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On Noninterruptive Rearrangeable Networks
Frank K. Hwang, Wen-Dar Lin, and Vadim Lioubimov

Abstract—In this paper, we study a new class of nonblocking
networks called noninterruptive rearrangeable (NIR) networks,
which are rearrangeable under the additional condition that
existing connections are not interrupted while their paths being
possibly rerouted to accommodate a new request. We give a
complete characterization of NIR Clos networks built of switching
elements of various nonblocking properties. In particular, we
propose a novel class of NIR Clos networks that leads to recursive
constructions of various cost-efficient multistage NIR networks.
Finally, we present examples of such constructions and compare
them with the best previously known results.

Index Terms—Clos network, doubled path, noninterruptive
rearrangeable (NIR), output (input)-divertability, Paull’s matrix,
rearrangeably nonblocking (RNB), strictly nonblocking (SNB),
wide-sense nonblocking (WSNB).

I. INTRODUCTION

Arequest is a pair of input and output requesting a connec-
tion; once routed, a request turns into a connection, which

is a path link-disjoint to all other connections. Traditionally, we
classify nonblocking interconnection networks into three levels,
that is: strictly nonblocking (SNB), wide-sense nonblocking
(WSNB), and rearrangeably nonblocking (RNB) or rearrange-
able. A network is SNB if a request can always be routed by
a path link-disjoint to all existing connections, regardless of
how they are routed. A network is WSNB if the above can
be achieved under a routing algorithm. A network is RNB if
link-disjoint paths exist for any set of requests (routed simulta-
neously). Another equivalent definition of the RNB network is:
a request can always be routed under the condition that existing
connections are allowed to be rearranged (rerouted). Currently,
not much is known about WSNB networks. Generally speaking,
an SNB network involves more hardware (cost), sometimes
more than twice than an RNB network, and an RNB network
may involve some delay before a given request is routed where
an SNB network can always route a request immediately.

Besides the delay problem, an RNB network usually needs
to disconnect and to reroute some existing connections before
routing a request (see Fig. 1). In many applications, the main
concern in using RNB networks is that the disconnected connec-
tions may be lost during the interruption period. In this paper,
we study a new class of nonblocking networks called nonin-
terruptive rearrangeable (NIR) networks, which are rearrange-
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Fig. 1. Well-known RNB network, the Benes network of size 4� 4. (a) The
indicated request cannot be routed directly. (b) The request can be routed after
the dot-line connection is rearranged (disconnected-and-rerouted).

Fig. 2. Rearrangement with a doubled path.

able under the additional condition that no connection is taken
down before its rerouted path has already been connected (thus,
a doubled path is formed momentarily, although the new path
can share some internal links with the original path). This im-
plies that the rearrangement operation is done sequentially along
with incoming requests, not the case that all requests are present
simultaneously. Fig. 2 illustrates an example for such a process.

In 1994, Bowdon [2] first proposed a three-stage Clos NIR
network. However, the network requires all its switching ele-
ments (switches) to have the NIR property when recursively
constructing NIR Clos networks for more than three stages. In
this paper, we give a complete characterization of three-stage
NIR Clos networks based on switches of various nonblocking
properties. In particular, we propose a novel network in this
class without requirement on the middle switches to be NIR. We
show that this network allows recursive construction of multi-
stage NIR networks that are more cost-efficient than the ones
based on Bowdon’s network.

The remainder of this paper is organized as follows. In
Section II, we introduce some background knowledge. In
Sections III and IV, we introduce and characterize various
classes of three-stage NIR Clos networks. In Section V, we
discuss an additional nonblocking property of the introduced
NIR Clos networks that is needed for further constructions of
multistage NIR networks. In Section VI, we present examples
of such constructions and compare them with the best previ-
ously known results.

II. TERMINOLOGY AND PRELIMINARY

The three-stage Clos network is one of the most
basic multistage interconnection networks. The first stage of

consists of switches, the second stage
switches, the third stage switches, and the linking
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Fig. 3. Three-stage Clos network C(n;m; r). The rectangles are switches.

Fig. 4. The crossbar X that can arbitrarily establish connections from the
n inlets to the m outlets. The crossbar is one of the most basic switches.

patterns of adjacent stages are complete bipartite graphs (see
Fig. 3). Note that a switch may be a crossbar (see Fig. 4) or a
network.

Clearly, for any two connections in a Clos network passing
the same switch in the first stage (input switch), they must go
to different switches in the second stage (middle switches); the
same is true for every switch in the third stage (output switch).
We can use Paull’s matrix [4], which is an matrix, to
record the network state of a Clos network : cell
records the middle switches used by connections passing the
th input switch and the th output switch. Traditionally, let-

ters (i.e., , , ) but not numbers are used to represent the
middle switches. Due to the fact that every input (output) switch
has exactly inlets (outlets), the Paull’s matrix must have the
following properties.

1) At most distinct letters are used in the whole matrix.
2) Every letter appears at most once in each row (column).
3) Each row (column) contains at most letters.
Fig. 5(a) illustrates an example of a Clos network

and its corresponding Paull’s matrix. Note that a letter, say , in
cell represents a connection from input switch , through
middle switch , to output switch . The following theorem is
well known [3].

Theorem 1: Suppose that all switches of are RNB.
Then, the network is RNB if and only if .

An important issue for RNB networks is to reduce the number
of rearrangements when routing a request. We introduce some
previous results on RNB networks for the self-containment of
this paper. For a Clos network , observe that, when
there is a request from input switch to output switch , there
must be at most letters in row of the Paull’s matrix, and
the same is true for column . There are two cases to be consid-
ered: either R1) there exists some letter, say , not in row nor
column , or R2) there is no such letter as described in R1. For
case R1, we can route the request through the middle switch .
For case R2, there exist some two letters, say and , such that

Fig. 5. (a) Example of a Clos networkC(3; 3; 4) and its corresponding Paull’s
matrix. (b) Example of ab-path for a request from the first input switch to the
first output switch. (c) The ab-path (arrows) and the ba-path (dot-line arrow) for
a request from the first input switch to the first output switch.

Fig. 6. Output-divertibility.

appears in row but not column , in column but not row .
Paull’s method [4] is to rearrange the connection represented by
the in row to be carried by , then the request can be routed
by . However, there may be another in the same column as
the first , which means that we must rearrange the connection
represented by the second to be carried by . Again, there may
be another in the same row as the second , then we have to
rearrange the connection represented by the second to be car-
ried by , and so on. If we join every two consecutive letters in
the above process by an arc from the previous one to the latter,
then we obtain a path, called the ab-path, which alternates in
vertical and horizontal turns (with alternating ’s and ’s; see
Fig. 5(b) for an example). Observe that such a path never forms
a loop and the total number of ’s and ’s in a Paull’s matrix are
limited to , i.e., the number of rearrangements are lim-
ited to . Later, Benes [1] improved it to based on
the observation that the ab-path and the ba-path are disjoint, so
we can choose either one for rearrangement. Fig. 5(c) illustrates
the ab-path and the ba-path if the request is from the first input
switch to the first output switch. For convenience, we always
assume that is the letter that appears in row but not column

and in column but not row for case R2.
In order for a network to be NIR, some of its switches must

possess the output (input)-divertability property. A network is
said to be output (input)-divertible if we can always noninter-
ruptively append a new path from the input (output) of a given
existing connection to some unused output (input) when all ex-
isting connections are one-to-one (see Fig. 6). This property is
weaker than the two-cast property since the performance is re-
quired only when all existing connections are one-to-one, while
the two-cast performance is required when existing connections
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Fig. 7. Network state providing that C(3; 3; 4) is RNB, but not NIR.

are all two-cast (every connection has one input and two out-
puts). It is also slightly different from the noninterruptive rear-
rangeability as the second path goes to a different (unspecified)
output.

As mentioned in Section I, “noninterruptive” means that we
must build a doubled path for every existing connection to be
rearranged. Also, it should be noticed that it is not always pos-
sible to build doubled paths in an RNB network. For example,
the Paull’s matrix in Fig. 7 represents the network state of a Clos
network such that we cannot rearrange any existing
connection by a doubled path, which means that we cannot con-
nect the request from the first input switch to the first output
switch without interruption.

An important characteristic of our constructions is that
we maintain a set of reserved middle switches in addition to
the requirement of RNB network, where the reserved middle
switches are empty switches in their normal states. Also, dou-
bled paths are built with the aids of reserved middle switches.
For instance, a reserved middle switch is used to simultane-
ously connect the second paths (perhaps plus the request) of
existing connections. This operation is always doable because
a reserved middle switch has free links to all input (or output)
switches. A reserved switch after being used to route paths is
no longer reserved and must be replaced by an empty switch
which can be obtained by having all its paths rerouted. Note that
the output (input)-divertability is required for input (output)
switches if we want to build doubled paths for connections in
a three-stage Clos network. We assume that all crossbars are
with input/output-divertability.

Lemma 1: Suppose that a three-stage Clos network satisfies
the following conditions: 1) all switches are NIR and 2) the input
(output) switches are output (input)-divertible. Then, a doubled
path can be built for a connection from input switch to output
switch if and only if there is a letter not appearing in row nor
column of the Paull’s matrix.

Proof: Suppose that an appended path can be built to the
specified connection. Note that this path must use a different
middle switch, say , from that of the original path, otherwise the
two paths are identical. Then, in order for to be accessible for
both switches and , it should carry neither a connection from
switch , nor one to output switch . This means that the letter

appears neither in row nor column of the Paull’s matrix.
Conversely, suppose there is a letter that appears neither in
row nor column . Then, by similar arguments, it is clear that
the path from input switch to output switch through middle
switch can be an appended path to the specified connection.

III. THE ONE-RESERVED ALGORITHM

Theorem 2: Suppose that a network , , ,
satisfies the following conditions: 1) all switches are NIR and 2)

the input (output) switches are output (input)-divertible. Then
the network is NIR if and only if .

Proof: Sufficiency: Consider the 2 2 Paull’s matrix rep-
resenting the corresponding network state. Without loss of gen-
erality, we assume that the request is from the first input switch
to the first output switch and is blocked, i.e., there is no letter

not in first row nor first column (case R2). Since appears in
cell (2, 1) of the Paull’s matrix, then must not appear in cell (1,
1), nor cell (2, 2). By assumption, must lie in cell (1, 2) (or we
would have case R1) and must not. By Lemma 1, we can then
build a doubled path through for the connection represented
by in cell (1, 2); this is doable by the NIR assumption for
that it may carry some existing connections. After we delete
from cell (1, 2), the request in (1, 1) can be routed by .

Necessity: Consider the following Paull’s matrix of size ,
, where denotes all middle switches other than or :

. . .

. . .
. . .

Since , then it is easy to observe that every letter
is collinear, i.e., two letters are on the same row or the same
column, to any other letter. By Lemma 1, this means no dou-
bled paths can be built in this Paull’s matrix, that is, the corre-
sponding is not NIR.

Bowdon proved [2] that is an NIR network with
a routing algorithm that requires at most rearrangements
to connect a new request. Using a different -rearrangement
algorithm for , we prove the following theorem.

Theorem 3: Suppose that a network , ,
, satisfies the following conditions: 1) all switches are NIR

and 2) the input (output) switches are output (input)-divertible.
Then, the network is NIR if and only if .

Proof: Sufficiency: We prove the sufficiency by showing
that the following algorithm works correctly for every incoming
request.

One-Reserved Algorithm: Suppose that there is one reserved
middle switch, say . Without considering , the Clos network
can be treated as an RNB network since . Using the
Paull’s matrix, we consider cases R1 and R2.

Case R1: Route the request by
Case R2: Partition all ’s and ’s into three parts: 1) of the
ab-path; 2) of the ba-path; and 3) not in the ab-path nor the
ba-path. Do the following steps.

a) Rearrange all ’s in part 1, part 3 and all ’s in part 2
to ’s by doubled paths and connect the request by .

b) Rearrange all ’s in part 2 to ’s by doubled paths.
To show the correctness of the one-reserved algorithm, it

is sufficient to prove that: 1) there is always an empty middle
switch after connecting a request and 2) all the operations in
the one-reserved algorithm are doable. To this end, we use
induction.
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Fig. 8. Recursive construction of d-ary Benes network. (1)B , a d�d crossbar
with d crosspoints. (2) B , constructed as C(d; d; d ), where the input,
output, and middle switches are B , B , and B , respectively. B has d
inputs/outputs and d (2n � 1) crosspoints.

Base case: a network carrying no connection ensures an
empty middle switch.

Induction step: as described in the algorithm, suppose there
is a reserved middle switch and treat the network as an RNB
network without considering . Using Paull’s matrix, for case
R1, we connect the request by and then is kept reserved.
For case R2, since does not appear in the Paull’s matrix, and
all positions of: 1) ’s in part 1, part 3 ; 2) ’s in part 2; and
3) the requests are mutually noncollinear. By Lemma 1, we can
rearrange these connections by doubled paths and connect the
request. Now, because all ’s in part 2 are rearranged to ’s,
all ’s in part 2 can be rearranged to ’s by doubled paths and
then becomes reserved, ensuring the existence of an empty
middle switch. One should notice that, by the NIR assumption,
the second paths can be appended to without causing any
interruption.

Necessity: By the counterexample in the proof of Theorem 2.

Note that, instead of rearranging ’s in part 3 to ’s and ’s
in part 2 to ’s, we can also rearrange ’s in part 3 to ’s and

’s in part 1 to ’s. Suppose the lengths of the ab-path and the
ba-path are and , respectively. In step a), the number of re-
arrangements applied to part 1, part 3 is limited to . Fur-
thermore, the number of all the other rearrangements are limited
to (there are at most ’s
and ’s in part 3 and at most ’s and ’s in part 1, part
3 not rearranged by step a). Recalled that since
the disjointness of the ab-path and the ba-path, we conclude that
the total number of rearrangements are limited to .

The cost (we define the cost of a network as the number of
crosspoints) of an crossbar is , which may be too
large when large. Thus, we may want to use some low-cost
networks as switches in the Clos network, e.g., the Benes net-
works. Fig. 8 shows the recursive construction of generalized

-ary Benes networks. However, the lower cost usually means
a weaker nonblocking property, so we have to characterize the
nonblocking property of a Clos network composed
by switches that are not crossbars.

Theorem 4: is NIR if: 1) the middle switches are
RNB and 2) the input (output) switches are output (input)-di-
vertible.

Proof: Use one of the two middle switches as the active
switch carrying all of the connections and keep the other switch

reserved. For any incoming request, route all existing connec-
tions and the request in the reserved switch. Then take down
the existing connections from the active switch and thus inter-
change the roles of the active switch and the reserved switch. All
of the above operations are doable because the middle switches
are RNB and the output (input) switches have the required input
(output)-divertability.

It should be noticed that either all input or all output switches
are redundant in the NIR network and can be replaced
by the corresponding 1 2 or 2 1 joints, which however may
not be feasible for some applications.

IV. THE TWO-RESERVED ALGORITHM

An NIR middle switch can always carry a new connection re-
arranged to it, but an RNB middle switch cannot. This is because
an RNB network may get into a blocking state as described in
Theorem 2 under the noninterruptive condition. Theorems 3 and
5 show the difference between using NIR and RNB networks as
middle switches.

Note that, in the one-reserved algorithm, we rearrange some
connections carried by to be carried by while is pos-
sibly carrying some other connections. This is why the middle
switches are required to be NIR. When the middle switches
have only the RNB property, we use a reserved middle switch
to route the second path of a double path, plus perhaps the
request, just like in the algorithm for in the proof of
Theorem 4.

Theorem 5: Suppose that a network , ,
, satisfies the following conditions: 1) the middle switches

are RNB and 2) the input (output) switches are NIR with output
(input)-divertability. Then the network is NIR if

.
Proof: We prove this theorem by showing that the fol-

lowing algorithm works correctly for every incoming request.
Two-Reserved Algorithm: Suppose there are two reserved

middle switches, say and . Without considering and , the
Clos network can be treated as an RNB network since

. Using Paull’s matrix, now we consider cases R1 and R2.
Case R1: Use the reserved middle switch to route the
request plus all connections in , and then take down all
connections through .
Case R2: Partition all ’s and ’s as in the one-reserved
algorithm. Then do the following steps:

a) In middle switch , route the connections carried by
in part 1, part 3 and by in part 2, then take down

their old paths.
b) In middle switch , route the request plus connections

carried by in part 1, part 3 and by in part 2, then
take down the old paths of existing connections.

Since does not appear in the Paull’s matrix and all the posi-
tions of ’s in part 1, part 3 and ’s in part 2 are mutually non-
collinear, by Lemma 1, we can rearrange the above connections
by doubled paths to . Similarly, the request and the connections
represented by ’s in part 1, part 3 and ’s in part 2 can be car-
ried by without interrupting. Note that for case R1, and are
the resulting reserved middle switches; and for case R2, and
are the resulting reserved middle switches.
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Since we rearrange all the ’s and ’s in the Paull’s matrix
exactly once, the number of rearrangements is in the
worst case.

V. DIVERTABILITY OF NIR NETWORKS

To construct a very large NIR network, we may want to recur-
sively use NIR (or RNB) networks as the input/middle/output
switches. However, by Theorems 3–5, input (output) switches
of a NIR Clos network are required to have output (input)-di-
vertability, which means that an NIR network may not be suit-
able as an input (output) switch in a larger network. On the other
hand, an NIR network may not be NIR anymore if forced to per-
form some diverting operations (for example, a reserved middle
switch disappears). Fortunately, we will show that all of the
NIR networks we introduced before are output (input)-divert-
ible. Without loss of generality, the following theorems consider
only the output-divertability.

Theorem 6: is NIR with output-divertability if:
1) the middle switches are RNB and 2) the input (output)
switches are output (input)-divertible.

Proof: As in Theorem 4, use the active switch to carry the
set of all existing connections and use the reserved switch
to carry , where is the input-output
pair of the appended path and is the output of the original
path. Then we can just take down paths using the active switch
to let all connections become one-to-one; the reserved switch
becomes active and the active switch becomes reserved. Thus,
the network is NIR with output-divertability.

Theorem 7: is NIR with output-divertability
if: 1) all switches are NIR, 2) the input switches and middle
switches are output-divertable, and 3) the output switches are
input/output-divertable.

Proof: We assume that the diverted connection is from the
first input switch, through , to the second output switch, and the
new output is in first output switch. Now we ignore the in cell
(1, 2) and then treat this problem as to noninterruptively connect
a new request from the first input switch to the first output switch.
For case R1, append a new path by going through , where and
are not necessarily different. For case R2, rearrange the to by
a doubled path, and then append a new path by going through
where and are not necessarily different. Afterwards, we take
down the links belonging to the original path but not on the new
path. Then the network is again NIR.

Theorem 8: is NIR with output-divertability
if: 1) all switches are NIR; 2) the input switches are output-
divertable; and 3) the output switches are input/output-
divertable.

Proof: Again, we ignore the letter carrying the original
path and then treat this problem as to noninterruptively con-
nect a new request from the original input to the new output.
Now we perform the one-reserved algorithm except not to dis-
turb the original path. Since the new path will be carried by a
middle switch that carries nothing at the beginning, the middle
switches used by the new path and the original path are different,
that is, the divertability is not required for middle switches. Af-
terwards, we take down the original path, then the existence of

Fig. 9. (a) Paull’s matrix at the beginning. Note that the letter c is unused.
(b) The letter b in cell (1, 3) is ignored. (c) After performing the one-extra al-
gorithm. (d) The actual network state after performing the diverting algorithm;
b’ and c’ represent the one-to-two connection. Note that b will be free if the
original path is taken down.

TABLE I
REQUIRED INPUT/OUTPUT-DIVERTABILITY FOR SWITCHES

OF NIR CLOS NETWORKS

a reserved middle switch is ensured, implying that the network
is again NIR.

Theorem 9: is NIR with output-divertability
if: 1) middle switches are RNB; 2) the input switches are NIR
with output-divertability; and 3) the output switches are NIR
with input/output-divertability.

Proof: By a similar argument as in the proof of Theorem 8.

Fig. 9 illustrates an example of for Theorem 8 that
the original path is carried by in cell (1, 3) and the new output
is in the first output switch.

Table I gives the required input/output-divertability for
switches of Clos networks with different divertabilities. It
should be noticed that Theorems 6–9 give only sufficient
conditions for divertabilities.
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VI. CONSTRUCTION EXAMPLES AND COST COMPARISON

Theorems 2–9 allow flexible recursive construction of various
multistage NIR networks, some of which are more cost-efficient
than the similar networks based on the previously known results.
In this section, we present kinds of constructions under different
restrictions on the crossbars sizes.

A. Arbitrary Crossbars are Allowed

To give a fair comparison, we generate a set of NIR networks
according the following rules. From Theorems 1, 3, and 5, we
know the following.

1) (RNB expansion) using RNB middle
switches and crossbars as input/ouput switches is RNB.

2) (Plus-1 expansion) using NIR
middle switches and crossbars as input/ouput switches
is NIR.

3) (Plus-2 expansion) using RNB
middle switches and crossbars as input/ouput switches
is NIR.

For convenience, we call the expanding factor. By these
expansion methods, we could generate all -stage NIR
Clos networks by using -stage networks as middle
switches and crossbars as input/output switches, that is, we start
with a crossbar of size and recursively apply networks of size

as middle switches for -th expansion with expansion
factor . Thus, we know that every aimed NIR network with

stages could be represented by a series of expan-
sion factors and a series of expansion types. By using the
same expansion factor , it should be noticed that Plus-1 ex-
pansion will be the only reasonable choice for expanding a NIR
network because Plus-2 expansion will result in more cost and
RNB expansion will result in a non-NIR network (Theorem 2).
Consequently, the second series of expansion types should
be in the form of

RNB expansion Plus-2 expansion Plus-1 expansion

where the number of RNB expansion (or Plus-1 expansion)
might be 0 and the number of Plus-2 expansion should be 1
or 0, that is, this series could be replaced by a number ranged
from 0 to that indicates the last RNB expansion, i.e., 0
means no RNB expansion (and thus no Plus-2 expansion),
means no Plus-1 expansion and Plus-2 is the final expansion.
By so doing, we are able to use a series of expansion factors
and one additional number to represent an aimed NIR network.
For example, (4, 5, 6, 7, 8)-0 means a NIR network constructed
by the following steps.

0) A 4 4 crossbar.
1) Respectively use , 6 5, 4 4 crossbars as

input, output, mid switches to construct a NIR network
(a Plus-1 expansion).

2) Respectively use crossbars, 7 6 crossbars,
networks by step 1 as input, output, mid switches to con-
struct a NIR network (a Plus-1 expansion).

3) Respectively use crossbars, 8 7 crossbars,
networks by step 2 as input, output, mid switches to con-
struct a NIR network (a Plus-1 expansion).

4) Respectively use crossbars, 9 8 crossbars,
network in step 3 as input, output, mid switches to con-
struct a NIR network (a Plus-1 expansion).

For another example, (4, 5, 6, 7, 8)-2 means an NIR network
constructed by the following steps.

0) A 4 4 crossbar.
1) Respectively use 5 5, 5 5, 4 4 crossbars as input,

output, mid switches to construct an RNB network (an
RNB expansion).

2) Respectively use 6 6 crossbars, 6 6 crossbars, net-
works by step 1 as input, output, mid switches to con-
struct an RNB network (an RNB expansion).

3) Respectively use crossbars, 9 7 crossbars,
networks by step 2 as input, output, mid switches to con-
struct a NIR network (a Plus-2 expansion).

4) Respectively use crossbars, 9 8 crossbars,
network in step 3 as input, output, and mid switches to
construct a NIR network (a Plus-1 expansion).

To get an overview on the efficiency of NIR networks, we
generate all networks using above expansion methods by ex-
haustively generating all expansion factor series with products

and assigning the additional numbers
according the sizes of corresponding series. For convenience,
we called a generated network as a Plus-1 network if its last
expansion is Plus-1 expansion, and Plus-2 network if its last ex-
pansion is Plus-2 expansion. We also apply a similar technique
to generate RNB networks of sizes by using
only RNB expansion, then construct NIR networks by Theorem
4 and classify them as 2-RNB networks (using two copies of
RNB networks in middle).

In Fig. 10, we give the size-(cost/size) plot of best selections
of various sizes and different last applied constructions. It
could be observed that Plus-2 networks are the most cost-
efficient NIR networks for size greater than 256. Table II
gives a detailed comparison for Plus-1 and Plus-2 networks
larger than 256. Notice that larger Plus-1 networks usually need
Plus-2 expansion to gain better efficiency. Also notice that a
potential advantage of Plus-2 expansion is to use the most
compact RNB networks like Waksman networks [5] as middle
switches. Fig. 11 gives a general construction of Waksman
networks, and the black boxes in Fig. 10 are Plus-2 networks
applying Waksman’s construction.

B. Only 1 2, 2 2, and 2 1 Crossbars Are Allowed

In this subsection, we give an algorithm to generate NIR
networks under the restriction that only 1 2, 2 2 and 2 1
crossbars are allowed. This algorithm is based on the following
facts.

1) - using binary Benes network as
middle switches) is NIR with input/output-divertability
(by Theorems 4 and 6).

2) (described in Fig. 12) is NIR with input/output-
divertability (by Theorem 2 and 7).

3) is NIR with input/output-divertability if
the input(output) switches are NIR with input/output-di-
vertability and the middle switches are NIR (by The-
orem 3 and 8).
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Fig. 10. Best networks of different sizes and different constructions. Each point is marked by its last applied expansion. Black boxes are Plus-2 networks applying
Waksman’s construction.

TABLE II
DETAILED COMPARISON BETWEEN PLUS-1 AND PLUS-2 NETWORKS

Fig. 11. A general construction of Waksman networks; note that the first
switching element of the third stage is replaced by direct wiring.

Fig. 12. Recursive construction of NIB (NIB is equivalent to binary B ).

4) is NIR with input/output-divertability
if input(output) switches are NIR with input/output-di-
vertability and middle switches are RNB (by Theorem 5
and 9).

Since the above four kinds of networks are NIR with input/
output-divertability, we then recursively use smaller networks to
construct larger networks, and the larger networks are also NIR
with input/output-divertability. Our algorithm works as follows.

Step 1) Set a single 2 2 crossbar as a level-1 network.
Step 2) Set and - as level-2 networks.
Step 3) For to (specified by user).
Step 4) Set and - as level- networks.
Step 5) For to .
Step 6) For each level- network (remove one inlet or

outlet), and for each level- network, use them
to construct a level- network by the
construction.

Step 7) For each level- network (remove two inlets or two
outlets), use and the level- network to con-
struct a level- network by the con-
struction (end of the for-loop of ).

Step 8) Sort the level- networks by their cost/size ratio and
output these networks (end of the for-loop of ).

This algorithm is used to generate as many NIR networks as
possible by using our current knowledge, thus we are able to
choose efficient NIR network of proper sizes. Since the gener-
ated NIR networks are of various sizes, we give the size-(cost/
size) plot of the best seven networks of level- networks, for size

(see Fig. 13). Note that, because we remove some in-
lets or outlets while applying and
construction, most of the resulting networks are of distinct sizes.
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Fig. 13. Best seven networks of level-i networks, size � 100000. Each point is marked by its last applied construction.

Fig. 14. Best nine networks of level-i networks for d = 8. Each point is marked by its last applied construction.

Thus, we compare them by the cost/size ratio, but not by cost.
From Fig. 13, we find that the most cost-efficient NIR networks
are (from small size to large size) NIB networks, networks ap-
plying construction, - , and networks applying

construction. It should be noticed that: 1) net-
works applying construction are the most cost-ef-
ficient NIR networks for size greater than 512 and 2) - and
networks applying construction require much
fewer divertible crossbars than other networks.

C. Only Crossbars are Allowed

As in Section VI-B, we use an algorithm to generate NIR
networks using only crossbars.

Step 1) Set a single corssbar as a level-0 network.
Step 2) Set using crossbars as a level-1

network.
Step 3) For to (specified by user).
Step 4) Set .
Step 5) While .

Step 6) Construct -stage networks by
using level- networks (of stages) as input/
output switches and level- networks as
middle switches. Set them as level- networks.

Step 7) Construct -stage networks by
using level- networks (of stages) as input/
output switches and -stage

-ary Benes networks as middle switches. Set them
as level- networks.

Step 8) Set (end of the while-loop and the for-loop
of ).

The main differenct between this algorithm and the algorithm
in last subsection is that: we replace some 2 2 crossbars by
1 2 (or 2 1) crossbars while using a smaller networks as
input or ouput switches, and thus reduce some minor costs in
last subsection, but we do not reduce any cost in this subsec-
tion—this is for mimicking design scenarios that only switching
modules of the same size are available. Figs. 14 and 15 give the
size-(number of crossbars/size) plots by assigning as 8 and 4,
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Fig. 15. Best nine networks of level-i networks for d = 4. Each point is marked by its last applied construction.

respectively. The best nine networks of each level are selected,
and we show only networks of sizes . From Figs. 14
and 15, we find that larger networks applying con-
struction usually have better efficiency than other networks of
the same stage numbers, but this trend is vanishing while using
larger crossbars.
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