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bstract

An accurate classifier with linguistic interpretability using a small number of relevant genes is beneficial to microarray data analysis
nd development of inexpensive diagnostic tests. Several frequently used techniques for designing classifiers of microarray data,
uch as support vector machine, neural networks, k-nearest neighbor, and logistic regression model, suffer from low interpretabilities.
his paper proposes an interpretable gene expression classifier (named iGEC) with an accurate and compact fuzzy rule base for
icroarray data analysis. The design of iGEC has three objectives to be simultaneously optimized: maximal classification accuracy,
inimal number of rules, and minimal number of used genes. An “intelligent” genetic algorithm IGA is used to efficiently solve

he design problem with a large number of tuning parameters. The performance of iGEC is evaluated using eight commonly-used

ata sets. It is shown that iGEC has an accurate, concise, and interpretable rule base (1.1 rules per class) on average in terms of test
lassification accuracy (87.9%), rule number (3.9), and used gene number (5.0). Moreover, iGEC not only has better performance
han the existing fuzzy rule-based classifier in terms of the above-mentioned objectives, but also is more accurate than some existing
on-rule-based classifiers.

2006 Elsevier Ireland Ltd. All rights reserved.
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. Introduction

Microarray is a useful technique for measuring
xpression data of thousands of genes simultaneously.
icroarray gene expression profiling technology is one

f the most important research topics in clinical diag-
osis of disease. Gene expression data provide valuable

nformation in the understanding of genes, biological
etworks, and cellular states. One goal in analyzing
xpression data is to determine how the expression of
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any particular gene might affect the expression of other
genes in the same genetic network (Ressom et al., 2003;
Woolf and Wang, 2000; Kauffman et al., 2003; Wahde
and Hertz, 2000). Another goal is to determine how genes
are expressed as a result of certain cellular conditions
(e.g., how genes are expressed in diseased and healthy
cells) (Creighton and Hanash, 2003).

The practical applications of microarray gene expres-
sion profiles include management of cancer and infec-
tious diseases. The prediction of the diagnostic category

of a tissue sample from its expression array phenotype
from tissues in identified categories is known as classifi-
cation. Because the number of tissue samples is usually
much smaller than the number of genes, it may occur

ed.



ystems
166 S.-Y. Ho et al. / BioS

that there are multiple different sets with the same small
number of genes having the same high classification
accuracy (Yeung et al., 2005). In analyzing expression
data by designing classifiers, it is better to provide addi-
tional biological knowledge associated for verifying the
selected genes rather than the emphasis of both high clas-
sification accuracy and small number of used genes only.
In this study, designing an accurate and compact fuzzy
rule-based classifier with linguistic interpretability using
a small number of relevant genes is investigated, which is
beneficial to microarray data analysis and development
of inexpensive diagnostic tests. The desirable classifier is
a set of fuzzy rules with linguistic interpretability where
each rule is as the similar form: if gene A is up-regulated
and gene B is down-regulated, then the probability of
disease X is high.

Merz (2003) applied memetic algorithms to the
minimum sum-of-squares clustering problem for gene
expression profile analysis. Recently, some supervised
machine learning techniques, such as support vector
machine (SVM), neural networks (NN), k-nearest neigh-
bor (k-NN), and logistic regression have been used in
designing gene expression data classifiers (Statnikov et
al., 2005; Vinterbo et al., 2005). Liu et al. (2004) pro-
posed a feature selection method which combines top-
ranked, test-statistic, and principle component analysis
in conjunction with ensemble NN to design classifiers.
Zhou and Mao (2005) suggested a filter-like evalua-
tion criterion, called LS Bound measure, derived from
leave-one-out procedure of least squares support vec-
tor machines (LS-SVMs), which provides gene subsets
leading to more accurate classification. Liu et al. (2005a)
combined the entropy-based feature selection method
using simulated annealing and k-NN classifier for can-
cer classification. Liu et al. (2005b) proposed a hybrid
method which combines GA and SVM for multi-class
cancer categorization.

Statnikov et al. (2005) investigated some existing
multi-class classification methods and indicated that
the multi-category SVM is the most effective classi-
fier for tumor classification in terms of classification
accuracy using a very large number of genes. How-
ever, given thousands of genes, only a small number
of genes show strong correlation with a certain pheno-
type (Ding, 2003). To advance the classification per-
formance using a small number of genes, it is better
to take both gene selection and classifier design into
account simultaneously (Deb and Reddy, 2003). Li et

al. (2001) proposed a hybrid method of the genetic algo-
rithm (GA)-based gene selection and k-NN classifier to
assess the importance of genes for classification. Ooi and
Tan (2003) proposed a maximal likelihood based method
85 (2006) 165–176

for the multi-category prediction of gene expression
data.

However, learning results of the above-mentioned
classifiers containing equations involving several
coefficients, interaction terms, and constants cannot be
summarized into linguistically interpretable forms for
biologists and biomedical scientists (Vinterbo et al.,
2005). Li et al. (2003) used a tree structure to classify
microarray samples. Hvidsten et al. (2003) proposed
learning rule-based models of biological process from
gene expression time profiles using gene ontology.
Vinterbo et al. (2005) presented a rule-induction and
filtering strategy to obtain an accurate, small, and inter-
pretable fuzzy classifier using a grid partition of feature
space, compared with the classifier of logistic regression.

In this paper, we propose an interpretable gene expres-
sion classifier (named iGEC) with an accurate and com-
pact fuzzy rule base using a scatter partition of feature
space for microarray data analysis. Because gene expres-
sion data have the property of natural clustering, fuzzy
classifiers using a scatter partition of feature spaces often
have a smaller number of rules than those using grid
partition (Ho et al., 2004a). The design of iGEC has
three objectives to be simultaneously optimized: max-
imal classification accuracy, minimal number of rules,
and minimal number of used genes. In designing iGEC,
the flexible membership function, fuzzy rule, and gene
selection are simultaneously optimized. An “intelligent”
genetic algorithm IGA is used to efficiently solve the
design problem with a large number of tuning parame-
ters (Ho et al., 2004a).

The performance of iGEC is evaluated using eight
gene expression data sets. It is shown that iGEC has an
accurate, concise, and interpretable rule base (1.1 rules
per class) averagely in terms of test classification accu-
racy (87.9%), rule number (3.9), and used gene number
(5.0). Moreover, iGEC not only has better performance
than the classifier (Vinterbo et al., 2005) in terms of the
above-mentioned objectives, but also is more accurate
than some existing non-rule-based classifiers (k-NN and
NNs).

2. Methods

High performance of iGEC mainly arises from two aspects.
One is to simultaneously optimize all parameters in the design
of iGEC where all the elements of the fuzzy classifier design
have been moved in parameters of a large parameter optimiza-

tion problem. The other is to use an efficient optimization
algorithm IGA which is a specific variant of the intelligent
evolutionary algorithm (Ho et al., 2004b). The intelligent
evolutionary algorithm uses a divide-and-conquer strategy to
effectively solve large parameter optimization problems. IGA
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Fig. 1. Illuminations of FGPMF: (a) a > 0 an

s shown to be effective in the design of accurate classifiers
ith a compact fuzzy-rule base using an evolutionary scatter
artition of feature space (Ho et al., 2004a).

.1. Flexible membership function

The classifier design of iGEC uses flexible generic param-
terized fuzzy regions which can be determined by flexible
eneric parameterized membership functions (FGPMFs) and
hyperbox-type fuzzy partition of feature space. Each fuzzy

egion corresponds to a parameterized fuzzy rule. In this study,
ach value of gene expression is normalized into a real number
n the unit interval [0,1]. An FGPMF with a single fuzzy set is
efined as

(x) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0 if x ≤ a or x ≥ d

x − a

b − a
if a < x < b

d − x

d − c
if c < x < d

1 if b ≤ x ≤ c

(1)

here x ∈ [0, 1] and a ≤ b ≤ c ≤ d. The variables a, b, c, and
determining the shape of a trapezoidal fuzzy set are the

arameters to be optimized. It is well recognized that con-
ning evolutionary searches within feasible regions is often
uch more reliable than penalty approaches for handling con-

trained problems (Michalewicz et al., 1996). Therefore, five
1 2 5
arameters V , V , . . ., V ∈ [0, 1] without constraints instead

f a, b, c, and d are encoded into a GA-chromosome for
acilitating IGA. Let an additional variable L = V1 which deter-
ines the location of the fuzzy set characterizing the occur-

ence of training patterns. When Vi are obtained, variables

ig. 2. Examples of an antecedent fuzzy set Aji with linguistic values (L: low
epresents {ML, M, MH}; (b) Aji represents {ML, M, MH, H}, i.e., not Low;
; (b) a < 0 < b; (c) b ≤ 0; (d) b ≤ 0 and c ≥ 1.

a, b, c, and d can be derived as follows: a = L − (V2 + V3),
b = L − V3, c = L + V4, and d = L + (V4 + V5). This transforma-
tion can always make the derived values of a, b, c, and d feasible
and reduce interactions among encoded parameters of GA-
chromosomes. Some illuminations of FGPMF are shown in
Fig. 1.

2.2. Fuzzy rule and fuzzy reasoning method

The following fuzzy if–then rules for n-dimensional pattern
classification problems are used in the design of iGEC:

Rj : If x1 is Aj1 and . . . and xn is Ajn then class CLj with CFj,

j = 1, . . . , N.

where Rj is a rule label, xi denotes a gene variable, Aji is an
antecedent fuzzy set, C is a number of classes, CLj ∈ {1, . . .,
C} denotes a consequent class label, CFj is a certainty grade of
this rule in the unit interval [0, 1], and N is a number of initial
fuzzy rules in the training phase.

To enhance interpretability of fuzzy rules, linguistic vari-
ables in fuzzy rules can be used. Each variable xi has a linguistic
set U = {L, ML, M, MH, H}. Each linguistic value of xi equally
represents 1/5 of the domain [0, 1]. Following the quantization
criterion, we can consider genes to be regulated according to
a qualitative level. For example, xi is Low for down-regulated
genes; xi is Medium for neutral genes; and xi is High for up-
regulated genes. An antecedent fuzzy set Aji ∈ Au where Au
denotes a set of subsets of U. Examples of linguistic antecedent
fuzzy sets are shown in Fig. 2.

In the training phase, all the variables CLj and CFj are
treated as parametric genes of GA (GA-genes) encoded in
chromosomes of GA (GA-chromosomes) and their values are

, ML: medium low, M: medium, MH: medium high, H: high): (a) Aji

(c) Aji represents {L, ML, M, MH, H} or ALL.
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obtained using IGA. The following fuzzy reasoning method is
adopted to determine the class of an input pattern xp = (xp1, xp2,
. . ., xpn) based on voting using multiple fuzzy if–then rules:

Step 1: Calculate score SClass v(v = 1, . . . , C) for each class as
follows:

SClass v =
∑

Rj ∈ FC

CLj = Class v

µj(xp)CFj,

µj(xp) =
n∏

i=1

µji(xpi), (2)

where FC denotes the fuzzy classifier, the scalar value
and µji(·) represents the membership function of the
antecedent fuzzy set Aji.

Step 2: Classify xp as the class with a maximal value of SClass v.

2.3. Fitness function and GA-chromosome representation

We define the fitness function Fit() of IGA for designing
iGEC as follows:

max Fit(FC) = NCP − WrNr − WfNf (3)

where Wr and Wf are positive weights. In this study, the fitness
function is used to optimize the three objectives in the following
order: to maximize the number NCP of correctly classified
training patterns, to minimize the number Nr of fuzzy rules,
and to minimize the number Nf of selected genes. Generally,
the final number of fuzzy rules is smaller than 10. Therefore,
we set Wr = 0.1 to ensure that classification accuracy has the
first priority to be optimized. When the two objectives NCP
and Nr are simultaneously optimized for microarray data, the
best number of used genes is almost determined. Hence, a very
small value 0.001 is set to Wf. The sensitive analysis about
the different settings of Wr and Wf can be referred to Ho et
al. (2004a). It is shown that various combinations of feasible
settings of Wr and Wf are not sensitive to performance of the
fuzzy-rule based classifier (Ho et al., 2004a).

A GA-chromosome consists of control GA-genes for select-
ing useful genes and significant fuzzy rules, and parametric
GA-genes for encoding the membership functions and fuzzy

rules. The control GA-genes comprise two types of parame-
ters. One is parameter rj, j = 1, . . ., N, represented by one bit
for eliminating unnecessary fuzzy rules. If rj = 0, the fuzzy rule
Rj is excluded from the rule base. Otherwise, Rj is included.
The other is parameter fi, i = 1, . . ., n, represented by one bit

Fig. 3. GA-chromosome
85 (2006) 165–176

for eliminating useless genes. If fi = 0, the gene xi is excluded
from the classifier. Otherwise, xi is included. The paramet-
ric GA-genes consist of three types: Vk

ji ∈ [0, 1], k = 1, . . . , 5,
for determining the antecedent fuzzy set Aji; CLj for determin-
ing the consequent class label of rule Rj; and CFj ∈ [0, 1] for
determining the certainty grade of rule Rj; where j = 1, . . ., N
and i = 1, . . ., n. A rule base with N fuzzy rules is represented
as an individual, as shown in Fig. 3. The number of encod-
ing parameters to be optimized is equal to Np = n + 3N + 5Nn.
A GA-chromosome representation uses a binary string for
encoding control and parametric GA-genes. There are eight
bits for encoding one of parameters Vk

ji and CFj. Since each
fuzzy region defines a fuzzy rule, the initial setting of N
is independent of n but dependent on the number of fuzzy
regions. Generally, N is set to the maximal number of pos-
sible fuzzy regions. In this study, N = 3C. The design of an
efficient fuzzy classifier is formulated as a large parameter
optimization problem. Once the solution of IGA is obtained,
an accurate classifier with a compact fuzzy rule base can be
derived.

2.4. IGA for designing iGEC

The main difference between IGA and the traditional GA
(Goldberg, 1989) is an efficient intelligent crossover operation.
The intelligent crossover is based on orthogonal experimental
design to solve intractable optimization problems comprising
lots of system parameters. The intelligent crossover is pre-
sented while the merits of orthogonal experimental design and
the superiority of intelligent crossover can be further referred
to Ho et al. (2004a, 2004b).

2.4.1. Orthogonal experimental design
The two-level orthogonal arrays (OAs) used in IGA are

described below. Let there be α factors, with two levels each.
The total number of level combinations is 2α for a complete
factorial experiment. To use an OA of α factors, we obtain an
integer M = 2[log2(α+1)] where the bracket represents an upper
ceiling operation, build an OA LM(2M − 1) with M rows and
M − 1 columns, use the first α columns, and ignore the other
M − α − 1 columns. OA can reduce the number of level com-
binations for factor analysis. The number of OA combinations
required to analyze all individual factors is only M = O(α),

where α + 1 ≤ M ≤ 2α.

After proper tabulation of experimental results, the summa-
rized data are analyzed using factor analysis to determine the
relative effects of levels of various factors as follows. Let yt

denote a objective function value of the combination t, where

representation.
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= 1, . . ., M. Define the main effect of factor i with level k as
ik where i = 1, . . ., α:

ik =
M∑
t=1

ytWt (4)

here Wt = 1 if the level of factor i of combination t is k; other-
ise, Wt = 0. Since the fitness function is to be maximized, level
of factor i makes a better contribution to the fitness function

han level 2 of factor i does when Si1 > Si2. If Si1 < Si2, level 2
s better. If Si1 = Si2, levels 1 and 2 have the same contribution.
he main effect reveals the individual effect of a factor. The
ost effective factor i has the largest main effect difference
EDi = |Si1 − Si2|. After the better one of two levels of each

actor is determined, an efficient combination consisting of all
actors with the better levels can be easily derived.

.4.2. Intelligent crossover
All parameters are encoded into a GA-chromosome using

inary codes. Like traditional GAs, two parents P1 and P2 pro-
uce two children C1 and C2 in one crossover operation. Let all
ncoded parameters be randomly assigned into α groups where
ach group is treated as a factor. The following steps describe
he intelligent crossover operation.

tep 1: Use the first α columns of an OA LM(2M − 1).
tep 2: Let levels 1 and 2 of factor i represent the ith groups

of parameters coming from parents P1 and P2, respec-
tively.

tep 3: Evaluate the fitness values yt for experiment t where
t = 2, . . ., M. The value y1 is the fitness value of P1.

tep 4: Compute the main effect Sik where i = 1, . . ., α and
k = 1, 2.

tep 5: Determine the better one of two levels of each factor.
tep 6: The GA-chromosome of C1 is formed using the com-

bination of the better GA-genes from the derived cor-
responding parents.

tep 7: The GA-chromosome of C2 is formed similarly as C1,
except that the factor with the smallest main effect
difference adopts the other level.

tep 8: The best two individuals among P1, P2, C1, C2, and
M − 1 combinations of OA are used as the final chil-
dren C1 and C2 for elitist strategy.

One intelligent crossover operation takes M + 1 fitness eval-
ations, where α + 1 ≤ M ≤ 2α, to explore the search space of
α combinations.

.4.3. Intelligent genetic algorithm
The used IGA is given as follows:

tep 1: Randomly generate an initial population with Npop
individuals.
tep 2: Evaluate fitness values of all individuals in the popu-

lation. Let Ibest be the best individual in the population.
tep 3: Use the simple ranking selection that replaces the

worst PsNpop individuals with the best PsNpop individ-
85 (2006) 165–176 169

uals to form a new population, where Ps is a selection
probability.

Step 4: Randomly select PcNpop individuals including Ibest,
where Pc is a crossover probability. Perform intelligent
crossover operations for all selected pairs of parents.

Step 5: Apply a conventional bit-inverse mutation operator to
the population using a mutation probability Pm. To pre-
vent the best fitness value from deteriorating, mutation
is not applied to the best individual.

Step 6: Termination test: If a pre-specified termination condi-
tion is satisfied, stop the algorithm. Otherwise, go to
step 2.

3. Experiments

3.1. Implementation and data sets

The parameter settings of IGA from Ho et al.
(2004a) are Npop = 20, Pc = 0.7, Ps = 1 − Pc, Pm = 0.01,
and α = 15. Because the search space of optimal design
of iGEC is proportional to the number Np of parame-
ters to be optimized, the stopping condition is suggested
to use a fixed number 100Np of fitness evaluations (Ho
et al., 2004a) for the following two reasons: (1) for
future comparisons with other methods based on the
same computation cost; and (2) satisfactory solutions
can be obtained which are not sensitive to the number
of evaluations used. Of course, if the number of evalua-
tions is increased, the results may be slightly improved.
Because of the non-deterministic characteristic of GA,
all the experimental results are the average values of 30
independent runs. For each run, a 10-fold cross validation
(10-CV) is adopted. Note that the algorithm proposed by
Vinterbo et al. (2005) is deterministic that the results are
the same for all independent runs.

For comparison, we adopted the same Wilcoxon rank
sum test with Vinterbo et al. (2005) as a non-parametric
feature pre-selection method. In this study, we pre-
selected n = 10, 15, 20, and 100 representative genes
to evaluate the performance of iGEC. Considering the
test accuracy as well as the numbers of rules and genes,
n = 15 (slightly better) is suggested as the default setting
of iGEC in this study. If the number C of classes is fur-
ther increased (e.g., C > 10), the number n is suggested
to be proportionally increased.

Table 1 shows the eight data sets from Statnikov et
al. (2005), which are available from http://www.gems-
systems.org/. The following experiments are designed

to evaluate the proposed method using comparisons
with some existing rule and non-rule based classifiers.
The first comparison is made between iGEC and the
Vinterbo’s fuzzy rule-based classifier and the second

http://www.gems-systems.org/
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Table 1
The eight data sets from Statnikov et al. (2005)

No. Data set Descriptions No. of classes No. of samples No. of genes Np Reference

1 Brain tumor1 5 human brain tumor types 5 90 5920 1185 Pomeroy et al. (2002)
2 Brain tumor2 4 malignant glioma types 4 50 10367 951 Nutt et al. (2003)
3 DLBCL Diffuse large b-cell lymphomas

and follicular lymphomas
2 77 5469 483 Shipp et al. (2002)

4 Leukemia1 Acute myelogenous leukemia
(AML), Acute lympboblastic
leukemia (ALL) B-cell, and ALL
T-cell

3 72 5327 717 Golub et al. (1999)

5 Leukemia2 AML, ALL, and mixed-lineage
leukemia (MLL)

3 72 11225 717 Armstrong et al. (2002)

6 Lung cancer 4 lung cancer types and normal
tissues

5 203 12600 1185 Bhattacharjee et al. (2001)

7 Prostate tumor Prostate tumor and normal tissue 2 102 10509 483 Singh et al. (2002)

8 SRBCT Small, round blue cell tumors of

childhood
4

one between iGEC and the non-rule-based classifiers in
Statnikov et al. (2005).

3.2. Results

For comparisons, we conducted two evaluations on
the Vinterbo’s method using different numbers of pre-
selected genes. One is to use 200 pre-selected genes
(V200), which is the same with that in Vinterbo et al.
(2005). The other is to use 15 genes (V15), which is the
same with that of the proposed method. Table 2 shows the
statistical results (mean and standard deviation) of iGEC
and the Vinterbo’s classifier in terms of training accuracy,
test accuracy, number of rules, number of genes, and rule
number per class. The results of the Vinterbo’s classifier
were obtained by running the same program provided
by Vinterbo et al. (2005). The same data which have
the same partition are used for iGEC, V200, and V15.
Fig. 4 presents the experimental results using box plots.
Fig. 5(a) and (b) show the three-dimensional scatter plots
in terms of test accuracy, rule number, and gene number
for data sets lung cancer and SRBCT, respectively.

From Table 2, we can observe that iGEC performs
better than the Vinterbo’s classifier using 200 candidate
genes (V200) in the five measures: TrCR (97.1% versus
81.5%), TeCR (87.9% versus 81.2%), Nr (3.9 versus 4.9),
Nf (5.0 versus 7.2), and Nr/C (1.1 versus 1.4). Note that
V200 is better than V15 but using more candidate genes
and computation time. Moreover, the classifiers V200
compare favorably to those of a logistic regression model

which is one of the frequently used classification method
applied in the biomedical domain (Vinterbo et al., 2005).

Fig. 6 shows an example of iGEC using the data
set leukemia1 where 90% samples are for training and
83 2308 951 Khan et al. (2001)

the rest for test. The classifier has four fuzzy rules
using three genes L05148, U46499, and U05259, where
TrCR = 100% and TeCR = 100%. The fuzzy rules are lin-
guistically interpretable as follows:

R1 If L05148 is not up-regulated and U05259 is
not down-regulated, then class “ALL B-Cell”
with CF = 0.243;

R2 If L05148 is ALL and U46499 is neutral or
up-regulated, then class “ALL B-Cell” with
CF = 0.682;

R3 If L05148 is not down-regulated, U46499 is
ALL and U05259 is ALL, then class “ALL T-
Cell” with CF = 0.710;

R4 If L05148 is ALL, U46499 is ALL and U05259
is ALL, then class “AML” with CF = 0.722.

Where the membership functions of genes U46499
and U05259 in R1 and R2, respectively, are “don’t care”
which can reduce the rule length. From the compact rule
base, it is easy to interpret the classification model from
gene expression data. The fuzzy rules can be examined
by biomedical researchers. Due to the natural cluster-
ing property of gene expression data, each of the classes
“ALL T-Cell” and “AML” has one fuzzy rule correspond-
ing to one fuzzy region while the class “ALL B-Cell”
has two fuzzy regions overlapped. Furthermore, we can
know the distribution of samples of each class from the
corresponding membership function in the feature space.
The fuzzy rule base can determine the class of unknown

samples using Eq. (2).

To further realize whether these three genes L05148,
U46499, and U05259 make sense as a group and their
biological relationship, we process the average link-
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Table 2
The statistical results of iGEC and the Vinterbo’s classifier on training accuracy (TrCR), test accuracy (TeCR), number of rules (Nr), number of
genes (Nf), and rule number per class (Nr/C)

Data set Method TrCR (%) TeCR (%) Nr Nf Nr/C

Brain
tumor1

iGEC 92.4 ± 0.1 88.7 ± 2.5 5.0 ± 0.1 5.9 ± 0.2 1.00
V200 80.85 81.25 6.50 8.60 1.30
V15 78.66 85.00 6.00 9.20 1.20

Brain
tumor2

iGEC 97.0 ± 0.2 72.4 ± 4.4 4.4 ± 0.1 5.5 ± 0.3 1.11
V200 60.00 60.00 4.00 8.30 1.00
V15 66.60 63.33 5.10 6.70 1.27

DLBCL
iGEC 98.5 ± 0.7 91.2 ± 1.8 2.5 ± 0.3 3.7 ± 0.4 1.28
V200 85.91 85.00 2.60 3.80 1.30
V15 84.65 78.33 7.00 6.90 3.50

Leukemia1
iGEC 99.7 ± 0.2 94.0 ± 2.5 3.5 ± 0.1 4.1 ± 0.3 1.18
V200 90.15 92.00 5.30 7.30 1.76
V15 87.61 84.00 4.90 8.10 1.63

Leukemia2
iGEC 98.7 ± 0.3 85.3 ± 2.7 3.3 ± 0.1 4.3 ± 0.3 1.12
V200 81.97 76.67 4.30 5.50 1.43
V15 74.70 71.67 3.50 4.10 1.16

Lung
can-
cer

iGEC 92.7 ± 0.2 88.0 ± 2.7 5.5 ± 0.2 6.9 ± 0.4 1.10
V200 85.35 84.44 7.80 14.50 1.56
V15 81.57 82.78 8.30 8.90 1.66

Prostate
tumor

iGEC 97.9 ± 0.5 90.9 ± 4.0 2.4 ± 0.2 4.1 ± 0.4 1.21
V200 81.5 82.00 3.00 3.30 1.50
V15 84.46 84.00 2.90 5.10 1.45

SRBCT
iGEC 99.8 ± 0.5 92.3 ± 9.9 4.3 ± 0.2 4.8 ± 0.3 1.08
V200 86.36 88.33 5.80 6.20 1.45
V15 78.44 71.67 5.10 10.20 1.27

Mean
iGEC 97.1 87.9 3.9 5.0 1.1
V200 81.5 81.2 4.9 7.2 1.4
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a
E
e
F
i
o
v
t
c
t
s

{
o
fi
l
U
M
m

V15 79.6

ge (average distance, UPGMA) clustering based on
uclidean distances squared by EPCLUST (Parkinson
t al., 2003). Fig. 7 shows the clustering result. From
ig. 7, we can observe that most of the samples belong-

ng to same class are grouped together. From thousands
f genes, the proposed method can identify few but rele-
ant genes to make accurate classification. Furthermore,
he biological finding is interpretable from the obtained
ompact fuzzy rule base. Therefore, iGEC is beneficial
o microarray data analysis and development of inexpen-
ive diagnostic tests.

Besides the leukemia1 classifier using the gene set
L05148, U46499, U05259} shown in Fig. 6, there are
ther sets of three genes which can establish the classi-
ers with both 100% training and test accuracies as fol-
ows: {L05148, M63138, U05259}, {M11722, L05148,
46499}, {M31523, U16954, U46499}, and {U16954,
27891, U05259}. This scenario results from that the
icroarray data have a large number of genes but a very
5.4 7.4 1.6

small number of samples. iGEC can provide important
knowledge to biological scientists. Table 3 gives descrip-
tions of the selected genes from the data set leukemia1
of 72 samples. For each gene, we counted the num-
ber of articles that were retrieved by a PubMed query
containing the gene name and the string “leukemia”.
By combining more gene sets of solutions, most of
genes highly related to the leukemia disease can be
obtained.

Due to different merits of fuzzy partitions such as grid
partition, tree partition, and scatter partition, they cannot
be directly compared using some specific measurements
(Ho et al., 2004a). However, iGEC has 1.1 fuzzy regions
for describing the sample distribution of each class aver-
agely. Besides the above-mentioned advantages of easy

interpretation and economical experiments, the proposed
fuzzy rule-base method using a scatter partition of fea-
ture space can enclose all possible occurrences of sam-
ples in the same class with one or few hyperbox-type
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cy; (b)
Fig. 4. The box plots of the statistical results: (a) training accura

fuzzy regions. In other words, the fuzzy regions of scat-
ter partition can represent one class more independently
than those of grid partition. Therefore, iGEC can reject
the unknown sample if it belongs to no fuzzy region that
no fuzzy rule is fired.
To further evaluate accuracy of the proposed method,
we compared iGEC with some non-rule-based classi-
fiers without using gene selection methods in Statnikov
et al. (2005). Table 4 shows the test accuracy com-

Fig. 5. The 3D scatter plots: (a) lu
test accuracy; (c) number of rules and (d) number of used genes.

parisons using 10-CV on the eight data sets between
iGEC and the following methods: multi-category sup-
port vector machine (SVM), k-nearest neighbors (k-NN),
backpropagation neural networks (NN), and probabilis-
tic neural networks (PNN) which are the most common

methods for gene expression data analysis. The results
are obtained from Statnikov et al. (2005).

Table 4 indicates that the multi-category SVM with
93.63% average test accuracy on the eight data sets is the

ng cancer and (b) SRBCT.
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Fig. 6. Fuzzy rules of the data set leukemia1 using 90% samples for training

Table 3
Selected genes for the leukemia1 data set example

Gene Description No. of
references

M11722 Human terminal transferase mRNA 154
L05148 Human protein tyrosine kinase related

mRNA sequence
26

M63138 Human cathepsin D 24
M31523 Human transcription factor (E2A)

mRNA
17

U05259 Human MB-1 gene, complete cds 12
U46499 Homo sapiens microsomal glutathione

transferase (MGST1) gene, 3′ sequence
10

M27891 Human cystatin C gene 5
U16954 Human (AF1q) mRNA 3

For each gene we counted the number of articles that were retrieved by
a PubMed query consisting of the gene name and the string “leukemia”.

Table 4
The test accuracies and numbers of used genes for iGEC and non-rule-based

Data set No. of genes in
non-rule-based classifiers

Accuracy (%)

SVM k-N

Brain tumor1 5920 91.67 87
Brain tumor2 10367 77.00 68
DLBCL 5469 97.50 86
Leukemia1 5327 97.50 83
Leukemia2 11225 97.32 87
Lung cancer 12600 96.05 89
Prostate tumor 10509 92.00 85
SRBCT 2308 100.00 86

Mean 7965.6 93.63 84

The results of the non-rule-based classifiers without using gene selection met
and the rest for test. The training and test accuracies are both 100%.

most accurate classifier for diseases classification. How-
ever, it is not practical to use as many as 7965.6 genes
on average to classify diseases samples for economi-
cal biomedical test in real applications. The proposed
fuzzy classifier iGEC with 87.9% using 5.0 genes on
average is superior to k-NN (84.49%), NN (82.54%),
and PNN (79.49%) in terms of accuracy and number of
genes. Because the sample sizes of microarray data are
extremely small, it results in the high training accuracy
(97.1%) and relatively low test accuracy (87.9%). When
the number of samples is increased, the test accuracy
can be further advanced (Ho et al., 2004a). From the
viewpoint of analysis and practical applications, iGEC

can serve as one of efficient tools for analysis of gene
expression profiles.

classifiers using 10-CV

No. of genes
in iGEC

N NN PNN iGEC

.94 84.72 79.61 88.71 6

.67 60.33 62.83 72.45 6

.96 89.64 80.89 91.22 4

.57 76.61 85.00 94.00 4

.14 91.03 83.21 85.33 4

.64 87.80 85.66 88.09 7

.09 79.18 79.18 90.97 4

.90 91.03 79.50 92.33 5

.49 82.54 79.49 87.89 5.0

hods are obtained from Statnikov et al. (2005).
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Fig. 7. The clustering result of 72 samples in data set leukemia1 using the three selected genes by the clustering algorithm EPCLUST (Parkinson
et al., 2003).
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. Conclusions

Microarray data analysis and gene expression classi-
cation are important research topics in bioinformatics
uch that how to design an accurate, compact, and lin-
uistically interpretable classifier is the major concern in
his study. We proposed an interpretable gene expression
lassifier, named iGEC, for microarray data analysis.
he design of iGEC includes almost all aspects related

o the design of compact fuzzy rule-based classifica-
ion systems: gene selection, rule selection, membership
unction tuning, consequent class determination, and
ertainty grade tuning. Consequently, an efficient opti-
ization algorithm IGA is used to solve the resultant

ptimization problem with a large number of parame-
ers.

The superiority of the proposed iGEC was evaluated
y computer simulation on eight data sets of gene expres-
ion. The experimental results reveal that the proposed
ethod can obtain interpretable classifiers with an accu-

ate and compact fuzzy rule base, compared with the
xisting fuzzy classifier. iGEC is an efficient tool for
nalysis of gene expression profiles.
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