of decision error will also pass to eqðkÞ which will
perturb the adaptation of qðkÞ, the influence is smaller. This
is because the convergence of qðkÞ for channel estimate is
much faster and more stable than that of the DFE. In one
word, with the proposed operation, the resultant ACA-
DFE will be less sensitive to decision error and the EP effect
will be reduced.

3.2 ACA-DFE for MIMO systems
In Section 2.2, we have already shown that for the mth
decision device in MIMO DFE, the optimum formulation
is similar to that for SISO DFE except dimension
expansion. This motivates us to extend the idea of the
SISO ACA-DFE to MIMO ACA-DFE. The block
diagram of the MIMO ACA-DFE is described in Fig. 2.
First, we define the channel estimators qnm with dimension
g� 1, for m ¼ 1; 2; . . . ;M and n ¼ 1; 2; . . . ;N , to estimate
hnm given in (8). Following the development presented
previously, we can express this task as a system identifica-
tion problem as

min
qnm

Efjeq;nmðkÞj2g ¼ min
qnm

EfjxnðkÞ � qH
nm~amðkÞj2g ð28Þ

where xnðkÞ is the received signal from the nth antenna and

~amðkÞ ¼ ½âmðkÞ âmðk � 1Þ � � � âmðk � gþ 1Þ�T is the deci-
sion vector from the mth decision device as the input to the
corresponding channel estimators. Similar to (22), the
solution is in the form as

qnm;opt ¼ h�nm ð29Þ
for m ¼ 1; 2; . . . ;M and n ¼ 1; 2; � � � ;N . Referring to (23),
we can then use the LMS algorithm to approach qnm;opt

Fig. 2 ACA-DFE in DD mode for MIMO systems
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too. Likewise, we define matrices Pmn with dimen-
sion ðaþ g� 1Þ � a, for m ¼ 1; 2; . . . ;M and n ¼
1; 2; . . . ;N , as

Pmn ¼

h0nm 0 � � � � � � � � � � � � � � � 0

h1nm h0nm 0 � � � � � � � � � � � � 0

..

. . .
. ..

.

hg�1nm hg�2nm � � � h0nm 0 � � � � � � 0

0 hg�1nm hg�2nm � � � h0nm 0 � � � 0

..

. . .
. . .

. ..
.

0 � � � 0 hg�1
nm hg�2

nm � � � h0
nm 0

0 � � � � � � 0 hg�1
nm hg�2nm � � � h0nm

..

. . .
. ..

.

0 � � � � � � � � � � � � 0 hg�1nm hg�2nm

0 � � � � � � � � � � � � � � � 0 hg�1nm

2
66666666666666666666666666666664

3
77777777777777777777777777777775

�

ð30Þ

We then partition Pmn as Pmn ¼ ½PT
r;mn PT

p;mn�
T , where

Pr;mn is of dimension ðkm þ 1Þ � a and Pp;mn is of
dimension ðaþ g� 2� kmÞ � a. By the definition that
R�x�a ¼ Ef�xðkÞ�aH ðkÞg, we can have

1

s2a
RH

�x�a ¼
Pp;11 Pp;12 � � � Pp;1N

..

. ..
. . .

. ..
.

Pp;M1 Pp;M2 � � � Pp;MN

2
64

3
75 ð31Þ

and the mth optimum FBF given in (18) can be specified as

�bm;opt ¼

PN
n¼1

postfqn1;opt � f mn;optg

PN
n¼1

postfqn2;opt � f mn;optg

..

.

PN
n¼1

postfqnM ;opt � f mn;optg

2
66666666666664

3
77777777777775

ð32Þ

in which f mn;opt is the nth sub-vector in �f m;opt, as represented

in (13). While both qnm;opt and
�f m;opt are estimated using the

LMS algorithm, the estimation of �bm;opt at the kth time
instant can then be calculated as

�bmðkÞ ¼

PN
n¼1

postfqn1ðkÞ � f mnðkÞg

PN
n¼1

postfqn2ðkÞ � f mnðkÞg

..

.

PN
n¼1

postfqnM ðkÞ � f mnðkÞg

2
66666666666664

3
77777777777775

ð33Þ

Since qnm can estimate the corresponding channel response
hnm, for the same reason described in the SISO case, the
proposed operation in (33) can enhance the adaptation of
the FBF. The resultant MIMO ACA-DFE can then
improve the robustness against EP for MIMO channel
equalisation.

4 Simulations

Computer simulations are conducted to demonstrate the
effectiveness of the proposed ACA-DFE andMIMOACA-
DFE. In the first part, we consider SISO channels. In the
second part, we consider MIMO channels. All transmitted
symbols are randomly generated and then modulated by
quadrature phase-shift keying (QPSK). All decision delays
are chosen to optimise the performance. In all figures, at
least 500 simulation runs are averaged to obtain each
simulated result.

4.1 Experiment 1: ACA-DFE
In this set of simulations, we demonstrate that the pro-
posed ACA-DFE can provide more robust and stable
performance than the conventional adaptive DFE against
EP under severe ISI environments. We first consider
a static channel chosen from [4, p. 616], which is ½0:227
0:460 0:688 0:460 0:227�T (Proakis C channel). The
parameters a, b and g for those filters are set to be 9, 9 and
5, respectively. For comparison, we also show the case of
ACA-DFE with perfect channel state information (CSI).
The signal-to-noise ratio (SNR) is set as 25dB. Here,
mf ¼ mb ¼ 0:005, mq ¼ 0:002, and the number of training

symbols Tt ¼ 2000. The DD mode follows immediately
after the training mode. Figure 3 gives the learning curves
for various equalisation schemes. We see that there is no big
difference in performance between the proposed ACA-DFE
with and without perfect CSI. It implies that the channel
estimator works fairly well. The ACA-DFE performs better
than the conventional adaptive DFE in the DD mode in
this severe ISI scenario. To demonstrate the merits of the
proposed ACA-DFE further, we give the relation between
the average SER and the step size used in the FFF (the
same step size is used in the FBF of the conventional
adaptive DFE as well) in Fig. 4. This figure reveals that the
ACA-DFE always has lower SER than the conventional
adaptive DFE with the same step size. There are a couple of
things that we can observe from the figure. First, there is an
optimum step size for a DFE. As known, for the LMS
algorithm, the smaller the step size, the smaller the output
MSE in the steady state (possibly the lower the average
SER). However, a smaller step size will also make the
convergence slower. As a result, there exists an optimum
step size balancing these two effects. The optimum mf giving
the lowest SER is around 0.005 for both schemes, and the
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Fig. 3 MSE learning curves for static Proakis C channel
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SER improvement with the ACA-DFE is almost an order
of magnitude. Second, the ACA-DFE outperforms the
conventional adaptive DFE for any step size. Last, given a
target SER, the applicable step-size range of the ACA-DFE
is wider than that of the conventional adaptive DFE. We
then consider a time-varying channel constructed from
Proakis C channel used previously. The first, second, forth
and fifth paths in the channel now undergo fading
according to Jake’s model [26], and are upper bounded by
their corresponding path magnitudes. The normalised
Doppler frequency fdTs equals 5� 10� 4, in which fd is
the Doppler frequency and Ts is the symbol duration. This
time-varying channel is normalised to keep the SNR at a
constant level. Figure 5 shows the average SER against the
step size used in the DFE. We observe that the SER
improvement for this time-varying case is quite significant,
and is more than an order of magnitude most of the time.
In practice, it is difficult to know the exact channel variation
pattern and the optimum step size. For the ACA-DFE,
since the applicable step-size range is wider and the resultant
SER is always lower, making the choice of the step size
becomes much easier. This enables the ACA-DFE to work
adequately in general time-varying environments.

4.2 Experiment 2: MIMO ACA-DFE
In this part, we consider the MIMO ACA-DFE for
dispersive MIMO channels. First, we use the static 2� 2

MIMO channel given in [2]: h11 ¼ ½0:781 0:625�T , h12 ¼
½0:781 �0:625�T , h21 ¼ ½0:895 �0:447�T , and h22 ¼ ½0:958
0:287�T . The parameters used are Tt ¼ 200, SNR¼ 20dB,
mf ¼ mb ¼ 0:005, and mq ¼ 0:002. The learning curves for

the MIMO ACA-DFE and the conventional adaptive
MIMO DFE are shown in Fig. 6. We see that the MIMO
ACA-DFE can achieve an MSE lower than that of the
conventional adaptive MIMO DFE in the DD mode.
Similarly, Fig. 7 presents the relationship between the
average SER and the step size used in the MIMO DFEs.
The MIMO ACA-DFE generally achieves lower SER than
the conventional adaptive MIMO DFE. Next, we conduct
the experiment under time-varying channel environments,
in which we let the second channel tap in hnm (n¼ 1, 2 and
m¼ 1, 2) be varied with Jake’s model and upper bounded
by its corresponding path magnitude. The normalised
Doppler frequency is now changed to 2� 10� 4. Figure 8
shows the average SER versus the step size used for the
time-varying channel. We can see that the MIMO ACA-
DFE still provides better performance. In this scenario, the
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optimum step size for both DFE schemes is around 0.006,
and the SER improvement with the MIMO ACA-DFE is
more than an order of magnitude. However, note that the
performance obtained with the proposed method is not as
good as that in the SISO scenario. It is because the MIMO
environment induces CCI for each transmitted sequence
and this lowers the input SNR. Also, the channel becomes
multi-dimensional and is more difficult to estimate.

5 Conclusions

In this paper, we have developed the ACA-DFE for SISO
systems and MIMO systems. With the additional channel
estimator(s) and the special operation for the FBF, the
stability and robustness against EP are improved. Simula-
tion results confirm the usefulness of these proposed
schemes. Note that the DFE considered here for MIMO
systems is generally referred to as the parallel interference
cancellation (PIC) scheme in which decisions are made for
all recovered bit streams simultaneously. To further enhance
the performance in MIMO systems, we can apply the SIC
technique where the decision for each bit stream is made
sequentially. The decision sequence is determined according
to the decision-error probabilities in the recovered bit
streams. Combining SIC and the method proposed in this
paper, we can reduce the EP effect even more effectively.
Research on this subject is now underway.
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