Visible colour difference-based quantitative
evaluation of colour segmentation

H.-C. Chen and S.-J. Wang

Abstract: The authors present the use of visible colour difference in a new quantitative evaluation
scheme for colour segmentation. To avoid directly evaluating the subjectively perceived quality of
colour segmentation, two objective visual quantities, the quantity of missing boundaries and the
quantity of fake boundaries, are considered. To explore how missing boundaries and fake bound-
aries affect the perceived quality of colour segmentation, a few visual rating experiments are
made. On the other hand, to fit for humans’ visual perception on colour difference, the visible
colour difference is defined. Based on the experiments and the visible colour difference, two
measures, named intra-region visual error and inter-region visual error, are designed to estimate
the degrees of missing boundaries and fake boundaries, respectively. With these two measures,
a complete scheme for the evaluation of colour segmentation is proposed. The simulation results
demonstrate that this new scheme may evaluate segmentation results without any ground truth,
and could help the automatic selection of parameter settings for a given segmentation algorithm.

1 Introduction

Colour segmentation is a crucial step in image analysis and
pattern recognition. The performance of colour segmenta-
tion may significantly affect the quality of an image under-
standing system. So far, hundreds of colour segmentation
algorithms have already been developed to deal with
various kinds of image-related applications [1, 2]. Among
these colour segmentation algorithms, the automatic
setting of controlling parameters is usually a difficult task.
These control parameters are often adjusted by the users
in an interactive and tiresome manner. Moreover, the selec-
tion of control parameters is also image dependent. For most
colour segmentation algorithms, there exists no parameter
setting that is universally applicable.

On the other hand, it is well known that performance
evaluation of segmentation algorithms is critical and essen-
tial in the development of image understanding systems.
However, as compared with the tremendous efforts spent
in the development of segmentation algorithms, relatively
fewer efforts have been spent on the subject of image seg-
mentation evaluation [3—7]. According to the classification
scheme proposed by Zhang [6, 7], existing evaluation
methods for image segmentation could be roughly classified
into three categories: (1) analytical methods, (2) discre-
pancy methods and (3) goodness methods. As shown in
Fig. 1, analytical methods directly evaluate segmentation
algorithms by analysing their principles, requirements, utili-
ties, complexity and so on [7]. On the contrary, both dis-
crepancy methods and goodness methods evaluate the
performance of segmentation by judging the quality of
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segmentation results. Especially, discrepancy methods
measure the difference between the segmentation result
and the reference result, which is usually an expected
result or a ground truth [8, 9]. On the other hand, goodness
methods evaluate the segmentation results with certain
quality measures directly, without the use of any reference
result [10—13].

Due to the lack of a general theory for image segmenta-
tion, analytical methods work well only for some particular
models or for some desirable properties of the algorithms.
Moreover, these analytical methods themselves are seldom
to be used alone [7]. For discrepancy methods, the reference
result is essential for the evaluation of segmentation.
However, the acquirement of reference results is usually
non-trivial, and the acquired reference results are usually
user-dependent [8]. Hence, in normal circumstances, the
third type of methods, the goodness methods, tends to be
more practical. For this type of method, a given algorithm
can be evaluated by simply computing some goodness
measures over the segmentation results. So far, several
goodness measures have already been proposed [10—13].
For example, based on the total number of segmented
regions and a colour difference defined in the RGB colour
space, evaluation functions are proposed by Liu and Yang
[10] and Borsotti et al. [11] to measure the difference
between the original image and the segmented image. In
order to avoid segmenting an image into too many small
regions, the factor of region area is often considered in
these evaluation functions.

Although several goodness methods have already been
proposed, not too many of them are directly based on
human visual perception. Instead, most goodness methods
combine several existing measures together to formulate
their evaluation functions. The selection and the combi-
nation of different measures are usually subjective. The
adjustment of weighting coefficients is often troublesome.
Moreover, some commonly used measures, such as the
number of homogeneous regions, could be very different
for different images. When these image-dependent
measures are combined into a single evaluation function,
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Fig. 1 Approaches for evaluating image segmentation [6, 7]

it would be fairly difficult to perform segmentation evalu-
ation, without prior knowledge of image contents.

In this article, we propose a new evaluation scheme that is
basically a goodness approach. To mimic the way a human
perceives the performance of segmentation, two objective
visual quantities, the quantity of missing boundaries and
the quantity of fake boundaries, are considered and a set
of visual rating experiments was made. Moreover, to fit
for humans’ visual perception on colour difference, a
so-called ‘visible colour difference’ is defined. Based on
these visual experiments and the defined visible colour
difference, two measures, named ‘intra-region visual
error’ and ‘inter-region visual error’, are designed to esti-
mate the degrees of ‘visible’ false negative and ‘visible’
false positive, respectively. Based on these two error
measurements, a complete scheme is then proposed to
evaluate the results of colour segmentation. This evaluation
scheme may not only evaluate the segmentation results
without any ground truth, but could also be used to assist
the selection of parameter settings for a given segmentation
algorithm.

2 Existing goodness methods and visual rating
experiments

2.1 Existing goodness methods

As mentioned earlier, most existing goodness methods
combine several different measures together to compose
an evaluation function that fits for visual judgement
[10—13]. However, not all of them are directly based on
human visual perception. Moreover, the adaptation of
some measures in the evaluation function may require
some prior knowledge of image contents. For example,
Liu and Yang [10] define an evaluation function as

FI) = (1

1000(N M)

where I is the image to be segmented, R is the number of
regions in the segmented image, ¢; is the colour error of
the ith region, 4; is the area of the ith region and N and M
represent the length and the width of the image. Here, ¢;
is defined as the sum of the Euclidean distance of the
colour vectors between the original image and the segmen-
ted image in the ith region. Note that, in (1), the square root
of region number is adopted in the evaluation function to
avoid segmenting the image into too many regions.

Based on (1), two further improved evaluation functions
are proposed by Borsotti ef al. [11] that are defined as
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where R(A;) represents the number of regions with area size
A;. In both equations, the areas of regions are considered in
the evaluation functions to punish these segmentation
results with too many small regions. Similarly, the
number of segmented regions is also included in these
two equations to achieve segmented results with an appro-
priate number of homogeneous regions.

For these evaluation functions, two primary requirements
are adopted for preferred segmentation: smaller colour
difference and a smaller number of segmented regions.
However, colour difference and the number of segmented
regions are very different in physical meanings. The trade-
off between them would be very difficult. Moreover, the
preferred numbers of segmented regions could be very
different from image to image. When this image-dependent
measure is involved in a single evaluation function, it would
be fairly difficult to perform segmentation evaluation
without prior knowledge of image contents.

In summary, although several goodness functions have
already been proposed, not many of them are directly
based on human visual perception. Instead, most goodness
methods combine several existing measures together to for-
mulate their evaluation functions. The selection and the
combination of different measures are usually subjective.
The adjustment of weighting coefficients is often trouble-
some. Moreover, for most evaluation methods, the quality
of segmentation is usually represented in one single func-
tion, which mixes together several weakly related measures.
Without knowing the erroneous information about the seg-
mented result under evaluation, these approaches could be
very unreliable.

2.2 Visual rating experiments

In the proposed scheme for segmentation evaluation, we
aim to develop a goodness approach that could mimic the
way humans evaluate segmentation results. To explore the
way a human perceives the performance of segmentation,
a set of visual rating experiments were first made. In these
experiments, to avoid evaluating directly the subjectively
perceived quality of colour segmentation, two more objec-
tive quantities, the degree of ‘visible’ missing boundaries
and the degree of ‘visible’ fake boundaries, are considered.
Based on these experiment results, the correlations between
the visual quality of colour segmentation and the degrees
of missing-boundary and/or fake-boundary are then
investigated.

In this section, three colour segmentation algorithms used
in the visual rating experiments are to be introduced first.
These algorithms will also be used in the following sections
to demonstrate the performance of the proposed evaluation
scheme. After a brief introduction of these three segmenta-
tion algorithms, the details of the visual rating experiments
will be described.

2.2.1 Adopted colour segmentation algorithms: In
general, current colour segmentation algorithms could be
roughly classified into three major categories: (1) image
domain-based approaches, (2) feature space-based
approaches and (3) physics-based approaches [2]. For
image domain-based approaches [1, 2, 14—17], most
methods could be further classified into two groups: (1)
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edge-based methods and (2) region-based methods. For
edge-based methods, the discontinuity of local information
is usually used as the gauge for segmentation, while for
region-based methods, the similarity of neighbouring
pixels is usually used. That is, edge-based methods mark
boundaries with large enough intensity/colour variations,
while region-based methods merge together pixels with
small intensity/colour variations. For feature space-based
approaches [1, 2, 18, 19], the data distribution of the
entire image plays a crucial role. Clustering or grouping
techniques are usually applied over the data distribution to
allocate image data into groups. On the other hand, for
the third type of approaches, the physics-based approaches,
the adopted mathematical tools are basically the same as the
former two types of approaches, while an underlying phys-
ical model is used to account for the reflection properties of
the captured objects [2].

To select appropriate colour segmentation algorithms for
the visual rating experiments, the segmentation algorithms
are picked based on three criteria:

1. Diversity: these algorithms represent different types of
image segmentation algorithms;

2. Visibility: all these algorithms had been presented to the
vision community through a refereed publication and

3. Availability: the codes of these algorithms are readily
available.

Based on these three criteria, we pick three different
kinds of segmentation algorithms for our visual rating
experiments. For edge-based approaches, we picked Ma
and Manjunath’s edge flow algorithm [14]; for region-based
approaches, we picked Deng and Manjunath’s JSEG algor-
ithm [16] and for feature space-based approaches, we
picked Comaniciu and Meer’s mean shift algorithm [18].
As physics-based approaches are much less popular than
the others, this type of approach is not considered in our
experiments.

2.2.2 Visual rating experiments: To mimic the way
humans evaluate segmentation results, we consider the
degree of ‘visible’ missing boundaries and the degree of
‘visible’ fake boundaries. To explore how missing bound-
aries and fake boundaries affect the perceived quality of
image segmentation, few visual rating experiments are
made. In our experiments, 20 observers, 19 graduate students
and 1 professor, with normal sight were involved. The ages
of these observers were from 25 to 45 years. There was no
special training for these observers before the experiments.
To acquire more accurate experiment results with less sensi-
tivity to context, the stimulus-comparison method was used
[20]. In the stimulus-comparison method, any two of the
subjects should be compared. Hence, this type of approach
is usually time consuming. To avoid heavy time consump-
tion but without sacrificing the diversity of colour images,
six different colour images were used. These six images
are shown in Figs. 2a—f and are named ‘Fruit’, ‘Lena’,
‘House’, ‘Tower’, ‘Room’ and ‘Table tennis’, respectively.
On the other hand, as the attributes of segmentation results
produced by different algorithms are quite different, it
would be fairly difficult to compare segmentation results
among different algorithms. For example, one algorithm
may generate segmentation results with inaccurately
located boundaries, while another algorithm may generate
segmentation results with accurate boundaries but with
some extra fake boundaries. Hence, in this article, we only
focus on the comparison of segmentation results produced
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Fig. 2 Six test images

a Fruit

b Lena

¢ House

d Tower

e Room

f Table tennis

by the same algorithm but with different settings of control
parameters.

In the experiments, the segmented results of ‘Fruit’ and
‘Lena’ are produced by the edge flow algorithm [14]. The
‘Fruit’ image is less textured, while the ‘Lena’ image
includes slight texture over the hat fringe region. On the
other hand, the segmented results of ‘House’ and
‘Tower’ are produced by the JSEG algorithm [16], while
the segmented results of ‘Room’ and ‘Table tennis’ are
produced by the mean-shift algorithm [18]. Table 1
shows the summary of these six colour images and the
corresponding segmentation algorithms. Actually, the
pairings of colour images and the used segmentation
algorithms are just arbitrary. There is no special reason
why the edge-flow algorithm is chosen for the ‘Fruit’
image, but not for the ‘House’ image.

For each image, nine segmentation results are produced
by one of the three algorithms with nine different settings.
Then, every two of these nine segmentation results are dis-
played in a random order on an LCD (liquid crystal display)
monitor for comparisons, as shown in Fig. 3. That is, for
each colour image, there are C3 = 36 segmentation pairs
to be compared. Totally, for all six colour images, there
are 6 x 36 = 216 segmentation pairs to be compared. For
each pair, the 20 observers are asked to subjectively
compare the right segmentation result, named Seg I, with
the left segmentation result, named Seg II, in terms of the
perceived segmentation quality, the perceived degree of
missing boundaries and the perceived degree of fake bound-
aries. Here, we use the seven-grade scales with a set of cat-
egories defined in semantic terms (e.g. much better, better,
slightly better).

The experiment results for Figs. 2a—f are shown in
Figs. 4a and b. In Fig. 4a, the nine triangles represent
the averaged segmentation quality against the averaged
degree of missing boundaries for the nine segmentation
results of the ‘Fruit’ image. The term ‘averaged’ means
that value is computed based on the grades from all 20
observers. Similarly, the asterisks, pentagrams, squares,
circles and plus-signs represent the averaged segmentation
quality against the averaged degree of missing boundaries
for the segmentation results of ‘Lena’, ‘House’, ‘Tower’,

IEE Proc.-Vis. Image Signal Process., Vol. 153, No. 5, October 2006



Table 1: Colour images against the applied segmentation algorithms
Segmentation algorithm Colour image
Fruit Lena House Tower Room Table tennis
Edge-flow algorithm [14] © ©
JSEG algorithm [16] ©) ®
Mean-shift algorithm [18] © ©
Compare Seg I to Seg IT
- : House
Quality Comparison
3 Much better
2 Better
1 Slightly better
0 Similar or hardly comparable
1 Slightly worse
-2 Worse
-3 Much worse
Missing-boundary Comparison
3 | Much more missing boundaries
2 More missing boundaries
1 | Slightly more missing b daries
L] Similar or hardly comparable
-1 | Slightly less missing boundaries
-2 Less missing boundaries
-3 | Much less missing boundaries
Fake-houndary Comparison
3 | Much more fake boundaries B {g
2 More fake boundaries B B
1 Slightly more fake boundaries
0 Similar or hardly comparable
1 | Slightly less fake boundaries
2 Less fake boundaries
3 | Much less fake boundaries Seg Il Seg | -
Fig. 3 One of the 36 comparison patterns for the ‘House’ image
‘Room’ and ‘Table tennis’, respectively. In Fig. 4a, it coefficient defined as
seems there is no apparent correlation between the B B
perceived segmentation quality and the degree of missing X —-X)Y-Y)

boundaries. On the other hand, Fig. 45 shows the plot of
the averaged segmentation quality against the averaged
degree of fake boundaries for the segmentation results of
the six colour images. Similarly, the correlation between
the segmentation quality and the degree of fake boundaries
is not very clear.

To measure the correlation between the averaged
segmentation quality and the averaged degree of missing-
boundary/fake-boundary, we calculate the correlation

Visual Rating Pairs for "Fruit*
Visual Raling Pairs for *Lena” H
Visual Rating Pairs for "House"
Visual Raling Pairs for “Tower"
Visual Rating Pairs for *Room* |
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Fig. 4 Results of the visual rating experiments
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where X is the mean of the scores on the X variable, while ¥
is the mean of the scores on the Y variable. In Table 2, we
list the correlation coefficient representing the correlation
between the segmentation quality and the degree of
missing-boundary /fake-boundary. As listed in Table 2, we
can see that the correlation between the segmentation
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a Segmentation quality against the degree of missing boundary for Figs. 2a—f
b Segmentation quality against the degree of fake boundary for Figs. 2a—f
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Table 2: Averaged segmentation quality against missing boundary and/or fake boundary

Correlation Colour image

Fruit Lena House Tower Room Table tennis
Quality against missing-boundary —0.954° —0.840° 0.001 —0.206 —-0.432 —-0.496
Quality against fake-boundary 0.642 0.509 —0.7887 —0.396 —0.434 -0.114
Quality against missing boundary + fake boundary —0.944° -0.797° —0.994° —0.964° —0.994° -0.920°
@Correlation is significant at the 0.05 level (two-tailed) [21]
PCorrelation is significant at the 0.01 level (two-tailed) [21]
quality and the degree of missing boundaries is not always R Qualty Distribution for Lena image

significant at the 0.05 level for these six images. Neither is
the correlation between the segmentation quality and the
degree of fake boundaries. Here, the value of the signifi-
cance level is defined as a value that is larger than or
equal to a rejection probability under a two-class hypothesis.
For example, with a 0.05 significant level, the probability is
<0.05 that we would be wrong in rejecting the hypothesis
that the correlation is zero. With such a low probability of
error, we might confidently reject this hypothesis, and
accept that there is a positive/negative correlation [22].

As the correlation between the averaged segmentation
quality and the averaged degree of missing-boundary/
fake-boundary is not always strong, we try to explore
the correlation between the averaged segmentation
quality and the combination of missing-boundary and
fake-boundary. In Figs. 5a—f, the horizontal axis rep-
resents the degree of missing boundaries, increasing
from left to right; while the vertical axis represents the
degree of fake boundaries, increasing from bottom to
top. Figs. Sa—f could be referred to the plots of visual
false negatives against visual false positives for the seg-
mentation results. These figures are closely related to the
commonly used ROC (receiver operating characteristics)
curves, which are plots of the true positive rates against
false positive rates. Each of the nine segmentation
results for Fig. 2a is represented by a square in Fig. 5a.
The colour of the square denotes the normalised averaged
grade of segmentation quality, increasing from dark red to
white. It is not surprising that the best quality scores
usually occur at the lower-left corner of the figure. That
is, the preferred segmentation results are these results
with both a lower degree of missing boundaries and a
lower degree of fake boundaries. Similarly, the simulation
results for Figs. 2b—f are shown in Figs. 5b—f, respect-
ively. All these figures reveal the same phenomenon. To
confirm this phenomenon, we plot the averaged segmenta-
tion quality against the averaged degree of missing bound-
aries, plus the averaged degree of fake boundaries for all
six colour images, as shown in Fig. 5g. In Fig. 5g, we
can easily see that the correlation between the visual
quality of colour segmentation and the combination of
these two visual errors is strong. To verify the strong cor-
relation between the segmentation quality and the degree
of missing boundaries plus fake boundaries, we also calcu-
late the corresponding correlation coefficients. As listed in
Table 2, it can be seen that the correlation coefficients
between the segmentation quality and the degree of
missing boundaries plus fake boundaries is significant at
the 0.05 level, or even at the 0.01 level, for all six
images. Moreover, as the sign of the correlation coefficient
is negative, it implies that the preferred segmentation
result is a segmentation result with a lower degree
of missing boundaries plus a lower degree of fake bound-
aries. Hence, once if we can find some reasonable
measures to estimate the degree of missing boundaries
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and the degree of fake boundaries, we may use these
measures to evaluate the segmentation quality in a reason-
able and practical way.

3 Visible colour difference and error measures
3.1 Visible colour difference

In this article, we propose a new evaluation scheme that is
based on the preference of having less visual errors in the
segmented results. Based on the experiment results
deduced in Section 2.2, it appears that the combination of
the degree of missing boundaries and the degree of fake
boundaries is closely related to humans’ subjective evalu-
ation over segmentation performance. Therefore if we can
formulate some appropriate measures to estimate the
degrees of missing boundaries and fake boundaries, we
may find some quantitative and effective ways to evaluate
segmentation algorithms.

To evaluate the quality of colour segmentation, we first
propose the use of ‘visible colour difference’. Among
various definitions regarding colour difference [23], we
choose the CIE AEf,;, definition as the basis of colour differ-
ence. As mentioned in the literature [23, 24], the value of
AEf .y is perceptually analogous to humans’ visual percep-
tion of colour difference. This colour difference definition
is defined over the CIE L*a*b* colour space, which is a
roughly perceptually uniform colour space. The formula
for converting an RGB image into the (L*, a*, b*) coordi-
nates can be found in several colour-related articles [23,
24]. In this CIE L*a*b* colour space, the colour difference
between two colours, (L{, af, b}) and (L3, a3, b3), is defined as

AEiab = H(L*’ aT’ bT) - (Lzs a;, bz)

L*a*b*

=W~ L) + (@ — @) + b3 (9)

Moreover, the values of AEf ,;, could be roughly classified
into three different levels to reflect three different degrees of
colour difference perceived by humans [25]. As indicated in
Table 3, the colour difference is hardly perceptible when
AFEf ., is smaller than 3, is perceptible but still tolerable
when AEf,, is between 3 and 6, and is usually not accepta-
ble when AEf,;, is larger than 6 [25]. Hence, in this article,
we define a colour difference is ‘visible’ if its AEf ,;, value is
larger than 6.

3.2 Measures of visual errors

To estimate the degree of missing boundaries and fake
boundaries, some appropriate quantitative goodness
measures are formulated in this section. In general, for good-
ness methods, three basic types of measures are considered:
(1) intra-region measure, (2) inter-region measure, and (3)
region-shape measure [4]. Usually, intra-region measures
are designed to measure the homogeneity within segmented
regions, while inter-region measures are designed to
measure the heterogeneity between adjacent regions. On

Table 3: The effect of colour difference in the CIE L*a*b*
colour space on human visual perception [25]

AEf ap Effect

<3 hardly perceptible

3<6 perceptible, but acceptable
>6 not acceptable
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the other hand, region-shape measures are usually designed
to measure the regularity of region shape. Intuitively, the
two former types of measures may be closely linked to the
way humans evaluate the quality of segmentation at the dis-
crimination level, while the third type of measures is more
likely to be linked to the evaluation at the recognition
level. Moreover, the intra-region measure that evaluates
the homogeneity within segmented regions could be
adopted to estimate the degree of missing boundaries,
while the inter-region measure that evaluates the heterogen-
eity between adjacent regions could be used to estimate the
degree of fake boundaries. Hence, in this article, we focus on
the discussion of intra-region measure and inter-region
measure.

3.2.1 Intra-region visual error: To evaluate the degree
of missing boundaries, a measure, named ‘intra-region
visual error’, is designed. In each segmented region, these
pixels with visible colour difference away from the
average colour of that region are regarded as pixels with
visible colour errors. Intuitively, a properly segmented
region should contain as few visible colour errors as poss-
ible. Any missing boundary will cause the increase of
intra-region visual errors, Given an N x M colour image

f(x, y), we first denote f(x, y) as the segmented colour

image, with the colour of each segmented region being
filled with the average colour of that region. We then
define the intra-region error as
—th)
L*a*b*

S o (| e Fey)
©)

N xM
where ||-||L*a*p* denotes the colour difference in the CIE
L*a*b* space, th denotes the threshold for visible colour

difference and u(-) denotes the step function that is
defined as

Eintra (1 ) =

(1) = I, t>0
o= 0, otherwise

In this article, we choose the threshold #: to be 6, as
explained in Section 3.1.

In (6), given a segmented result, we tend to calculate
the total amount of the pixels with visible colour errors
to estimate the degree of missing boundaries. Actually,
when a segmented region contains more missing bound-
aries, the average colour of that region will have a
larger colour difference from the original colours of
those pixels. Once the colour difference is too large to
be visible, the number of the pixels will be counted in
(6). Hence, as the degree of missing boundaries increases,
there will be more amounts of pixels with visible colour
errors counted in (6).

In Table 4, for each of the six colour images, we confirm
that the correlation between the intra-region visual error and
the degree of missing boundaries is significant at the 0.01
level, and the sign of the correlation is positive. This
implies that, given a segmentation result, the intra-region
visual error could be an effective way to estimate the
perceived degree of missing boundaries.

™)

3.2.2 Inter-region visual error: On the other hand, the
second measure, named ‘inter-region visual error’, is
designed to evaluate the degree of fake boundaries. Given
a colour segmentation result, we take into account these
boundary pixels with invisible colour difference across the
boundary. Intuitively, these pixels are not supposed to be
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Table 4: Missing-boundary against intra-region visual error

Correlation Colour image
Fruit Lena House Tower Room Table tennis

Missing-boundary against intra-error 0.978? 0.980° 0.901? 0.980° 0.866° 0.918?°
@Correlation is significant at the 0.01 level (two-tailed) [21]
Table 5: Fake-boundary against inter-region visual error
Correlation Colour Image

Fruit Lena House Tower Room Table tennis
Fake-boundary against inter-error 0.961° 0.964° 0.988° 0.991° 0.982° 0.853°

@Correlation is significant at the 0.01 level (two-tailed) [21]

detected as boundaries. Hence, as more fake boundaries
appear in the segmented image, more inter-region visual
errors are expected. In this article, we define the inter-region
visual error of a segmented image as

cav)

P Zf# wy; X u(th - “f, —f

Eimcr(l) = ha
where R denotes the number of segmented regions, and w;;
denotes the joined length between Region i and Region j.
Here, wy; is equal to zero if Region i and Region j are not
connected.

Similarly, in (8), given a segmented result, we tend to cal-
culate the total amounts of the boundary pixels with invis-
ible colour errors to measure the degree of fake
boundaries. Actually, when two adjacent regions contain
an invisible boundary, the colour difference between the
average colours of the adjacent regions will be small.
Therefore once the average colour difference between any
two adjacent regions is too small to be visible, the joined
boundary pixels will be counted. Hence, if the degree of
fake boundaries increases, more boundary pixels with invis-
ible colour errors will be counted in (8).

In Table 5, for each of the six colour images, we confirm
the correlation between the inter-region visual error and the
degree of fake boundaries, obtained in the visual rating
experiments, is also significant at the 0.01 level and the
sign of the correlation is positive. This implies that the inter-
region visual error could be an effective measure for the per-
ceived degree of fake boundaries.

N xM ®)

3.2.3 Intra-region visual error against inter-region
visual error plot: With these two newly designed
measures, we can estimate the degrees of missing bound-
aries and fake boundaries. Even though each of these two
measures is still image dependent, the alliance of both
measures may provide an effective way for segmentation

3.2.4 Ratio of intra-region visual error to inter-
region visual error: As shown in Figs. Sa—f, the preferred
segmented results are usually located at the lower-left
corner in the plot of the quality segmentation against the
sum of the degree of missing boundaries and the degree
of fake boundaries. As the defined intra-region visual
error is proportional to the degree of missing boundaries,
and the inter-region visual error is proportional to the
degree of missing boundaries, a preferred segmentation
result is expected to locate at the lower-left corner of the
inter-region error/intra-region error plot, as shown in
Fig. 6. Analogous to the phenomenon that perceived seg-
mentation quality is closely correlated with the sum of the
degree of missing boundaries and the degree of fake bound-
aries, we assume the visual quality of a segmentation result
can be evaluated based on a linear combination of
intra-region visual error and inter-region visual error. That
is, for /;, the jth segmentation result of the ith image, we
define its total visual error E; as

Ej = ajl:Eintra([j?) + B}Einter([ji) (9)

The total visual error £/ may also be normalised with
respect to «; and we have

Ejl = Eintra([}) + AjEinter(Iji) (10)

In (10), the coefficient /\j’ is to balance the contributions of
visual error from Eipy,(Z;) and Epe,(Z}). For different image
contents and different segmentation algorithms, Ajs are
expected to be different. Based on the results of the visual
experiments made in Section 2.2, we may perform linear
fitting over perceived segmentation quality, measured
intra-region errors and measured inter-region error to esti-
mate the value of A. Table 6 shows the estimated values
of A for these six colour images. In general, as the value
of A increases, the preferred segmented results are the

.
evaluation. | Degree of

In Fig. 6, we show the plot of intra-region visual error g | 1Fake Boundaries
against inter-region visual error. As the given image is =G o
under-segmented, more boundaries are missing and the al .,.°’-$"'
intra-region visual error increases. On the contrary, as the RGN ,-;0?
image is over-segmented, more fake boundaries appear ks S i
and the inter-region error increases. These two measures T 8 A e
are complementary to each other. With these two measures, & | EES S-marscoesrs .
the segmentation could be evaluated in quite a reasonable Intra-Region Vissl Brror

way. These two measures are also closely related in phys-
ical meaning. This makes the trade-off between these two
measures much easier.
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Fig. 6 The intra-region visual error against inter-region visual
error plot
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Table 6: Values of A

Colour image

Fruit Lena House Tower Room Table tennis
Ai 0.586 1.36 9.05 7.70 3.18 5.34
Segmentation algorithm edge flow edge flow JSEG JSEG mean shift mean shift

results with more intra-region visual errors; while as the
value of A decreases, the preferred segmented results are
the results with more inter-region visual errors. We can
easily see that for different images and different algorithms
the values of A are quite different. However, for each seg-
mentation algorithm, the values of A are roughly of the
same order of magnitude.

To further investigate the impact of coefficient A over the
performance of the proposed evaluation scheme, we discuss
the correlation of the averaged segmentation quality and the
total visual error with respect to different As. As shown in
Fig. 7, the nine triangles denote the minus values of the
correlation coefficients for the segmented results of ‘Fruit’
with A =1,2, ..., 9, respectively. Similarly, the asterisks,
pentagrams, squares, circles and plus-signs denote the
minus correlation coefficients for the segmented results of
‘Lena’, ‘House’, ‘Tower’, ‘Room’ and ‘Table tennis’. It
can be seen that the As in Table 6 correspond to the A that
causes the maximum correlation. For example, for the
case of the ‘Room’ image, the minus value of the corre-
lation coefficient reaches its local maximum around
A =3. On the other hand, for most images, the value of
the correlation coefficient remains large even if A is
changed. The averaged values of the minus correlation
coefficients are represented in the black solid line. It can
be seen that, with A ranging from 2 to 7, the correlation
of the averaged segmentation quality and the total visual
error remains significant at the 0.05 level. Hence, in this

article, we use the averaged value of As in Table 6, as cal-
culated in (11), to be a typical choice of A

6
DN =454
i=1

Of course, this typical choice of A is only a rough estimate
and may not work for all types of images. How to automati-
cally choose an appropriate value of A for a given image
deserves further investigation in the future.

A= (11)

N =

4 Evaluation of segmentation with the
inter-region error/intra-region error plot

In this section, the use of the inter-region error/intra-region
error plot in the evaluation of colour segmentation is intro-
duced. Also, the automatic selection of parameter settings
for a given segmentation algorithm is described.

Fig. 8a shows the ‘Fruit’ image. Figs. 8b—f show several
segmentation results of Fig. 8a produced by the edge-flow
algorithm [14], with different parameter settings.
Subjectively, Fig. 8¢ is preferable. In comparison with
Fig. 8¢, Fig. 8b has a higher degree of fake boundaries,
while Figs. 8d—f have higher degrees of missing bound-
aries. As shown from left to right in Fig. 8s, the five blue
circles represent the ‘intra-region visual error’ against
‘inter-region visual error’ pairs of Figs. 85—f, respectively.

a--:.:.,=g.: ..... Ry é'“:_ —-—L_ﬁ_ ! B _.L,.F IS SR E

L -~ e 5 Tomeaa :EE =iz--B-—-—.g . o
” ~2 ~imiZ s ~-@
- i = g /*,."' -3 i
= pagh b g =
Q 0.8er- '6’/,/ ’.-\I‘—u—-;._-':-/' e - T =
e} - -t 5 LA - ""l---.._ il - ~ R
= /4n" - - i .-.-'-'--‘-““ i — -4
QQ L o T »
[e] 065”. e * LY B, Ty, |
O ; ” -~ y - "\ T
c 1z % -~ . B : T
9 K -~ \* ~
E o * - 1 Y 4

04k ’ 4 4 —
O I \
O ¥ \
] 02k Y -
3 R
o | " ~
© ~
= 4l —&- Minus Correlation Goeff. for *Fruit* e 8
g —+- Minus Correlation Coeff. for "Lena" -~
c —%— Minus Correlation Coeff. for "House" g
= -B- Minus Correlation Coeff. for "Tower" i
@© 02H —e- Minus Correlation Coeff. for ‘Room* e
IE —+- Minus Correlation Coeff. for “Table Tennis" &
= =1 Ayeraged Minus Correlation Coeff.
== Correlation Is Significant at The 0.05 Level (Two-Tailed) [21]
0.4 I I I I I 1 1
1 2 3 4 -} 6 7 8 g

A's

Fig. 7 Correlation plot of averaged segmentation quality and total visual error with respect to different As
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Fig. 8 Evaluation of segmentation results

a Fruit image

b—f Segmented results of a by using the edge-flow algorithm [14]
g Tower image

h—1 Segmented results of g by using the JSEG algorithm [16]

m Room image

n—r Segmented results of m by using the mean-shift algorithm [18]

s Inter-region error against intra-region error plot of b—f, h—I and n—r
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Fig.9 Evaluation of segmented results

a Lena image

b—f Segmented results of a by using the edge-flow algorithm [14]

g House image

h—1 Segmented results of g by using the JSEG algorithm [16]

m Table tennis image

n—r Segmented results of m by using the mean-shift algorithm [18]
s Intra-region error against inter-region error plot of b—f, h—I and n—r
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Table 7: Evaluation comparison for the ‘Fruit’ image

Evaluation Segmented result

Fig. 8b Fig. 8¢ Fig. 8d Fig. 8e Fig. 8f
Averaged visual quality 0.488 (3) 1.100 (1) 0.806 (2) —0.225 (4) —0.469 (5)
Eintra(l) + Binter(/)x=4.54 0.600 (4) 0.528 (1) 0.542 (2) 0.572 (3) 0.625 (5)
i 0.753 (5) 0.730 (4) 0.440 (3) 0.379 (2) 0.285 (1)
F( 0.075 (5) 0.073 (4) 0.044 (3) 0.038 (2) 0.029 (1)
a(l) 0.201 (5) 0.183 (4) 0.154 (3) 0.143 (2) 0.128 (1)

It can be seen that, with similar intra-region errors, Fig. 8
has larger inter-region error values than those of Fig. 8c. On

the other hand, with similar inter-region errors, Figs. 8d—f

have larger intra-region error values than those of Fig. 8c.
Hence, in the selection of parameter setting, the sum of
Eintra(Z) and Eiyer(1)| \=4.54 may serve as a suitable criterion
for the evaluation of segmentation performance. As the sum
reaches a smaller value, the parameter setting is expected to
achieve better segmentation. In Fig. 8s, we use the quality
straight line, E; ;a({) 4+ Einter({)|x=4.54 to illustrate this
idea. Here we use grey straight quality lines to denote the
lines Ejnya(Z) 4 Einter(I)|x=4.54 = constant. It can be easily
seen that Fig. 8c does have the smallest sum if compared
with the other four.

In Figs. 8¢ and m, we show another two examples of
colour images. Figs. 84—/ show the segmentation results
of Fig. 8g produced by the JSEG algorithm [16], while
Figs. 8n—r show the segmentation results of Fig. 8m pro-
duced by the mean-shift algorithm [18], all with different
parameter settings. Similarly, in Fig. 8s, from left to right,
the ‘intra-region error’ against ‘inter-region error’ pairs of
Figs. 8h—I are represented by triangles; while the error
pairs of Figs. 8n—r are represented by crosses. It can be
easily seen that Fig. 8 has the smallest error sum if com-
pared with Figs. 84—/; while Fig. 8p has the smallest error
sum if compared with Figs. 8n—r. In perception, the
segmented results in Figs. 8 and p do appear to be the
most preferable results among these candidates.

Similarly, in Figs. 9a, g and m, we show the other three of
colour images. Figs. 90—f show the segmentation results of
Fig. 9a produced by the edge-flow algorithm [14], while
Figs. 9h—1 show the segmentation results of Fig. 9g pro-
duced by the JSEG algorithm [16] and Figs. 9n—r show
the segmentation results of Fig. 9m produced by the mean-
shift algorithm [18], all with different parameter settings.
Similarly, in Fig. 9s, from left to right, the ‘intra-region
error’ against ‘inter-region error’ pairs of Figs. 95—f are rep-
resented by circles, while the error pairs of Figs. 94—/ are
represented by triangles and the error pairs of Figs. 9n—r
are represented by crosses. It can be easily seen that
Fig. 9d has the smallest error sum if compared with

Figs. 9b—f, Fig. 9/ has the smallest error sum if compared
with Figs. 94—/ and Fig. 9p has the smallest error sum if
compared with Figs. 9n—r. In perception, the segmented
results in Figs. 9d, j and p do appear to be the most prefer-
able results among these candidates.

In summary, we use these three simulation results to
demonstrate how the inter-region error/intra-region error
plot can be used to automatically select the parameter
setting based on the performance of segmentation results.
In fact, E; ya(/) and E;(/) can be combined in various
forms based on user’s requirements. So far, we found that
the simple form E;, (/) 4 Einer({) performs pretty well
when applied to various types of colour images.

In Table 7, we compare the proposed evaluation measure,
Einwa(d) + Einter()|a=4.54, With three existing evaluation
measures in the literature. These three measures are the
F(I) measure [10], the F'(I) measure [11] and the Q(I)
measure [11]. In Table 7, the five segmentation results
shown in Figs. 85—f are used as the test inputs for the com-
parison. Here, the ‘averaged visual quality’ denotes the sub-
jective evaluation results based on the visual experiment
mentioned in Section 2.2, with a larger number indicating
a better rating of perceived quality. The other four rows
indicate the evaluation scores based on the proposed
measure, E;,a(/) 4 Einter({)|x=4.54, the F(I) measure the
F'(I) measure, and the Q(/) measure, respectively. For
these four evaluation measures, a smaller number indicates
a better rating of the measurement. Moreover, the numbers
in parentheses indicates the ranking of these five test inputs
based on the applied evaluation measure. According to the
subjective visual experiment results, Fig. 8c is ranked as
the best segmentation results among Figs. 85—f. As shown
in Table 7, the proposed evaluation measure does pick
Fig. 8c as the best segmentation with the smallest visual
errors, while all the other three evaluation measures pick
Fig. 8f as the best segmentation result. Similarly, in
Tables 8—12, we show the comparisons over the other
five colour images. All these tables illustrate that the pro-
posed evaluation measure E;yo(1) + Einer({) does provide
a reasonable and reliable way for the evaluation of colour
segmentation.

Table 8: Evaluation comparison for the ‘Tower’ image

Evaluation Segmented result

Fig. 8h Fig. 8i Fig. 8j Fig. 8k Fig. 8/
Averaged visual quality —0.469 (4) —0.181 (3) 0.569 (1) 0.556 (2) —0.625 (5)
Eintral!) + Einter{/)|A=2.54 0.702 (4) 0.677 (2) 0.576 (1) 0.681 (3) 0.893 (5)
i 1.090 (5) 0.987 (4) 0.194 (3) 0.091 (1) 0.184 (2)
F(n 0.109 (5) 0.099 (4) 0.019 (3) 0.009 (1) 0.018 (2)
a(l) 0.354 (5) 0.330 (4) 0.153 (2) 0.092 (1) 0.180 (3)
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Table 9: Evaluation comparison for the ‘Room’ image

Evaluation Segmented result

Fig. 8n Fig. 8o Fig. 8p Fig. 8g Fig. 8r
Averaged visual quality —0.963 (4) 0.100 (3) 1.869 (1) 1.306 (2) —1.988 (5)
Eintral/) + Einter(/)|a=a.54 0.950 (4) 0.479 (3) 0.205 (1) 0.262 (2) 0.959 (5)
F) 1.021 (5) 0.540 (4) 0.389 (2) 0.392 (3) 0.076 (1)
F(n 0.102 (5) 0.054 (4) 0.039 (2) 0.039 (2) 0.008 (1)
aln 0.155 (5) 0.094 (2) 0.085 (1) 0.107 (3) 0.135 (4)
Table 10: Evaluation comparison for the ‘Lena’ image
Evaluation Segmented result

Fig. 9b Fig. 9¢ Fig. 9d Fig. 9e Fig. 9f
Averaged visual quality 0.219 (3) 0.231(2) 0.765 (1) —0.999 (4) —1.363 (5)
Eintral/) + Einter{)x=a.54 0.733 (5) 0.606 (3) 0.525 (1) 0.602 (2) 0.673 (4)
F) 0.902 (5) 0.769 (4) 0.614 (3) 0.224 (2) 0.173 (1)
F'(n 0.090 (5) 0.077 (4) 0.061 (3) 0.022 (2) 0.017 (1)
aln 0.175 (5) 0.173 (4) 0.149 (3) 0.127 (2) 0.113 (1)
Table 11: Evaluation comparison for the ‘House’ image
Evaluation Segmented result

Fig. 9h Fig. 9i Fig. 9j Fig. 9k Fig. 9/
Averaged visual quality —1.363 (5) 1.050 (2) 1.469 (1) 0.725 (4) 0.769 (3)
Eintra(!) + Einter()x=4.54 0.502 (5) 0.303 (2) 0.286 (1) 0.303 (2) 0.333 (4)
F) 0.473 (5) 0.194 (4) 0.125 (3) 0.100 (1) 0.116 (2)
F'(n 0.047 (5) 0.019 (4) 0.013 (3) 0.001 (1) 0.012 (2)
aln 0.148 (5) 0.072 (4) 0.059 (2) 0.050 (1) 0.064 (3)
Table 12: Evaluation comparison for the ‘Table tennis’ image
Evaluation Segmented result

Fig. 9n Fig. 90 Fig. 9p Fig. 9gq Fig. 9r
Averaged visual quality —-1.713 (5) 0.794 (3) 1.306 (1) 0.831 (2) —0.894 (4)
Eintral/) + Einter()a=a.54 0.977 (5) 0.595 (2) 0.560 (1) 0.598 (3) 0.897 (4)
F(I) 6.320 (5) 2.195 (4) 1.738 (3) 0.704 (2) 0.218 (1)
F (N 0.632 (5) 0.220 (4) 0.174 (3) 0.070 (2) 0.022 (1)
aln 1.124 (5) 0.576 (4) 0.462 (3) 0.268 (2) 0.184 (1)

5 Conclusions

In this article, we describe a new evaluation scheme based
on the visible colour difference for colour segmentation.
To avoid directly evaluating the subjective quality of
colour segmentation, we estimate the degrees of missing
boundaries and fake boundaries first. With the combination
of these two quantities, we could approach the subjective
evaluation of colour segmentation. Also, based the defi-
nition of visible colour difference, we design two measures,
the intra-region visual error and inter-region visual error, to
estimate the degrees of missing boundaries and fake bound-
aries, respectively. We found these measures, based on
these two types of visible colour differences, have signifi-
cant correlation with the degree of missing boundaries
and the degree of fake boundaries. With these two
measures, an evaluation scheme is proposed to evaluate
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the segmentation results and help the automatic selection
of the parameters for a given segmentation algorithm. The
simulation results have demonstrated the potential of this
approach in providing reliable and efficient evaluations
over colour segmentation. Moreover, given that the
measures of segmentation quality presented here are
designed to fit for subjective evaluations of segmentation
quality, these measures are particularly applicable to tasks
such as content-based image retrieval.
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