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Interaction between a two-dimensional pancake vortex and a circular nonsuperconducting defect
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The interaction energy;,(r) between a two-dimension#&2D) pancake vortex and a circular dielectric
defect with radius in a superconducting thin film is calculated in the London lir#itl. We obtain a general
expression formula of),,(r) for all ranger>a. Our theory predicts thalt);(r)=In(1—a?/r?) at a short
distance, which is in the same form as the 3D bulk superconductorURt) decreases with™ at a long
distance, unlike decreases exponentially in the 3D bulk B@163-182626)06025-0

I. INTRODUCTION II. SOLUTION OF THE 2D PANCAKE VORTEX
IN' A THIN FILM WITH A CIRCULAR DEFECT

The investigation of the pinning structures for vortices is Let us consider that a circular defect with radasén an
very significant to the potential applications O_f the h@' infinite type-Il superconducting thin filngx>1) lies in the
supercondgctors. The understanding of the |r_1teract|on bex—_y plane, and a 2D pancake vortex locates at a distance
tween vortices and defects appears to_be an _|mportaqt ta$kom the center of the defedas shown in Fig. 1 If the
from both fundamental and technological points of view.eyternal magnetic field is in thedirection, there will induce

Some techniques have been applied to increase the conc&fe supercurrent densify in the superconducting thin film.
tration of defects, such as heavy ion irradiatiohand the Then the vector potentid satisfies the equatiohs

inclusion of an insulating phageThese nonsuperconducting

defects, which interact with vortices, induce the screening 47 28(2)

currents and lead to the so-called electromagnetic pirhing. VXVXA= < s
For three-dimensiondBD) bulk type-Il superconductors,

the simple case of a single straight vortex in the presence of VXVXA=0 for p<a, (1)

a cylindrical defect has been calculated by Mkrtchyan anqNhere the origin of the cylindrical coordinateR(¢,z) is

gsgrrpe':j;"'z';éhz) Iéor;i?ig dlilgrkirt.ctgrgeléftzgﬁ%nh;rs dk()a?éegts located af(r,0,0), and the origin of the other cylindrical co-
. : ‘ordi ,02) is | ,0,0. Th ing | h
The numerical results of the Ginzberg-Landau theory forordlnate(p 6.2) is located at(0,0,0 e screening lengt

; : " 9TA=2)\%d plays the role of an effective penetration depth in
var|0u5K_r11l<e1ve been obtained by Takezawa and FL.‘k!JSﬁ!mathe superconducting thin filfr!! \ is the London penetra-
Pearf~!! was the first to point out that the distinctive

: e ) ) : tion depth, andl is the thickness of the superconducting thin
properties of thin-film vortices arise from their electromag-

! . . ' film (d<<\). ¢y is flux quantum and is equal toc/2e.
petlc Iong—range interaction. Then it may be d(_aduced that th_e The solution of Eq.(1) includes two parts, and can be
interaction between a pancake vortex and a circular defect Qritten as
a superconducting thin film is a long-range force, unlike a
short-range force in 3D bulk system. _ A(p,0,2)=RAg+Ay, 2
Buzdin and Feinberg analyzed the interaction of a vor-
tex with a cylindrical defect of radiua by employing the ~WhereA, is the particular solution of Eq1) and represents
image method. They have derived the interaction energjhe vector potential of the single pancake vort8 is the
U;n(r)=In(1—a?/r?) at a short distance both in the super- homogeneous solution of E() and is caused by the screen-
conducting thin film and 3D bulk material. Unfortunately
their theory could not be applied to the interaction at a long y
distance, because the image method is valid only in that at a
short range. (p,8)
In this paper, with the help of the Hankel transformation,
we develop a method of constructing the solution of the vec-
tor potentialA,, caused by the screening currents of a circu-
lar defect in the presence of a single 2D pancake vortex. We

obtain a general expressiondf,(r) and the pinning poten- é (o) X

b0y

ZWR_A

for p>a

tial Upn(a), and simplify the expression a;(r) by con- r

sidering the actual condition ai/A<1 (A is Pearl's 2D

screening length'y). Our theory cannot only verify the re-

sult of Buzdin and Feinberg*$work under consideration of  FIG. 1. A circular defect with radiua in an infinite supercon-
the interaction at a short distance, but also predicts thaducting thin film lies in thex-y plane, and a 2D pancake vortex
U;«(r) at a long-range interaction is decreased with. locates at a distanaefrom the center of the defect.
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ing current of the circular defech, has been solved with a

Hankel transform by Peatt;**who found

b0y j“’
27 s dk

Ji(kR)

K2
Ak+1© - ®)

Ao(R,¢,2)=

If we transform the coordinate fronR(¢,z) to (p,6,z), the
two following mathematic formulas can be obtaingdoved
in the Appendix, in(i)]:

0

and

oo

Jy(kR&,=—8,> [J

+ éﬂ[

—Jn_l(kp)]Jn(kr)comH], 5)

n+1(Kp) +Jn-1(kp)]In(kr)sinn e

Jl<kp)Jo<kr>+n§1 [Jn+1(kp)

whereJ,(x)s are the Bessel functions.
From Eq.(5), Ay can be rewritten as

ap(r)
2

¢0 e_k‘zl
T2 f dk( Ak+1

AH(p,b’,Z)=

~ an(r)Up(p,0,z;a)

[ ap(r)Jo(ka)di(kp)ey+ nzl an

k|z| ©
Ao(p,6,2)= ¢° fodkAk [ &2, [Jnsa(kp)

+3,_1(kp)]dn(kr)simn @+ &,| 31 (kp)Jo(Kr)

|

(6)
Let A'= ¢Oe 2mR—A,. From Eqs (4)—(6), we find that
A'(p,6,z) can be expanded in a series of the orthogonal func-
tions U, (p,0,z;r), whereU,(p,6,z;r) are the solutions of the
equation:-VXVxU,=-2§2z)U,/A, and can be written as

—k|z

Un(p,8,z;r)= j:rJ’ dk( /fk—:l.
+Jn-1(kp) 13n(kr)sim 6+ e[ I, 1(kp)

—Jnh-1(kp)]In(kr)com b}, n=0,1,2....

(7)

Setr=a in Eq. (7). Then we can construct the homogeneous
solution of Eqg.(1), Ay, in the region of interesp>a with
the expansions df,(p, 6,z;a) in series as follows:

o

* nzl [In+1(kp) = 3In-1(kp)]In(kr)come

{_ épl:‘]nJrl(kp)

)

(N)In(ka){—€,[In+1(kp) +In-1(kp)]sinne

+éa[Jn+l(kP)_Jn—l(kp)]coma}] for p>a, (8)

and the supercurrent densityis given by

cdé(z)

¢oe¢
Is= 27A

27R

X{&[In+1(kp) +Jn_1(kp)IsinO—&; Jn+1(kp) = In—1(kp) Jco 6}

i A .
¢°C () f dk Ak+1[—eg[ao(r)Jo(ka)—Jo(kr)]Jl(kP)+nZl[an(r)‘]n(ka)_‘]”(kr)]

for p>a, 9

where a,,(r)s are the coefficients which can be determinedThe coefficienty(r) can be determined by considering the

by boundary conditions.
Because the radial component gf vanishes aip=a",

condition: the total magnetic flux trapped in the supercon-
ducting thin film (including the defegtis equal to¢y. Inte-

wherea™ =a+e¢, ¢ is in the order of the Ginzberg-Landau grating Eq.(1) along the circular contour of the defect in the

coherence lengt&(T). The coefficient,(r) for n#0 can be

determined as

Jn(ka)Jn(kr)
fdk Ak+1
an(r)= dek I (ka)d (ka")’ n=1,23... forr>a.
0 Ak+1

(10

superconducting thin film, just as is done in Ref. 6, we have

waZHg(p=a+)+ §

p—*

Adll_ % Ad|2:¢0
p=a

for z=0, (11

whereH ¢ is the term fom=0 of the z-component of mag-
netic field H and H=VXA. H%p=<a,z=0) is distributed
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uniformly becausé&VxXH=4mxj/c=0 in the region ofp<a
and z=0. The contour integradl; for p—« in Eq. (11
means the total flux in the superconducting thin film which is
equal tog,. Substituting Eqs(2), (6), and(8) into Eq. (11),

we obtain

f@dka.]o(kr) kaJ K Ik
0 W Ak |2 Dotk uka)
ag(r)=

= ajgka) [ka . .

fo dkm 7Jo(ka )—Jl(ka )|[+1

for r>a. (12

According to Ref. 14, the free enerdy(r) is obtained by
integrating the supercurrent densjty and the result is

U(r):%fjs'dU:Use|f+Uint(r), (13

where U o= (¢3/8mA)IN[A/£(T)] is the self-energy of a
single pancake vortex, and the interaction enddgy(r) be-

tween the pancake vortex and the circular defect is given b
U; (r)——d)—%fw— (r)Jo(ka)Jo(kr)
=T g m2 o Ak+1 @o 0 0

©

+2§_}1 an(r)Jn(ka)Jn(kr) (14)

The pinning potential for a 2D pancake vortex in our system
Upin(8), in neglecting the core energy, is defined by
Upin(a):U(a+)_U(°o)- (15

Substituting Eqs(10) and(12)—(14) into Eq.(15), we obtain
the following expression fol ;i,(a):

fdk
0

ka
> Jo(ka*t)—Jy(ka®)|+1

%
87?

aJo(ka)
Ak+1

Jo(ka)Jg(ka™)
Ak+1

u pin( a)=

o

Jdk
0

¢ (A

The first term of Eq(16) on the right-hand side approaches
¢ In(Ala)/87*A for a/A<1, and vanishes foa/A>1.
Then we have

¢ (a
— — for a/A<1
872 M| Z
Upin(a): ¢2 A (17)
——2_In|=| for a/A>1.
8m°A &

We show the numerical result for the dependence of the pin-

ning potentiall ,;,, on the defect radiua in Fig. 2. U, is

pin»
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Uy, : in unitof $,/8r?A

al/A

FIG. 2. The pinning potential ;, as a function of the defect
Yadiusa for A/E€=1000 on the basis of Eq16).
value whena=A. The 2D behavior of the pinning energy,
Upin(a) ~—¢§ In(a/g)/8°A for a<A, has been observed in
Bi,Sr,CaCu0O, crystals?

Ill. DISCUSSION

., In Sec. Il we derived the expression formula Et4) to
explain the interaction energy between a 2D pancake vortex
and a circular defect. Now let us compare the order of mag-
nitude of A with that ofa. In generala is less than 1000 A
andA=2\%d>10" A. Therefore, it is very reasonable to take
the limitation fora/A<1 in our theory. Then we can obtain a
good approximation for the following integrgbroved in the
Appendix, in(ii)]:

= Jn(ka)Jn(kr)
fo dk k+1/A

g [H_(F/A)=Y_(r/A)]I_(al/A)

for a<A,r>a, (18

whereH,(x)s are the Sturve functions, and,(x)s are the
Neumann functions. From E@18), by taking the limitation

for a/A<1, the first term of Eq(14) on the right-hand side is
much smaller than the second term, and can be neglected.
Finally we obtain the interaction energ@y;(r) in the limit

of a/A<1 as follows:
2

[

negative. This means that the interaction between the vortex

and defect is attractive. Asincreases in the region ak<A,
the depth ofU;, increases rapidlyU ;;, reaches a saturation

Uin(r)=— % ngl an(N[H _o(r/A) =Y _(r/A)]
xXJ_p(alA) (19
and
an(F)= H_,(r/A)=Y_,(r/A) 20

H_(alA)—Y_ (alA)’
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If we take two limits (i) r/A<<1 and (ii) r/A>1, we can
obtain®

H_n(r/A)=Y_,(r/A)

(n—=1)! 2A0\"
- — for r<A
_ T r
- 2-(2n—1)!! A\
-_—— | = for r>A.
T r
(21)
Substituting Egs. (200 and (21) and J_,(a/A)

~(—a/2A)"/n! into Eg. (19), we obtain the following ex-
pressions fotJ,(r):
(i) Fora<r<A,

for a<r<A. (22

(i) Fora< A <r, taking the lowest-order term a@¥/r and
neglecting the higher-order terms, we can obtain

¢S<

Uin(=—g 21
On the basis of Eq$19) and (20), we successfully obtain a
general formula for expressing the interaction endudgy(r)
between the pancake vortex and a circular def@etA), and
this formula is valid for all ranges>a. Our theory cannot
only be reduced to the result of Buzdin and Feinbérige.,
Uin(r)=In(1—a?/r?) for r<A, derived by the image method,
but can also obtain the prediction bf(r)or 4 for r>A,
which cannot be derived from the image method. The nu
merical result ofU,,(r) in Egs. (19) and (20) is shown in
Fig. 3 fora/A=0.1 andA/£=1000.

A2%a?

7 for a<A<r. (23
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FIG. 3. The interaction energy;,; as a function ofr for a/A
=0.1 andA/£=1000 on the basis of Eq&l9) and(20) (solid line).
The result of Ref. 12U,,=¢3/8mA In(1—a?/r?), is also shown
(dashed ling

homogeneous solution of E@l), Ay . The interaction en-
ergy U;x(r) between a 2D pancake vortex and a circular
defect is consequently derived for all rangesa. The pin-
ning potentiallu ,,(a) is also obtained.

It is worthy to emphasize that our theory can be reduced
to the result of Buzdin and Feinbeld,i.e., U(r)
«In(1—a?/r?) for a<r<A. Moreover, our theory predicts
that U;,(r) decreases with ~* for r>A>a, unlike expo-
nential decreases in 3D bulk superconductor. Therefore we
may conclude that the interaction between a 2D pancake vor-
tex and a circular defect in the superconducting thin film is a
long-range force, unlike a short-range force in the 3D bulk
material.

On the other hand, the vortex-defect interaction energy in

the 3D bulk,U32(r), derived by Mkrtchyan and Shmiflis
in the following form:

$o \? 2
(—) In(l— —2) for a<r<a
D 4\ r
Uine(r)=~ bo |2 wa? (24
_ @ 2rin 2\ <
(47)\ onT e for a<a<r.

Comparing Egs(22) and(23) with Eq. (24), we obtain that
the vortex-defect interaction energies for smalhave the
same form lil—a?/r?) in both 2D and 3D systems. How-
ever, whenr is large, the vortex-defect interaction energy

decreases with™* in the 2D system, and decreases exponen-

tially in the 3D system.

IV. CONCLUSIONS

In this paper we have presented an analytic method to
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APPENDIX

(i) Prove

Ju(kR)Es=—&, 2 [Insa(kp)+ I 1(kp)In(kr)simo

+8, J1<kp>Jo<kr>+n§1 [Jn+1(kp)

—Jn_l(kp)]Jn(kr)coma] .

calculate the perturbation of supercurrents caused by a circu-

lar defect in the superconducting thin film. A Hankel trans-

By the summation theorem, the Bessel functigfkR) can

formation technique was used, whereby we can construct thee expanded in the following forrf:
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[

Jo(kR)zJo(kp)Jo(kr)Janzl J.(kp)d,(kr)comd. (A1)

Taking the partial derivatived/dp andd/96 on both sides of

Eqg. (Al), we have

p—r cos
R

Jl(kR>=J1<kp>Jo<kr>+n§1 [Jn+1(kp)

—Jn-1(kp)]In(krycos s, (A2)

r sind

Jl<kR>=n21 [Ins1(kp)+Jn_1(kp)1dn(kr)simné.
(A3)

Considering the transformation of the coordinates from
(R,¢,2) to (p,az) the angular unit vector in coordinate sys-

tem (R, ¢,2), e¢, can be expressed as
_ —r singe,+(p—r coK)e,
¢ R
From Egs.(A2)—(A4), we have

(A4)

Ju(kRI&y= =&, 2, [Ins1(kp)+In-1(kp)13n(kr)simo
+ éa[ J1(kp)Jo(kr)+ n§=:l [In+1(kp)

—Jh_1(kp)]J(kr)cosn 0] .

(A5)
(ii) Prove
wkon(ka)Jn(kr)N T (r) (r a
fo T koA 2| Mol Yl el

for a<A,r>a.
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%

a(ka)Jn(kr) G
Jdk K+ 1A Onl Jd e
+0(a"*?), (A7)

where the ternD(2"*2) can be neglected f@<1. Now we

would like to prove the following integral formula by using
the mathematical induction:

. fdxe”” Jn(TX)
e—0

lim = (— 1" 2 [H o)=Y ()]
(A8)

(1) Forn=1, it is true for the following integral formuf&

® Jq(rx
"Tofo dx e #*x %z(—l) g[H—l(F)_Y—l(F)]-

(A9)
(2) Assume that EqQLA8) is true for some positive integen;
that is, assume that

exym 277 m("x

g“:nof dxe x+1

~(=D)" Z[H =Y ]

Now taking the operator(dr)r ™
(A10), we have

deX g eXym+1 Im+1(FX)

0 Xx+1

(A10)

on both sides of Eq.

lim

e—0

~(D™ 2 H (=Y ] (ALY

Hence Eq(A8) is true forn=m+1.

Since (1) and (2) are both true, Eq(A8) is true for all
positive integera by the principle of mathematical induc-
tion. In addition, Eq(A8) is also true fom=0.1% Substitut-

Changing variablé into x/A, the integration of Bessel func- ing Eq.(A8) into Eq. (A7), we have

tions overk can be rewritten as
= Ju(ka)Jd,(kr o
fdk (k&) 3y )=de
0 0

k+1/A
wherea=a/A andr=r/A. We can expand,(ax) in terms

of power series ofix, wherea is a small quantity. Then Eq.
(AB) can be rewritten as

Jn(@Xx)Jn(TX)

X+1 '

(AB)

o Jo(ka)ydy(kr) 1 [—a\" =
Jod"—mm ~mrlz) 2 HM=Ya®]
™l r v r ] a
2 A) T A A
for a<A, r>a. (Al12)
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