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Abstract: A switching adaptive predictor (SWAP) with automatic fuzzy context modelling is
proposed for lossless image coding. Depending on the context of the coding pixel, the SWAP
encoder switches between two predictors: the adaptive neural predictor (ANP) and the texture
context matching (TCM) predictor. The ANP is known to perform well and gives small prediction
errors except for pixels around edges. For areas with edges, TCM is used. To decide which is to be
used, a switching criterion is proposed to pick out pixels around edges effectively. With the switch-
ing predictor structure, small prediction errors can be achieved in both slowly varying areas and
edges. Furthermore, the use of the so-called fuzzy context clustering for prediction error refinement
is proposed. The proposed compensation mechanism is proved to be very useful through experi-
ments. It further improves the bit rates by, on average, 0.2 bpp in test images. The experiments
also show that an average improvement of 0.3 and 0.05 bpp in first-order entropy can be achieved
when the proposed switching predictor is compared with the gradient adjusted predictor and a
six-order edge directed predictor, respectively. Moreover, the lossless image coder built upon
the proposed algorithm also provides lower bit rates than the state-of-the-art context-based,
adaptive, lossless image coding (CALIC) system and is comparable to that obtained by the
highly complex two-pass coder called TMW.
1 Introduction

There have been great advances in lossless image coding
recently [1–33]. Some of them are based on the reversible
wavelet transformation using lifting structure [6–10]. By
using integer wavelet transformation, lossless to near-loss-
less compression, as well as progressive reconstruction of
image data, can be achieved [6–10]. However, the com-
pression results obtained with the use of integer wavelet
transformation are typically inferior to those obtained by
predictively encoded techniques [11]. Therefore an
approach that achieves progressive transmission of lossless
and near-lossless coding of image data using predictive
coding in a single framework has been proposed [11]. The
results presented by Avcibas et al. [11] are the equal of
those obtained by state-of-the-art compression schemes.
Most of the impressive results are obtained based on pre-

dictive coding (as shown in Fig. 1) with context modelling
[11–33]. To accommodate varying statistics of coding
images, adaptive predictors are often used [12–32]. In
[12–20], adaptive prediction is achieved by using multi-
predictor structures. The context-based, adaptive, lossless
image coding (CALIC) system [16], a state-of-the-art loss-
less predictor proposed for JPEG-LS, applies a gradient
adjusted predictor (GAP). On the basis of the gradient of
neighbouring pixels, one out of a set of seven predictors is
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chosen. The LOCO-I coder [17, 18], an algorithm motivated
by CALIC [16], uses a median edge detector (MED) to
choose one of the three predictors for current prediction.
The LOCO-I system has been standardised into JPEG-LS.
In adaptive linear prediction and classification (ALPC)
[19], predictor coefficients are adapted in the coding
process by applying the gradient descent rule. By Yu [20],
the prediction value of the coding pixel is the weighted
sum of the outputs of five predictors. Recently, the least
squares (LS) optimisation has been noted as an efficient
approach for the adaption of predictor coefficients [21–
26]. However, a pixel-by-pixel adaptation of predictor coef-
ficients is regarded as prohibitive. Therefore some of the
results have been proposed for the reduction of compu-
tational complexity during the prediction process [22, 23].

Multiple-pass prediction is introduced by Wu [27] and
Meyer and Tischer [28]. With multiple passes, the
encoder can form a 3608 prediction [27] or perform a
global image analysis [28]. A highly complex two-pass
coder called TMW has been proposed by Meyer and
Tischer [28]. Using multiple linear predictors and global
image analysis, the TMW system can achieve lower bit
rates than the existing coders for most images. Slyz and
Neuhoff [33] proposed the idea of estimating coding pixel
on the basis of context matching. For each coding pixel, a
causal area of dimensions 30 � 30 is used for context
matching. From this area, 11 pixels are chosen and averaged
to form an estimate of the coding pixel. The histogram of
the prediction errors corresponding to the 11 candidates is
calculated. By computing the variance of the 11 prediction
errors, one out of a set of 37 Laplacian distributions is
chosen. The prediction error of the coding pixel is then
coded using a conditional arithmetic coder corresponding
to the chosen Laplacian model. Wu and Memon [16]
demonstrated that prediction error can be further refined
through error compensation. The compensated error has a
IEE Proc.-Vis. Image Signal Process., Vol. 153, No. 5, October 2006



Fig. 1 Structure of lossless predictive codec
narrower histogram and hence a lower first-order entropy.
In CALIC [16], 576 compound contexts are used for error
modelling.
In the context of optimal predictors, the minimum mean

square error estimate of Y given observations X1, X2, . . . , Xn

is EfYjX1, X2, . . . , Xng, and is generally a non-linear func-
tion. There have been many results using neural networks
as non-linear estimators [29–32]. Dony and Haykin [29]
proposed neural approaches to predictive image com-
pression. Neural predictors based on multi-layered percep-
trons are used by Manikopoulos [30], Li [31] and Marusic
and Deng [32]. A functional-link neural network predictor
is proposed for low-complexity coding by Manikopoulos
[30]. Li [31] and Marusic and Deng [32] proposed updating
the network weights using the prediction errors of coded
pixels to make the predictor adaptive. Non-linear predictors
using neural networks, though performing well in slowly
varying areas [34], can have large prediction errors
around edges [32, 35]. The result can be improved by
using additional hidden layers or hidden neurons but this
can incur a drastic increase in complexity [36].
In this paper, we propose a prediction scheme for lossless

image coding, called the switching adaptive predictor
(SWAP), composed of four components as shown in
Fig. 2. The proposed SWAP coder switches between two
predictors: the adaptive neural predictor (ANP) and the
texture context matching (TCM) predictor. The ANP is an
adaptive three-layered back propagation network that is
updated on-the-fly using causal pixels as training patterns.
It is known to perform well and gives small prediction
errors except for pixels around edges, for which TCM is
used instead. When TCM is used, pixels in a predefined
causal area having textures similar to that of the coding
pixel are averaged for the current prediction. We will see
that the TCM provides a good complement to ANP. Very
good predictions can be obtained for pixels around edges
where conventional predictors tend to have large prediction
errors. To determine whether the coding pixel is around an
edge, we also propose a predictor switch (Fig. 2) that uses
IEE Proc.-Vis. Image Signal Process., Vol. 153, No. 5, October 2006
only causal pixels. With the proposed edge detector, the
encoder switches automatically between ANP and TCM.
The proposed predictor switch, though very simple, can
pick out the edges successfully in the experiments.

It is known that the prediction can be further refined
through error compensation. For this, automatic error
modelling is achieved in SWAP using the proposed
fuzzy context clustering, which is a modified version of
the unsupervised fuzzy competitive learning (UFCL)
algorithm proposed by Looney [37]. It does not require
training data to be available all at once and it can be used
for sequential encoding. Furthermore, the number of clus-
ters may vary according to the input image. The output xp
from ANP or TCM is adjusted by the addition of ep, the
compensation that is determined through the proposed
fuzzy context clustering, to obtain a refined prediction
xcpd ¼ xpþ ep. The compensated error signal 1 ¼ x2 xcpd
can then be entropy-encoded using conditional arithmetic
coding [38].

1.1 Novelty of the SWAP system

We propose a novel switching mechanism that switches
between two predictors: ANP and TCM. The ANP,
thoroughly studied in the literature, is known to provide
good prediction of pixels in slowly varying areas. For
pixels around edges, where the prediction error of ANP
tends to be large, the TCM predictor is switched on.
Examples are given to demonstrate that TCM predictor
renders a good complement to ANP. A simple, yet effective,
switching algorithm using only causal pixels is proposed to
detect edges so that the decoder knows exactly which pre-
dictor is used for each pixel. For error refinement, automatic
error modelling is achieved in SWAP using the proposed
fuzzy context modelling which leads to a modelling of
errors that adapts itself to the input statistics. The combi-
nation of a switching structure and an automatic error mod-
elling renders the proposed SWAP coder highly adaptable
and very low bit rates can be achieved.
Fig. 2 Proposed SWAP system
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2 Predictor switch

This section introduces the switching criterions of the pro-
posed SWAP system. The TCM predictor is used in
regions with edges whereas ANP is used in all other
cases. To determine whether the coding pixel is around an
edge, we propose a very simple algorithm that uses only
causal pixels, that is, pixels already coded earlier. As
much of the systems encode pixels in a raster scan order,
it should be noted that conventional edge detectors, for
example ‘Sobel’ operator, cannot be applied here because
they use non-causal pixels.
We observe that the variance of an area that contains an

edge is usually large. Furthermore, the histogram of such
an area tends to have two peaks, one on each side of the
mean value. We will use these two observations to deter-
mine whether ANP or TCM should be used. We define
the texture context k of a coding pixel as the collection of
the ten causal pixels x1, x2, . . . , x10 (Fig. 3)

k ¼ fx1; x2; . . . ; x10g ð1Þ

The mean �x and variance s2 of the texture context are cal-
culated and the ten pixels can be divided into two groups,
the pixels with grey levels higher than �x in one group, kh,
and the rest in another, kl. We also compute the variance
(sh

2, sl
2) of those pixels in kh and kl, respectively.

A histogram with edges is likely to have a large s2 but
small sh

2 and sl
2. We determine whether the coding pixel is

around an edge if the following two conditions are satisfied

s 2 � g1 and
s 2

0:01þ s 2
h þ s 2

l

� g2 ð2Þ

where 0.01 is added so that the denominator of (2) does not
become 0 when sh

2 and sl
2 are both zero. The case for sh

2

and sl
2 are both zero can occur in an artificial image or

when both the members in kl and kh have identical grey
values. It is noted that the second condition in (2) is included
because a region with uniformly distributed grey values also
results in a large s2. Therefore the switch first examines if
s2

� g1 when a large s2 is detected; then the switch checks
the second inequality in (2). The TCMpredictor is usedwhen-
ever the two conditions in (2) are satisfied; otherwise the ANP
is used. We have found through experiments that g1 ¼ 100
and g2 ¼ 10 work very well and these values will be used
throughout the paper. Moreover, the above switching algor-
ithm is summarised in the following pseudo code.

Pseudo code for the predictor switch
Calculate the mean �x and the variance s

2 of the ten pixels in
texture context k;
if s2

� g1
f

for (i = 1; i , 11; i++)
f

if (xi . x̄)
xi is added to group kh;

else
xi is added to group kl;

g

Calculate the variance sh
2 and sl

2 of kh and kl;
if s2/(0.01þ sh

2
þ s2

l ) � g2
use TCMpredictor; /� the case that an edge exists �/

else
use ANP;

g

else
use ANP;
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3 Adaptive neural predictor

The ANP is based on a three-layered back propagation
neural network as shown in Fig. 4. There are ten neurons
in the input layer, five neurons in the hidden layer and
one neuron in the output layer. The output is the prediction
value of the coding pixel. The number of hidden neurons is
chosen empirically. We have found five to be a proper
choice. Our experiments show that, increasing the number
of hidden neurons leads to only marginal improvement in
entropy or bit rate, but will increase complexity dramati-
cally. We use the ten causal pixels x1, x2, . . . , x10 (Fig. 3)
in texture context (1) as the predictor inputs. The 36
causal neighbours shown in Fig. 5 are used for training.
The ANP adapts itself to the varying statistics by learning
from prediction errors of the training patterns. The
gradient descent method is used to update network
weights continuously on-the-fly.

The neurons in ANP are made up of perceptrons of the
same structure. The integration function f (.) is given by

f ¼
XN
j¼1

wjyj ð3Þ

where N is the number of prediction inputs, yj is the input to
the neuron and wj is the weight corresponding to input yj.
We use the unipolar sigmoid function a(.) as the activation
function

Y ¼ að f Þ ¼
1

1þ e�f
ð4Þ

Fig. 3 Ten pixels in the texture context of the coding pixel

Fig. 4 Adaptive nonlinear predictor
IEE Proc.-Vis. Image Signal Process., Vol. 153, No. 5, October 2006



where f is as given in (3). The output of the unipolar sigmoid
function is bounded between 0 and 1. Suppose the input
image has 8 bpp. The pixel values range between 0 and
255. We normalise the pixel values by 255 and use the nor-
malised values as the inputs of the neural network. The
output of the network is scaled by 255 and then rounded
to the nearest integer.

3.1 Weight training

The connection weights wj of the network are updated using
the gradient descent method. The dotted lines shown in
Fig. 4 mean that the error signal do of the output layer is
backward propagated to the hidden and input layers for
updating current weights. As we are using the unipolar
sigmoid function as the activation function and we have
only one neuron in the output layer, the error signal do of
the output layer [36] is

do ¼ xpð1� xpÞðx� xpÞ ð5Þ

where x in (5) is the desired output, and xp is the actual
output of the network. On the other hand, the error signal
dhj of the jth neuron in the hidden layer [36] is

dhj ¼ Hjð1� HjÞw
yh
j do; j ¼ 1; . . . ; 5 ð6Þ

where Hj denotes the output of the jth neuron in the hidden
layer and wj

yh is the weight connecting the jth neuron in the
hidden layer to the output neuron. The weight connecting
the jth neuron in the hidden layer to the output neuron is
updated according to Lin and Lee [36]

w
yh
j ¼ w

yh
j þ Dw

yh
j ; j ¼ 1; . . . ; 5 ð7Þ

The weight increment Dwj
yh is calculated according to Lin

and Lee [36]

Dw
yh
j ¼ hdoHj þ aDw

yh
j ; j ¼ 1; . . . ; 5 ð8Þ

where h is the learning rate, and a is a momentum term to
accelerate convergence speed [36]. The weight connecting
the ith input neuron to the jth hidden neuron is calculated
as follows [36]

whx
ji ¼ whx

ji þ Dwhx
ji ; with Dwhx

ji ¼ hdhjxi þ aDwhx
ji ;

j ¼ 1; . . . ; 5 and i ¼ 1; . . . ; 10 ð9Þ

where xi in (9) is the input to the ith neuron in the input layer
as indicated in Fig. 4.
For simplicity and to capture the local statistics, the 36

causal pixels in Fig. 5 are chosen empirically as the
online training patterns. A larger training area can also be
used for training to achieve better prediction, but with

Fig. 5 Online training regions for ANP
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higher complexity. We found through experiments that a
training area of 36 pixels gives a good trade-off between
prediction and complexity. The online updating process is
performed by iterative learning on the 36 training pixels.
Most of the online updating processes converge within the
first few cycles [32]. Therefore we set the learning rate h
as 0.9 and the momentum term a as 0 for the first three
training cycles to avoid being trapped in the local
minima, and 0.1 and 0.9, respectively after that to avoid
the oscillation problem [32, 36]. The learning process will
stop automatically whenever a mean square error tolerance
of 0.00005 or a maximum training cycle of 20 is reached
[36]. Updated weights are used for current prediction and
passed on to the next coding pixel as initial weights.

4 Texture context matching

The ANP can achieve a very good prediction except in areas
containing edges. However, for areas containing edges, con-
vergence of the network weights is slow and the prediction
error is large. For such areas, the encoder switches to TCM
and estimates the coding pixel using pixels with similar
contexts. To reduce the complexity of texture matching,
we will use a shortened texture context.

4.1 Shortened texture context

The four pixels marked bym1, m2,m3,m4 as shown in Fig. 6
constitute the shortened texture context for TCM. They are
the same pixels x1, x2, x3, x4 in Section 3 but are renamed as
m1, . . . , m4 for the convenience of explanation. As similar
contexts are most likely to appear in the vicinity of the
coding pixel, there is no need to perform an exhaustive
search or near-global search in the causal area. The pixels
to be used for context matching are the same 36 pixels
used for the online training area of ANP for convenience
(Fig. 6).

We first calculate the normalised shortened texture
context

m1

lm
;
m2

lm
;
m3

lm
;
m4

lm

� �
ð10Þ

where lm is the length or root mean square (rms) value of the
4-dimensional shortened texture context, given as

lm ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4

X4
i¼1

m2
i

vuut ð11Þ

For each of the 36 pixels in the context matching
area, we compute its normalised shortened texture context
as in (10). We calculate the Euclidean distance dmm 0

Fig. 6 Area for texture context matching
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between the normalised shortened texture context of the
current pixel and that of each of the 36 pixels to be
matched. The Euclidean distance dmm 0 between the two
normalised shortened texture context is

dmm0 ¼
X4
i¼1

mi

lm
�

m0
i

lm0

� �2

ð12Þ

We find the two pixels with the two shortest Euclidean
distances. Suppose the values of these two pixels are y1
and y2, where yi has been normalised by the length of
its shortened texture context. The coding pixel value x is
estimated as

xp ¼ lm
y1 þ y2

2

� �
ð13Þ

For coding pixels on the boundaries of the image, the
matching areas are smaller. Only one pixel in the matching
area is chosen for estimating the coding pixel. With the
length-normalisation process, contexts that have different
amplitudes, but are otherwise similar, can be counted
together after the length is normalised and the number of
matches can be increased [33, 39].

5 Error compensation using automatic fuzzy
context modelling

The prediction errors x2 xp in the proposed SWAP system
can be further refined by learning from previous predictions.
Gathering prediction errors of similar contexts and calculat-
ing the sample means of errors in the same group, the
current prediction can be further compensated. In the
SWAP system, adaptive error modelling is achieved by
designing codebooks using the proposed fuzzy context clus-
tering. The context is dynamically generated and modified
in the coding process. Also, the number of contexts is not
fixed and will depend on the statistics of the image to be
encoded.
Let ei be the uncompensated prediction error of xi in

Fig. 3 for i ¼ 1, 2, 3, 4. We define the compound context
vector v(t) of a coding pixel as

vðtÞ ¼ fx1; x2; . . . ; x10; e1; e2; e3; e4g ð14Þ

where xi, i ¼ 1, . . . , 10 are as shown in Fig. 3 and ei, i ¼
1, . . . , 4 are the uncompensated prediction errors corre-
sponding to x1, . . . , x4, respectively. The pixels are
encoded sequentially in raster scan order and the superscript
(t) in v(t) denotes the pixel index. We have incorporated pre-
diction errors in codebook designs, because the amount to
be compensated is likely to be related to the prediction
errors of neighbouring pixels. Furthermore, the compound
context vector v(t) of a coding pixel is likely to be related
to existing clusters with some membership degrees.
Therefore it is dynamically assigned to existing clusters or
to a new cluster. In conventional fuzzy K-means clustering,
the vectors to be classified are available all at once, and the
number of clusters is fixed [36, 40]. Here, the compound
context vectors appear sequentially. Therefore, the UFCL
algorithm [37], which is suitable for sequential input
vector classification, is used for the clustering process
with some modifications. The number of clusters is now a
variable. Furthermore, we will propose a learning rate that
has the desired property of approaching zero when an
optimal classification is achieved [37]. In this case, the
cluster updating formula is in the form of a weighted sum-
mation. We call the modified UFCL algorithm ‘fuzzy
context clustering’ in this paper.
688
5.1 Fuzzy context clustering

Assume we have K clusters or codewords in the codebook
currently. The ith codeword or ith cluster centre will be
denoted by ci

(t). For an incoming compound context
vector v(tþ1) of coding pixel, the distance di

(tþ1)

between v(tþ1) and the existing ith cluster centre ci
(t) is

calculated as

d
ðtþ1Þ
i ¼ vðtþ1Þ � c

ðtÞ
i

��� ���2 for i ¼ 1; 2; . . . ;K ð15Þ

where k.k denotes the L2-norm. If the minimum distance
value dmin ¼ mini¼1, . . . ,K fdi

(tþ1)
g is greater than a prede-

fined threshold b ¼ 15 000, a new cluster is added.
Therefore the number of codewords is increased to Kþ 1,
and the new cluster centre c(Kþ1)

(tþ1) ¼ v(tþ1). If dmin , b,
v(tþ1) is used to update existing clusters based on the
fuzzy context clustering algorithm. The membership
degree Ai

(tþ1) of v(tþ1) to the ith cluster is defined by
Looney [37] and Klir and Yuan [40]

A
ðtþ1Þ
i ¼

XK
j¼1

d
ðtþ1Þ
i

d
ðtþ1Þ
j

" #1=ðm�1Þ
8<
:

9=
;

�1

; for i ¼ 1; 2; . . . ;K

ð16Þ

where the exponential weight m, which controls the degree
of fuzziness, is chosen to be 1.25 [36, 40]. The membership
degree Ai

(tþ1) is inversely proportional to the distance
between v(tþ1) and the existing cluster centres. The fuzzy
clustering algorithm converges to the classical K-means
clustering when m approaches one [36, 40]. We define
Si
(t), the accumulated weight of the ith cluster, as

S
ðtÞ
i ¼

Xt

n¼1

ðAn
i Þ

m; for i ¼ 1; 2; . . . ;K ð17Þ

Note that Si
(t) is very similar to the membership degree

summation of vectors with respect to the same cluster in a
conventional fuzzy partition matrix. Existing cluster
centres are updated by Looney [37]

c
ðtþ1Þ
i ¼ c

ðtÞ
i þ lðtþ1ÞðA

ðtþ1Þ
i Þ

m
ðvðtþ1Þ � c

ðtÞ
i Þ;

for i ¼ 1; 2; . . . ;K ð18Þ

where l(tþ1) is the learning rate, initialised to one. We will
choose

lðtþ1Þ ¼
1

S
ðtÞ
i þ ðA

ðtþ1Þ
i Þ

m
ð19Þ

The resulting learning rate l(tþ1) will become smaller as
coding proceeds and approaches zero when an optimal
classification is reached. Using (19), (18) can be rewritten as

c
ðtþ1Þ
i ¼

S
ðtÞ
i � c

ðtÞ
i þ ðA

ðtþ1Þ
i Þ

m
� vðtþ1Þ

S
ðtÞ
i þ ðA

ðtþ1Þ
i Þ

m
; for i ¼ 1; 2; . . . ;K

ð20Þ

5.2 Error estimate

The value ep to be used in compensating the prediction error
of the coding pixel is given by

ep ¼
XK
i¼1

A
ðtþ1Þ
i � e

ðtÞ
i ð21Þ
IEE Proc.-Vis. Image Signal Process., Vol. 153, No. 5, October 2006



where ei
(t) is the sample mean of prediction errors in the ith

cluster. We update ei
(t) [37] using

e
ðtþ1Þ
i ¼ e

ðtÞ
i þ lðtþ1ÞðA

ðtþ1Þ
i Þ

m
ðxðtþ1Þ � xðtþ1Þ

p � e
ðtÞ
i Þ;

for i ¼ 1; 2; . . . ;K ð22Þ

Similarly, using (19), (22) can be written as

e
ðtþ1Þ
i ¼

S
ðtÞ
i � e

ðtÞ
i þ ðA

ðtþ1Þ
i Þ

m
� ðxðtþ1Þ � xðtþ1Þ

p Þ

S
ðtÞ
i þ ðA

ðtþ1Þ
i Þ

m
;

for i ¼ 1; 2; . . . ;K ð23Þ

We now form a more refined prediction xcpd ¼ xpþ ep,
where xp is the output of predictor ANP or TCM.

6 Experiments

Experimental results of the proposed SWAP coder and
comparisons to existing state-of-the-art linear and non-
linear predictors are given in this section. All the test
images used in the experiments are the same as those in
Li and Orchard [22], Ye et al. [26], Meyer and Tischer
[28] and Manikopoulos [30]. They are widely used as the
test images in lossless compression of still images.
Moreover, they are obtained from the TMW website
http://www.csse.monash.edu.au/~bmeyer/tmw/ [28]. The
parameters used in the predictor switch, ANP and TCM,
are the same in all the experiments. We have found the
set of parameters working well for all types of images.
We first demonstrate the usefulness of the individual
blocks in the SWAP system and then present the bit rate
performance of the SWAP system. The SWAP system has
four primary components. As the ANP is well-known, we
will only address the remaining three: the predictor
switch, the TCM predictor and the error modelling.

6.1 Predictor switch

To demonstrate the effectiveness of the ‘predictor
switch’, we use the image ‘Shapes’ (Fig. 7), which is

Fig. 7 Image ‘Shapes’
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an artificial image with many edges and lines obtained
from Meyer and Tischer [28]. The pixels that satisfy
the two conditions in (2) are marked in Fig. 8. We
can see from Fig. 8 that the predictor switch box has
successfully picked out the pixels around edges. As
another example, we apply the predictor switch to the
image ‘Noisesquare’ (Fig. 9), an image with salt-and-
pepper noise. The pixels for which the TCM are used
are as shown in Fig. 10. We see from Fig. 10 that the
predictor switch is robust to moderate salt-and-pepper
noise.

In addition to artificial images, we also apply the
predictor switch to the natural images, ‘Airplane’
(Fig. 11a) and ‘Lennagrey’ (Fig. 11b). As can be seen in
Figs. 12a and 12b, the pixels around edges in the images
‘Airplane’ and ‘Lennagrey’ have been picked out
successfully.

Fig. 8 Pixels for which TCM is used in the image ‘Shapes’

Fig. 9 Image ‘Noisesquare’
689



6.2 Error modelling

Error compensation relies on effective error modelling. The
effect of error modelling can be demonstrated by observing
the histograms of compensated and uncompensated error.
For the image ‘Lennagrey’, we show in Figs. 13 and 14,
respectively, the compensated prediction error and the cor-
responding histogram. The statistical redundancy is
removed efficiently as can be seen in Figs. 13 and 14. The
usefulness of the proposed automatic fuzzy context model-
ling for error refinement can be best observed in Fig. 14, in
which the histogram of prediction errors with and without
error compensation are shown. In Fig. 14, the first-order
entropy for compensated errors is 3.97 bits and 4.20 bits
for uncompensated errors.

Fig. 10 Pixels for which TCM is used in the image ‘Noisesquare’

a

Fig. 11 Natural images

a Airplane
b Lennagrey
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6.3 TCM predictor

The usefulness of the proposed TCM predictor can be
demonstrated by the following experiment. We use the
image ‘Shapes’ in Fig. 7. The pixels for which TCM is
used as the predictor are shown in Fig. 8. The histogram
of uncompensated prediction errors for those pixels using
TCM is shown in Fig. 15. For comparison, we also show
in Fig. 15 the histogram of uncompensated prediction
error if ANP were used for those pixels instead. The histo-
gram with TCM is much narrower than that with ANP;
TCM has a smaller prediction error than ANP does
around edges. Indeed, the entropies corresponding to the
two histograms in Fig. 15 are, respectively, 2.97 bits
(TCM) and 5.33 bits (ANP).

6.4 Performance of the SWAP system

Table 1 gives comparisons of uncompensated prediction
errors for a set of eight test images in first-order entropies.
The results of an MED [17, 18], a GAP [5, 16] and an
edge directed predictor (EDP) with different orders are
taken from Li and Orchard [22]. As can be seen in
Table 1, the proposed SWAP system can remove the stat-
istical redundancy efficiently. It achieves a noticeable
improvement when compared with MED and GAP. The
SWAP gives lower entropies in five out of the eight test
images when compared with those of EDP [22].

Table 2 gives the actual bit rates by CALIC [16] and
TMW [28] for a set of fourteen test images obtained from
the website of TMW [28]. Results listed in the last two
columns of Table 2 are taken directly from Wu and
Memon [16] and Meyer and Tischer [28]. The compensated
prediction errors are coded using a conditional arithmetic
coder adapted from Witten et al. [38] in the SWAP
system. All the bit rates reported by SWAP are obtained
using the same parameters described in previous sections
and no individual optimisation is performed. Table 2
shows that SWAP achieves lower bit rates than CALIC
[16] in ten out of the fourteen test images. Encouragingly,

b
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SWAP achieves bit rates lower than the highly complex
TMW in three images ‘Airplane’, ‘Balloon’ and
‘Noisesquare’.

6.5 Side information of the proposed SWAP coder

The only side information to be transmitted is the dimen-
sion, that is the height and the width of the image.
Furthermore, the SWAP coder uses only causal pixels for
estimating the coding pixels; no additional side information
needs to be transmitted. It is noted that the proposed SWAP
coder is symmetric, meaning the decoder has the same
predictor switch as the encoder, and perform ANP/TCM

Fig. 12 Pixels for which TCM is used

a Airplane
b Lennagrey

Fig. 13 Image of compensated prediction errors for ‘Lennagrey’
IEE Proc.-Vis. Image Signal Process., Vol. 153, No. 5, October 2006
prediction and error compensation just like the encoder.
As indicated earlier, all the results presented in the SWAP
coder are obtained using the same parameters, no optimis-
ation is performed with respect to individual images. The
parameters that are used in the encoder are also available
in the decoding process, no additional information needs
to be transmitted.

6.6 Trade-off between computational complexity
and performance

For complexity comparison, we have listed in Table 3 the
operation counts of state-of-the-art MED and GAP
predictor. As can be seen in Table 3, the MED, a division
and multiplication-free predictor that has been standardised
into JPEG-LS [17, 18], has the lowest complexity. Though
conceptually simple, the performance of the MED predictor
is surprisingly good. The GAP, employed by the CALIC

Fig. 14 Histogram of prediction errors for ‘Lennagrey’
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coding system [16], is an adaptive, non-linear predictor.
The GAP calculates the gradient of a coding pixel and
uses one out of a set of seven predictors based on the
calculated gradient. As can be seen in Table 3, the GAP
has higher complexity than that of MED predictor. Both
the coefficients of MED and GAPs are fixed during the
coding process.
The EDP [22] adapts itself on-the-fly using LS

optimisation to update predictor coefficients and has a
higher complexity than MED and GAP predictors. It is
noted that the normal equations provide the key for the sol-
ution of an LS problem [41, 42]. Numerically, the normal
equations can be solved by Cholesky decomposition or
singular value decomposition (SVD) depending on the
singularity of the normal equations [41, 42]. For the
normal equations to be non-singular, the Cholesky
decomposition, which requires about half the usual
number of multiplications than alternative methods, can
be used; otherwise the SVD is applied. For this, Kau and
Lin [23] have pointed out that most of the LS adaptation
processes can be solved by using Cholesky decomposition
and it requires N3/6 multiplications, where N is the predic-
tion order [41, 42]. Therefore the major complexity of the
LS adaptation process in EDP will be in constructing the
normal equations rather than solving them [41, 42]. In
addition to EDP, the TMW [28], a two-pass coder that
uses multiple linear predictors and global image analysis,
has achieved the lowest bit rates in most images when

Fig. 15 Histogram of prediction errors for the pixels shown in
Fig. 8

Table 1: First-order entropies of prediction errors

Image Proposed

SWAP

MED [17] GAP [16] EDP [22]

N ¼ 6 N ¼ 10

Baboon 6.02 6.28 6.22 6.01 5.99

Lena 4.54 4.90 4.75 4.60 4.58

Lennagrey 4.20 4.56 4.40 4.26 4.22

Peppers 4.45 4.95 4.78 4.52 4.50

Barb 4.36 5.21 5.15 4.44 4.35

Barb2 4.81 5.19 5.06 4.80 4.78

Boats 4.03 4.31 4.29 4.14 4.10

Goldhill 4.57 4.72 4.70 4.60 4.58

Average 4.62 5.02 4.92 4.67 4.64
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compared to state-of-the-art linear and non-linear predic-
tors. However, the use of a highly complex image analysis
process as well as the blending of probability distributions
leads to the high computational cost in TMW. The complex-
ity of TMW is much higher than that of EDP (seconds
against hours) [22].

In the SWAP system, ANP and the error models are
updated in the coding process. The proposed SWAP
system needs higher complexity than EDP but lower com-
plexity than TMW. The performance of the SWAP system
is also in between EDP and TMW. There are four major
blocks, ‘predictor switch’, ‘ANP’, ‘TCM predictor’ and
‘fuzzy context modelling’, in the proposed SWAP system.
To analyse the computational complexity, the operation
counts for each coding pixel in the four blocks are listed
in Table 4. The predictor switch, performing boundary
detection operation, determines which of the predictors,
ANP or TCM, is to be used. If ANP is chosen, the online
training of ANP is performed ((5) to (9)). The operation
counts of one training pixel for online training of ANP
are listed in Table 4.

As can be seen in Table 4, the major computational
cost in the proposed SWAP would be in the online training
of ANP. Indeed, the number of multiplications required for
a back propagation neural network is proportional to the
number of connection weights, that is, the time complexity
is O(N ), where N is the number of connection weights [43].
In this paper, the number of neurons in the input layer and
the hidden layer is ten and five, respectively. Therefore it
requires 237, that is, h(4iþ 7)þ 2, multiplications during
the online training of ANP for one training pattern. The
actual multiplications required should be multiplied by
the number of training patterns and training cycles. To
reduce the time complexity during the online training of
ANP, the training pattern is empirically chosen to be the

Table 2: Comparisons with existing lossless image
coders (in bits/sample)

Image First order

entropy

Cluster

number

SWAP

bit rate

CALIC bit

rate [16]

TMW bit

rate [28]

Airplane 6.7058 675 3.58 3.74 3.60

Baboon 7.3579 1392 5.86 5.88 5.73

Balloon 7.3258 351 2.49 2.83 2.66

Barb 7.4664 712 4.12 4.32 4.09

Barb2 7.4838 842 4.55 4.53 4.38

Boats 7.095 591 3.64 3.83 3.61

Camera 7.009 1958 4.39 4.19 4.10

Couple 6.3902 453 3.75 3.61 3.45

Goldhill 7.6232 429 4.30 4.39 4.27

Lena 7.594 676 4.35 4.48 4.30

Lennagrey 7.4473 476 3.95 4.11 3.91

Noisesquare 5.723 309 5.16 5.44 5.54

Peppers 7.5924 734 4.25 4.42 4.25

Shapes 6.7395 877 1.56 1.14 0.76

Table 3: Operation counts for MED and GAP predictors

Operation Comparison ADD/SUB MUL/DIV ABS

MED �3 �2

GAP �6 �18 �7 6
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Table 4: Counts of different operations for ‘boundary detection’, ‘ANP’, ‘TCM prediction’ and ‘fuzzy context modelling’
in proposed SWAP system

Operation Comparison ADD/SUB MUL/DIV Square Square

root

Taking

inverse

Taking

exponent

Edge detection nþ 2 �4n �7 �(nþ 3)

ANP h(iþ 1) h(iþ 1) hþ 1 hþ 1

Online training of ANP for one

training pattern

h(3iþ 4)þ 2 h(4iþ 7)þ 2 hþ 1 hþ 1

TCM prediction (a2 1)(a2 2) at2 aþ 3t2 1 atþ aþ tþ 3 atþ 2t aþ 1

Error estimate k(2cþ 1)2 2 2k c 1 k k

Context model update k(3cþ 2) 4kc 3k

n is the number of pixels in texture context
i is the number of neurons in the input layer
h is the number of neurons in the hidden layer
t is the number of pixels in the shortened texture context
a is the number of pixels in the texture context matching area
k is the number of contexts
c is the dimension of the compound context vector
36 pixels in Fig. 5, and the maximum training cycle is
confined to 20. Fortunately, most of the online training
processes converge within the first few training cycles
[32]. It is noted that the execution time of the proposed
SWAP coder can be accelerated with a little degradation
in the actual bit rate by setting an error threshold such
that, the network will not perform online training until the
prediction error exceeds the predefined threshold.
Moreover, increasing the number of iterations and the train-
ing areas gives marginal improvement in entropies at the
cost of a drastic increase in the training time period.
Therefore, the maximum number of iterations and the
number of training patterns, as well as the number of
neurons in the hidden layer are determined experimentally
and represent a compromise between the performance and
the training time.
Though the proposed switching predictor structure has

higher complexity than that of linear predictors, it has
been shown to provide better performance in terms of pre-
diction results when compared with linear predictors.
Indeed, many approaches have been proposed so that the
computational burden can be reduced by using the back
propagation neural network [44, 45]. A low complexity
fuzzy activation function composed of a linear function
and constants has been proposed by Soria-Olivas et al.
[44] so that the non-linear operation in calculating the
sigmoid function can be avoided. Besides, we know that
the multiplication between two integers can be substituted
by a shift, provided one of them is a power of two.
Therefore a learning procedure based on the power-of-two
approach has been proposed by Marchesi et al. [45] with
only shift and add operations. The multiplication-free algor-
ithm can be applied in both the forward and learning phases
of the network, and can be easily implemented with digital
hardware [45]. By the non-linear nature, multi-layer neural
networks are well suited to the task of image compression,
and the run time performance is expected to be improved
with the rapid advances in computational facilities and
the development of very large scale integration (VLSI)
implementations [29].

7 Conclusion

In this paper, a new coder called SWAP is proposed. The
SWAP system switches between two predictors, ANP and
TCM automatically. To decide which predictor is to be
IEE Proc.-Vis. Image Signal Process., Vol. 153, No. 5, October 2006
used, we also propose a switching criterion that can pick
out pixels around edges effectively. The ANP making
non-linear prediction using a neural network, performs
very well in slowly varying areas. The TCM provides a
very nice complement to ANP. As the simulation example
has demonstrated, the TCM predictor can achieve very
good prediction around edges, where ANP tends to have
larger prediction errors. For error refinement, automatic
context modelling is achieved using fuzzy context cluster-
ing which leads to a modelling of errors that adapts itself
to the input statistics. The usefulness of the proposed
SWAP system is demonstrated through the reduction of
first-order entropy and actual bit rate in the tested images.
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