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The interaction energyU int(r ) between a two-dimensional~2D! pancake vortex and a circular dielectric
defect with radiusa in a superconducting thin film is calculated in the London limitk@1. We obtain a general
expression formula ofU int(r ) for all ranger.a. Our theory predicts thatU int(r )}ln~12a2/r 2! at a short
distance, which is in the same form as the 3D bulk superconductor. ButU int(r ) decreases withr

24 at a long
distance, unlike decreases exponentially in the 3D bulk one.@S0163-1829~96!06025-0#

I. INTRODUCTION

The investigation of the pinning structures for vortices is
very significant to the potential applications of the high-Tc
superconductors. The understanding of the interaction be-
tween vortices and defects appears to be an important task
from both fundamental and technological points of view.
Some techniques have been applied to increase the concen-
tration of defects, such as heavy ion irradiation1–3 and the
inclusion of an insulating phase.4 These nonsuperconducting
defects, which interact with vortices, induce the screening
currents and lead to the so-called electromagnetic pinning.5

For three-dimensional~3D! bulk type-II superconductors,
the simple case of a single straight vortex in the presence of
a cylindrical defect has been calculated by Mkrtchyan and
Shmidt in the London limitk@1.6 Their theory has been
generalized to a periodical structure of columnar defects.7

The numerical results of the Ginzberg-Landau theory for
variousk have been obtained by Takezawa and Fukushima.8

Pearl9–11 was the first to point out that the distinctive
properties of thin-film vortices arise from their electromag-
netic long-range interaction. Then it may be deduced that the
interaction between a pancake vortex and a circular defect in
a superconducting thin film is a long-range force, unlike a
short-range force in 3D bulk system.

Buzdin and Feinberg12 analyzed the interaction of a vor-
tex with a cylindrical defect of radiusa by employing the
image method. They have derived the interaction energy
U int(r )}ln~12a2/r 2! at a short distance both in the super-
conducting thin film and 3D bulk material. Unfortunately
their theory could not be applied to the interaction at a long
distance, because the image method is valid only in that at a
short range.

In this paper, with the help of the Hankel transformation,
we develop a method of constructing the solution of the vec-
tor potentialAH caused by the screening currents of a circu-
lar defect in the presence of a single 2D pancake vortex. We
obtain a general expression ofU int(r ) and the pinning poten-
tial Upin(a), and simplify the expression ofU int(r ) by con-
sidering the actual condition ofa/L!1 ~L is Pearl’s 2D
screening length9–11!. Our theory cannot only verify the re-
sult of Buzdin and Feinberg’s12 work under consideration of
the interaction at a short distance, but also predicts that
U int(r ) at a long-range interaction is decreased withr24.

II. SOLUTION OF THE 2D PANCAKE VORTEX
IN A THIN FILM WITH A CIRCULAR DEFECT

Let us consider that a circular defect with radiusa in an
infinite type-II superconducting thin film~k@1! lies in the
x-y plane, and a 2D pancake vortex locates at a distancer
from the center of the defect~as shown in Fig. 1!. If the
external magnetic field is in thez direction, there will induce
the supercurrent densityj s in the superconducting thin film.
Then the vector potentialA satisfies the equations13

“3“3A5
4p

c
j s5

2d~z!

L Ff0êf

2pR
2AG for r.a

“3“3A50 for r,a, ~1!

where the origin of the cylindrical coordinate (R,f,z) is
located at~r ,0,0!, and the origin of the other cylindrical co-
ordinate ~r,u,z! is located at~0,0,0!. The screening length
L52l2/d plays the role of an effective penetration depth in
the superconducting thin film.9–11 l is the London penetra-
tion depth, andd is the thickness of the superconducting thin
film ~d!l!. f0 is flux quantum and is equal tohc/2e.

The solution of Eq.~1! includes two parts, and can be
written as

A~r,u,z!5A01AH , ~2!

whereA0 is the particular solution of Eq.~1! and represents
the vector potential of the single pancake vortex.AH is the
homogeneous solution of Eq.~1! and is caused by the screen-

FIG. 1. A circular defect with radiusa in an infinite supercon-
ducting thin film lies in thex-y plane, and a 2D pancake vortex
locates at a distancer from the center of the defect.
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ing current of the circular defect.A0 has been solved with a
Hankel transform by Pearl,11,13who found

A0~R,f,z!5
f0êf

2p E
0

`

dk
J1~kR!

Lk11
e2kuzu. ~3!

If we transform the coordinate from (R,f,z) to ~r,u,z!, the
two following mathematic formulas can be obtained~proved
in the Appendix, in~i!#:

êf

R
5E

0

`

dk J1~kR!êf ~4!

and

J1~kR!êf52êr (
n51

`

@Jn11~kr!1Jn21~kr!#Jn~kr !sinnu

1êuH J1~kr!J0~kr !1 (
n51

`

@Jn11~kr!

2Jn21~kr!#Jn~kr !cosnuJ , ~5!

whereJn(x)s are the Bessel functions.
From Eq.~5!, A0 can be rewritten as

A0~r,u,z!5
f0

2p E
0

`

dk
e2kuzu

Lk11 H 2êr (
n51

`

@Jn11~kr!

1Jn21~kr!#Jn~kr !sinnu1êuFJ1~kr!J0~kr !

1 (
n51

`

@Jn11~kr!2Jn21~kr!#Jn~kr !cosnuG J .
~6!

Let A85f0êf/2pR2A0. From Eqs.~4!–~6!, we find that
A8~r,u,z! can be expanded in a series of the orthogonal func-
tionsUn~r,u,z;r !, whereUn~r,u,z;r ! are the solutions of the
equation:“3“3Un522d(z)Un/L, and can be written as

Un~r,u,z;r !5
f0

2p E
0

`

dkS 12
e2kuzu

Lk11D $2êr@Jn11~kr!

1Jn21~kr!#Jn~kr !sinnu1êu@Jn11~kr!

2Jn21~kr!#Jn~kr !cosnu%, n50,1,2,... .

~7!

Setr5a in Eq. ~7!. Then we can construct the homogeneous
solution of Eq.~1!, AH , in the region of interestr.a with
the expansions ofUn(r,u,z;a) in series as follows:

AH~r,u,z!5
a0~r !

2
U0~r,u,z;a!1 (

n51

`

an~r !Un~r,u,z;a!

5
f0

2p E
0

`

dkS 12
e2kuzu

Lk11D H a0~r !J0~ka!J1~kr!êu1 (
n51

`

an~r !Jn~ka!$2êr@Jn11~kr!1Jn21~kr!#sinnu

1êu@Jn11~kr!2Jn21~kr!#cosnu%J for r.a, ~8!

and the supercurrent densityj s is given by

j s5
cd~z!

2pL Ff0êf

2pR
2AG5

f0cd~z!

4p2 E
0

`

dk
k

Lk11 H 2êu@a0~r !J0~ka!2J0~kr !#J1~kr!1 (
n51

`

@an~r !Jn~ka!2Jn~kr !#

3$êr@Jn11~kr!1Jn21~kr!#sinnu2êu@Jn11~kr!2Jn21~kr!#cosnu%J for r.a, ~9!

wherean(r )s are the coefficients which can be determined
by boundary conditions.

Because the radial component ofj s vanishes atr5a1,
wherea15a1«, « is in the order of the Ginzberg-Landau
coherence lengthj(T). The coefficientan(r ) for nÞ0 can be
determined as

an~r !5

E
0

`

dk
Jn~ka!Jn~kr !

Lk11

E
0

`

dk
Jn~ka!Jn~ka

1!

Lk11

, n51,2,3,... for r.a.

~10!

The coefficienta0(r ) can be determined by considering the
condition: the total magnetic flux trapped in the supercon-
ducting thin film ~including the defect! is equal tof0. Inte-
grating Eq.~1! along the circular contour of the defect in the
superconducting thin film, just as is done in Ref. 6, we have

pa2Hz
0~r5a1!1 R

r→`
A•dl12 R

r5a
A•dl25f0

for z50, ~11!

whereH z
0 is the term forn50 of thez-component of mag-

netic field H and H5“3A. H z
0~r<a,z50! is distributed
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uniformly because“3H54pj s/c50 in the region ofr<a
and z50. The contour integraldl1 for r→` in Eq. ~11!
means the total flux in the superconducting thin film which is
equal tof0. Substituting Eqs.~2!, ~6!, and~8! into Eq. ~11!,
we obtain

a0~r !5

E
0

`

dk
aJ0~kr !

Lk11 Fka2 J0~ka!2J1~ka!G
E
0

`

dk
aJ0~ka!

Lk11 Fka2 J0~ka
1!2J1~ka

1!G11

for r.a. ~12!

According to Ref. 14, the free energyU(r ) is obtained by
integrating the supercurrent densityj s, and the result is

U~r !5
f0

2c E j s•ds5Uself1U int~r !, ~13!

where Uself5~f0
2/8p2L!ln@L/j(T)# is the self-energy of a

single pancake vortex, and the interaction energyU int(r ) be-
tween the pancake vortex and the circular defect is given by

U int~r !52
f0
2

8p2 E
0

` dk

Lk11 Fa0~r !J0~ka!J0~kr !

12(
n51

`

an~r !Jn~ka!Jn~kr !G . ~14!

The pinning potential for a 2D pancake vortex in our system,
Upin(a), in neglecting the core energy, is defined by

Upin~a!5U~a1!2U~`!. ~15!

Substituting Eqs.~10! and~12!–~14! into Eq.~15!, we obtain
the following expression forUpin(a):

Upin~a!5

f0
2

8p2 E
0

`

dk
J0~ka!J0~ka

1!

Lk11

E
0

`

dk
aJ0~ka!

Lk11 Fka2 J0~ka
1!2J1~ka

1!G11

2
f0
2

8p2L
lnS L

j D . ~16!

The first term of Eq.~16! on the right-hand side approaches
f0
2 ln~L/a!/8p2L for a/L!1, and vanishes fora/L@1.
Then we have

Upin~a!55 2
f0
2

8p2L
lnS aj D for a/L!1

2
f0
2

8p2L
lnS L

j D for a/L@1.

~17!

We show the numerical result for the dependence of the pin-
ning potentialUpin , on the defect radiusa in Fig. 2.Upin is
negative. This means that the interaction between the vortex
and defect is attractive. Asa increases in the region ofa!L,
the depth ofUpin increases rapidly.Upin reaches a saturation

value whena>L. The 2D behavior of the pinning energy,
Upin(a)'2f0

2 ln~a/j!/8p2L for a!L, has been observed in
Bi2Sr2CaCu2Ox crystals.

2

III. DISCUSSION

In Sec. II we derived the expression formula Eq.~14! to
explain the interaction energy between a 2D pancake vortex
and a circular defect. Now let us compare the order of mag-
nitude ofL with that ofa. In generala is less than 1000 Å
andL52l2/d.104 Å. Therefore, it is very reasonable to take
the limitation fora/L!1 in our theory. Then we can obtain a
good approximation for the following integral@proved in the
Appendix, in~ii !#:

E
0

`

dk
Jn~ka!Jn~kr !

k11/L

'
p

2
@H2n~r /L!2Y2n~r /L!#J2n~a/L!

for a!L,r.a, ~18!

whereHn(x)s are the Sturve functions, andYn(x)s are the
Neumann functions. From Eq.~18!, by taking the limitation
for a/L!1, the first term of Eq.~14! on the right-hand side is
much smaller than the second term, and can be neglected.
Finally we obtain the interaction energyU int(r ) in the limit
of a/L!1 as follows:

U int~r !52
f0
2

8pL (
n51

`

an~r !@H2n~r /L!2Y2n~r /L!#

3J2n~a/L! ~19!

and

an~r !5
H2n~r /L!2Y2n~r /L!

H2n~a/L!2Y2n~a/L!
. ~20!

FIG. 2. The pinning potentialUpin as a function of the defect
radiusa for L/j51000 on the basis of Eq.~16!.
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If we take two limits ~i! r /L!1 and ~ii ! r /L@1, we can
obtain15

H2n~r /L!2Y2n~r /L!

5H ~n21!!

p S 2
2L

r D n for r!L

2
2•~2n21!!!

p S 2
L

r D n11

for r@L.

~21!

Substituting Eqs. ~20! and ~21! and J2n(a/L)
'(2a/2L)n/n! into Eq. ~19!, we obtain the following ex-
pressions forU int(r ):

~i! For a,r!L,

U int~r !52
f0
2

8p2L (
n51

`
1

n S ar D
2n

5
f0
2

8p2L
ln~12a2/r 2!

for a,r!L. ~22!

~ii ! For a!L!r , taking the lowest-order term ofL/r and
neglecting the higher-order terms, we can obtain

U int~r !52
f0
2

8p2L S L2a2

r 4 D for a!L!r . ~23!

On the basis of Eqs.~19! and~20!, we successfully obtain a
general formula for expressing the interaction energyU int(r )
between the pancake vortex and a circular defect~a!L!, and
this formula is valid for all rangesr.a. Our theory cannot
only be reduced to the result of Buzdin and Feinberg,12 i.e.,
U int(r )}ln~12a2/r 2! for r!L, derived by the image method,
but can also obtain the prediction ofU int(r )}r

24 for r@L,
which cannot be derived from the image method. The nu-
merical result ofU int(r ) in Eqs. ~19! and ~20! is shown in
Fig. 3 for a/L50.1 andL/j51000.

On the other hand, the vortex-defect interaction energy in
the 3D bulk,U int

3D(r ), derived by Mkrtchyan and Shmidt,6 is
in the following form:

U int
3D~r !'H S f0

4pl D 2 lnS 12
a2

r 2 D for a,r!l

2S f0

4pl D 2 pa2

2lr
e22r /l for a!l!r .

~24!

Comparing Eqs.~22! and ~23! with Eq. ~24!, we obtain that
the vortex-defect interaction energies for smallr have the
same form ln~12a2/r 2! in both 2D and 3D systems. How-
ever, whenr is large, the vortex-defect interaction energy
decreases withr24 in the 2D system, and decreases exponen-
tially in the 3D system.

IV. CONCLUSIONS

In this paper we have presented an analytic method to
calculate the perturbation of supercurrents caused by a circu-
lar defect in the superconducting thin film. A Hankel trans-
formation technique was used, whereby we can construct the

homogeneous solution of Eq.~1!, AH . The interaction en-
ergy U int(r ) between a 2D pancake vortex and a circular
defect is consequently derived for all rangesr.a. The pin-
ning potentialUpin(a) is also obtained.

It is worthy to emphasize that our theory can be reduced
to the result of Buzdin and Feinberg,12 i.e., U int(r )
}ln~12a2/r 2! for a,r!L. Moreover, our theory predicts
that U int(r ) decreases withr24 for r@L@a, unlike expo-
nential decreases in 3D bulk superconductor. Therefore we
may conclude that the interaction between a 2D pancake vor-
tex and a circular defect in the superconducting thin film is a
long-range force, unlike a short-range force in the 3D bulk
material.
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APPENDIX

~i! Prove

J1~kR!êf52êr (
n51

`

@Jn11~kr!1Jn21~kr!#Jn~kr !sinnu

1êuH J1~kr!J0~kr !1 (
n51

`

@Jn11~kr!

2Jn21~kr!#Jn~kr !cosnuJ .
By the summation theorem, the Bessel functionJ0(kR) can
be expanded in the following form:16

FIG. 3. The interaction energyU int as a function ofr for a/L
50.1 andL/j51000 on the basis of Eqs.~19! and~20! ~solid line!.
The result of Ref. 12,U int5f0

2/8p2L ln~12a2/r 2!, is also shown
~dashed line!.
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J0~kR!5J0~kr!J0~kr !12(
n51

`

Jn~kr!Jn~kr !cosnu. ~A1!

Taking the partial derivatives]/]r and]/]u on both sides of
Eq. ~A1!, we have

S r2r cosu

R D J1~kR!5J1~kr!J0~kr !1 (
n51

`

@Jn11~kr!

2Jn21~kr!#Jn~kr !cosnu, ~A2!

r sinu

R
J1~kR!5 (

n51

`

@Jn11~kr!1Jn21~kr!#Jn~kr !sinnu.

~A3!

Considering the transformation of the coordinates from
(R,f,z) to ~r,u,z!, the angular unit vector in coordinate sys-
tem (R,f,z), êf , can be expressed as

êf5
2r sinuêr1~r2r cosu!êu

R
. ~A4!

From Eqs.~A2!–~A4!, we have

J1~kR!êf52êr (
n51

`

@Jn11~kr!1Jn21~kr!#Jn~kr !sinnu

1êuH J1~kr!J0~kr !1 (
n51

`

@Jn11~kr!

2Jn21~kr!#Jn~kr !cosnuJ . ~A5!

~ii ! Prove

E
0

`

dk
Jn~ka!Jn~kr !

k11/L
'

p

2 FH2nS rL D2Y2nS rL D GJ2nS aL D
for a!L,r.a.

Changing variablek into x/L, the integration of Bessel func-
tions overk can be rewritten as

E
0

`

dk
Jn~ka!Jn~kr !

k11/L
5E

0

`

dx
Jn~ ãx!Jn~ r̃ x!

x11
, ~A6!

whereã5a/L and r̃5r /L. We can expandJn(ãx) in terms
of power series ofãx, whereã is a small quantity. Then Eq.
~A6! can be rewritten as

E
0

`

dk
Jn~ka!Jn~kr !

k11/L
5 lim

«→0

1

n! S ã2D
nE

0

`

dx e2«xxn
Jn~ r̃ x!

x11

1O~ ãn12!, ~A7!

where the termO(ãn12) can be neglected forã!1. Now we
would like to prove the following integral formula by using
the mathematical induction:

lim
«→0

E
0

`

dx e2«xxn
Jn~ r̃ x!

x11
5~21!n

p

2
@H2n~ r̃ !2Y2n~ r̃ !#.

~A8!

~1! For n51, it is true for the following integral formula16

lim
«→0

E
0

`

dx e2«xx
J1~ r̃ x!

x11
5~21!

p

2
@H21~ r̃ !2Y21~ r̃ !#.

~A9!

~2! Assume that Eq.~A8! is true for some positive integerm;
that is, assume that

lim
«→0

E
0

`

dx e2«xxm
Jm~ r̃ x!

x11

5~21!m
p

2
@H2m~ r̃ !2Y2m~ r̃ !#. ~A10!

Now taking the operator (]/] r̃ ) r̃2m on both sides of Eq.
~A10!, we have

lim
«→0

E
0

`

dx e2«xxm11
Jm11~ r̃ x!

x11

5~21!m11
p

2
@H2m21~ r̃ !2Y2m21~ r̃ !#. ~A11!

Hence Eq.~A8! is true forn5m11.
Since ~1! and ~2! are both true, Eq.~A8! is true for all

positive integersn by the principle of mathematical induc-
tion. In addition, Eq.~A8! is also true forn50.16 Substitut-
ing Eq. ~A8! into Eq. ~A7!, we have

E
0

`

dk
Jn~ka!Jn~kr !

k11/L
'

1

n! S 2ã

2 D n p

2
@H2n~ r̃ !2Y2n~ r̃ !#

'
p

2 FH2nS rL D2Y2nS rL D GJ2nS aL D
for a!L, r.a. ~A12!
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