
PSYCHOMETRIKA—VOL. 71, NO. 3, 529–540
SEPTEMBER 2006
DOI: 10.1007/S11336-04-1221-6

EXACT INTERVAL ESTIMATION, POWER CALCULATION, AND SAMPLE SIZE
DETERMINATION IN NORMAL CORRELATION ANALYSIS

GWOWEN SHIEH
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This paper considers the problem of analysis of correlation coefficients from a multivariate normal
population. A unified theorem is derived for the regression model with normally distributed explanatory
variables and the general results are employed to provide useful expressions for the distributions of simple,
multiple, and partial-multiple correlation coefficients. The inversion principle and monotonicity property
of the proposed formulations are used to describe alternative approaches to the exact interval estimation,
power calculation, and sample size determination for correlation coefficients.
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1. Introduction

Correlation analysis is widely used in many areas of science, and the literature is very exten-
sive. Classical inferences on correlation coefficients are conducted mainly under the assumption
that all variables have a joint multivariate normal distribution. Although the underlying normality
assumption provides a convenient and useful setup, the resulting probability density functions of
the (sample) simple and multiple correlation coefficients r, and R, are notoriously complicated
in forms. The complexity incurs continuous investigations to give various expressions, approxi-
mations, and computing algorithms for the distributions of both sample correlation coefficients.
See Johnson, Kotz, and Balakrishnan (1995, Chap. 32) and Stuart and Ord (1994, Chap. 16) for
comprehensive discussions and further details.

The commonly used approximation to the distribution of simple correlation coefficient is
Fisher’s (1921) z transformation. Several other approximations and asymptotic expansions are
described in Johnson et al. (1995, Chap. 32, Secs. 5.2 and 5.3). It appears that the widely used
Fisher’s z transformation is adequate for moderate sample sizes and the accuracy generally
increases with large sample sizes, whereas the other more accurate approximations require more
involved computation and/or iterative evaluation. As in the case of simple correlation coefficients,
considerable attention has been devoted to the construction of useful approximations for the
distribution of the multiple correlation coefficient (see Johnson et al., 1995, Chap. 32, Sec. 11).
For the purpose of interval estimation, power calculation, and sample size determination for the
squared multiple correlation coefficient, exact results are presented in Algina and Olejnik (2003),
Gatsonis and Sampson (1989), Mendoza and Stafford (2001), and Steiger and Fouladi (1992).
Although Algina and Olejnik (2003) did not describe their computer algorithms in detail, the
exact computations of Gatsonis and Sampson (1989), Mendoza and Stafford (2001), and Steiger
and Fouladi (1992) are based on the infinite series expansion of Lee (1972).
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In view of the need for evaluating the probabilities of the correlation coefficients and the
ultimate aim of presenting exact procedures for correlation analysis, the purpose of this paper
is to provide alternative solutions by exploiting the simplification of theoretical property and
the accessibility of computing techniques. To this end, a unified theorem is derived for the re-
gression model with multinormal explanatory variables. Although the proposed formulations
are based on the intermediate results of multinormal regression and correlation analysis in An-
derson (2003), Muirhead (1982), and Sampson (1974), the presentations not only simplify the
pedagogical development, but also yield new algorithms for the exact inferences of correlation
coefficients. Specifically, the inferential procedures of interval estimation and power calculation
in the hypothesis testing situation for simple, multiple, and partial-multiple correlations are de-
scribed. Furthermore, the planning of sample sizes with estimation and power approaches are
also discussed.

In the next section, the major theorem and corollary for the multivariate normal regres-
sion model are given. Section 3 applies the proposed formulation to the analysis of the simple
correlation coefficient. The presentation is extended to multiple and partial-multiple correlation
coefficients in Section 4. Finally, Section 5 contains some concluding remarks.

2. The Multivariate Normal Regression Model

Consider the standard multiple linear regression model with dependent variable Y and all
the levels of p independent variables X(1), . . . , X(p) fixed a priori,

Y = Xββ + ε, (1)

where Y = (Y1, . . . , YN )T , Yi is the value of the dependent variable Y; X = (1N , XD) with
1N is the N × 1 vector of all 1’s, XD = (X1, . . . , XN )T is often called the design matrix,
Xi = (xi1, . . . , xip)T, xi1, . . . , xip are the known constants of the p independent variables for
i = 1, . . . , N ; ββ = (β0, β1, . . . , βp)T with β0, β1, . . . , βp are unknown parameters; and ε =
(ε1, . . . , εN )T with εi are independent and indentically distributed as N(0, σ 2) random variables.
It is well known that under the assumption given above, the likelihood ratio test for the general
linear hypothesis H0 : Lββ = θθ versus H1 : Lββ �= θθ is based on

F = SSH/l

SSE/(N − p − 1)
,

where L is an l × (p + 1) coefficient matrix of rank l ≤ p + 1, θθ is an l × 1 vector of con-
stants, SSH = (Lβ̂β − θθ)T[L(XTX)−1LT]−1(Lβ̂β − θθ), SSE = (Y − Xβ̂β)T(Y − Xβ̂β), and bβ̂β =
(XTX)−1XTY is the least squares and maximum likelihood estimator of ββ. Under the alternative
hypothesis, F is distributed as F(l, N − p − 1, �), the noncentral F-distribution with l and N − p
− 1 degrees of freedom and noncentrality parameter

� = (Lββ − θθ)T[L(XTX)−1LT]−1(Lββ − θθ)/σ 2.

If the null hypothesis is true, then � = 0 and F is distributed as F(l, N − p − 1), a central or regular
F-distribution with l and N − p − 1 degrees of freedom. The test is carried out by rejecting H0 if
F > Fl,N−p−1,α , where Fl,N−p−1,α is the upper α percentage point of the central F-distribution
F(l, N − p − 1).

Frequently, the inferences are concerned mainly with the regression coefficients ββ1 =
(β1, . . . , βp)T and the corresponding coefficient matrix is written in the form of L = L1, where
L1 = (0c, C), 0c is the c × 1 null vector of all 0’s, and C is a c × p coefficient matrix of rank
c ≤ p. It follows from the overall estimator β̂β given above that the prescribed estimator for ββ1

can be expressed as β̂β1 = (XT
CXC )−1XT

C) Y, where XC = (I N − J/N)XD is the centered form of
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XD , IN is the identity matrix of dimension N, and J is the N × N square matrix of 1’s. With this
formulation, it is easily seen that

Cβ̂β1 ∼ Np(Cβ1, σ
2CS−1

X CT),

where SX = XT
C XC . Note that σ̂ 2 = SSE/(N − p − 1) is the usual unbiased estimator of σ 2 and

SSE/σ 2 is distributed as χ2(N − p − 1), a chi-square distribution with N − p − 1 degrees of
freedom and is independent of β̂β. It therefore follows that the general linear hypothesis reduces to
H0 : Cββ1 = θθ versus H1 : Cββ1 �= θθ and the F test is conducted by rejecting H0 if F ∗ > Fc,N−p−1,α ,
where

F ∗ = SSH∗/c
SSE/(N − p − 1)

, (2)

SSH∗ = (Cβ̂β1 − θθ)T(CS−1
X CT)−1(Cβ̂β1 − θθ). Consequently, F∗ is distributed as F(c, N − p − 1,

�), where the noncentrality parameter � = (Cββ1 − θθ)T(CS−1
X CT)−1(Cβ1 − θ)/σ 2. Hence, given

all model specifications and sample size N, the statistical power achieved for testing hypothesis
H0 : Cββ1 = θθ with specified significance level α against the alternative H1 : Cββ1 �= θθ is the
probability

P {F (c,N − p − 1,�) > Fc,N−p−1,α}. (3)

In the special instance of testing one single coefficient parameter, say H0 : β1 = 0, it is
more flexible to conduct the test with a t statistic since it can be used for one-sided alternatives
involving H0 : β1 ≤ 0 or H0 : β1 ≥ 0, while the F statistic cannot. Specifically, the t statistic is

t∗ = β̂1

(σ̂ 2s11)1/2
, (4)

where s11 is the (1, 1)th entry of S−1
X and t∗ has a noncentral t distribution t(N − p − 1, δ) with N

− p − 1 degrees of freedom and noncentrality parameter δ = β1/(σ 2 s11)1/2. The corresponding
power function is of the form

P {t(N − p − 1, δ) > tN−p−1,α} (5)

for the one-sided test H0 : β1 ≤ 0 with significance level α, where tN−p−1,α is the upper α percent
quantile of the central t-distribution t(N − p − 1), see Rencher (2000, Chaps. 7–8) for further
details.

Traditionally, the multiple regression model defined above is referred to as a fixed (condi-
tional) model. The results would be specific to the particular values of the explanatory variables
that are observed or preset by the researcher. To extend the concept and applicability of the
aforementioned results to the correlation models, the vector of explanatory variables {Xi , i = 1,
. . ., N} in (1) is now assumed to follow a joint multivariate normal distribution with a mean vector
µµX and a positive definite covariance matrix �X. It follows immediately from the matrix normal
distribution of XD that SX has a Wishart distribution Wp(N − 1, �X). As shown in Sampson
(1974, Lemmas 3 and 4), (CS−1

X CT)−1 ∼ Wc(N − p + c − 1, (C�−1
X CT)−1) and, subsequently,

� ∼ 	 · χ2(N − p + c − 1) where 	 = (Cββ 1 − θθ)T(C�−1
X C T)−1(Cββ1 − θθ)/σ 2. Therefore,

the distribution of F∗ in the multivariate normal regression model is completely specified in the
following theorem.

Theorem 1. Consider the multiple regression model (1) and Xi are independent and identically
distributed as Np(µµX, �X), i = 1, . . ., N. The F∗ statistic defined in (2) has the following two-stage
distribution

F ∗|� ∼ F (c,N − p − 1,�) and � ∼ 	 · χ2(N − p + c − 1). (6)
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Note that the formulation (6) also follows from the intermediate results for deriving the
density function of R2 in Anderson (2003, Theorem 4.4.5) and Muirhead (1982, Theorem 5.2.4).
However, the expression in Theorem 1 provides a conceptually more transparent representation
than those in Theorem 9 and Corollary 2 of Sampson (1974) where the distribution of F∗

is expressed as a mixture of central F distributions with random degrees of freedom for the
numerator. It is clear under the null hypothesis H0 : Cββ1 = θθ that 	 = 0 and � degenerates at
0. Hence, the null distribution of F∗ remains as F(c, N − p − 1) under both fixed and random
settings. However, the power function is more complex than (3) in form due to the extra variability
of �,

P {F ∗ > Fc,N−p−1,α} =
∫ ∞

0
P {F (c,N − p − 1,	 · K) > Fc,N−p−1,α} · f (K) dK, (7)

where f(K) is the probability density function of K and K ∼ χ2(N − p + c − 1). Following similar
arguments, it can be shown that the noncentrality δ of the distribution for the t∗ statistic defined
in (4) has a scaled chi-square distribution δ ∼ λ · {χ2(N − p)}1/2, where λ = β1/(σ 2 σ 11)1/2 and
σ 11 is the (1, 1)th entry of �−1

X . Note that σ 11/s11 ∼ χ2(N − p). These results are summarized as

Corollary 1. Consider the multiple regression model (1) and Xi are independent and identically
distributed as Np(µµX, �X), i = 1, . . ., N. The t∗ statistic defined in (4) has the following two-stage
distribution

t∗|δ ∼ t(N − p − 1, δ) and δ ∼ λ · {χ2(N − p)}1/2. (8)

Thus, the t∗ statistic for H0 : β1 ≤ 0 has null distribution t(N − p − 1) and a critical value tN−p−1,α

as in the fixed model. Its power can be computed from

P {t∗ > tN−p−1,α} =
∫ ∞

0
P {t(N − p − 1, λ · κ1/2) > tN−p−1,α} · f (κ)dκ, (9)

where f(κ) is the probability density function of κ and κ ∼ χ2(N − p). To exemplify the fun-
damental differences between the fixed and random model formulations, a direct comparison
of the previously defined power functions (5) and (9) shows that the former can be viewed as
a realization of the latter based on the observed values of SX. Consequently, the result would
be specific to the particular values of the explanatory variables that are observed in SX. In
another replication of the same study, different settings for the explanatory variables will be
obtained. Hence, the conditional power function is not applicable and, more importantly, the
fixed modeling approach is not appropriate. The preceding results will be applied later to im-
plement varieties of interval estimation and power calculation in the context of correlation
models.

3. Simple Correlation Coefficient

The relation between the multivariate normal regression model and correlation analysis is
well known (see Anderson, 2003; Muirhead, 1982; Rencher, 2000). Assume that r is the Pearson
product-moment correlation coefficient of (Yi , Xi), i = 1, . . ., N, where (Yi , Xi) has a joint bivariate
normal distribution N2(µµ,�) with

µµ =
[

µY

µX

]
and � =

[
σ 2

Y σYX

σYX σ 2
X

]
.
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The corresponding population correlation coefficient is defined as ρ = σYX/σY σX. It follows
from standard results that conditional multivariate normal correlation models are equivalent to
the usual normal error regression models with the following definitions of notation:

ββ0 = µY − ρµX(σY /σX), β1 = ρ(σY /σX), and σ 2 = σ 2
Y (1 − ρ2).

In the special case of p = 1, it is familiar that the reduced t∗ statistic can be expressed directly in
term of r,

t1 = r
√

N − 2√
1 − r2

.

Additionally, the test of ρ ≤ 0 amounts to the test of β1 ≤ 0 since β1 = ρ(σY /σX). More
importantly, it follows from (8) in Corollary 1 that the distribution of t1 can be represented as

t1|δ1 ∼ t(N − 2, δ1) and δ1 ∼ λ1 · {χ2(N − 1)}1/2,

where λ1 =ρ/(1 −ρ2)1/2. To demonstrate the discrepancy between the proposed exact formulation
and approximate method, and the advantage of the suggested simplifying algorithm, numerical
comparisons are conducted to evaluate the widely used Fisher’s (1921) z approximation to the
distribution function of the simple correlation r. The exact values are computed with the proposed
two-stage formulation using programs written with SAS/IML (2003). The results are presented
in Table 1 for sample size N = 10 and N = 50. As expected, the inverse tanh transformation
of Fisher (1921) is not sufficiently close to the true distribution of r. However, the performance
improves for tail areas and larger sample sizes.

Accordingly, the test of H0 : ρ ≤ 0 can be conducted by rejecting H0 if t1 > tN−2,α . The
associated power function is a direct adaptation of (9),

P {t1 > tN−2,α} =
∫ ∞

0
P {t(N − 2, λ1 · κ1/2) > tN−2,α} · f (κ) dκ,

where f(κ) is the probability density function of κ and κ ∼ χ2(N − 1). The numerical computation
of exact power requires the evaluation of a noncentral t cumulative density function and the
one-dimensional integration with respect to a chi-square probability density function. Since all
related functions are readily embedded in modern statistical packages such as the SAS system,
no substantial computing efforts are required. For the purpose of sample size determination, the
minimum sample sizes N required for testing the hypothesis H0 : ρ ≤ 0 with a specified parameter
value of ρ, significance level, and nominal power, can be found through a simple iterative search.
Note that unique and proper solution of the sample size is assured by the monotonicity properties
described in Ghosh (1973). The procedures require only obvious modifications for both lower-
tailed and two-sided tests.

Interval estimators of ρ can be constructed by the “statistical method” of Mood, Graybill,
and Boes (1974, Sec. 4.2) or the “pivoting the cumulative density function” method in Casella
and Berger (2002, Sec. 9.2.3). For the upper-tailed test just mentioned, the corresponding lower
100(1 − α)% confidence interval of ρ is of the form [−1, ρU ) in which ρU (≤ 1) satisfies∫ ∞

0
P {t(N − 2, λ1U · κ1/2) > t1O} · f (κ) dκ = 1 − α,

where λ1Û = ρU/(1 − ρ2
U )1/2, t1O = rO(N − 2)1/2/(1 − r2

O)1/2, and rO is the observed value
of the simple correlation coefficient. The computations can be easily performed by a standard
interval-halving program to meet the desired degree of accuracy. In connection with the interval
procedure, it is also critical to ensure adequate estimation accuracy with appropriate sample size.
For given values of population correlation coefficient ρ, coverage probability 1 − α, and the
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TABLE 2.
The minimum sample sizes required for the pre-
scribed interval [−1, ρ + b) of simple correlation
coefficient with coverage probability at least 0.95.

b

ρ 0.05 0.10 0.15 0.20

0.00 1084 272 122 69
0.05 1074 269 120 68
0.10 1054 262 117 66
0.15 1023 254 112 63
0.20 982 243 107 60
0.25 932 229 100 56
0.30 874 214 93 52
0.35 808 197 85 47
0.40 736 178 77 42
0.45 658 158 68 37
0.50 578 138 58 32
0.55 495 117 49 26
0.60 411 96 40 21
0.65 330 76 31 16
0.70 252 57 23 12
0.75 180 40 15 8
0.80 117 25 9 NA
0.85 65 13 NA NA
0.90 26 NA NA NA
0.95 NA NA NA NA

bound b (>0), the smallest sample size N required for the sample correlation coefficient to fall
into the interval [−1, ρ + b) with probability 1 − α, is determined by∫ ∞

0
P {t(N − 2, λ1 · κ1/2) < t1U } · f (κ) dκ ≥ 1 − α,

where λ1 = ρ/(1 − ρ2)1/2, t1U = rU (N − 2)1/2/(1 − r2
U )1/2, and rU = ρ + b < 1. For the purpose

of illustration, the minimum sample sizes needed to control the prescribed interval [−1, ρ + b)
with coverage probability at least 0.95 are presented in Table 2 for values of ρ ranging from 0
to 0.95 with an increment of 0.05 and b = 0.05, 0.10, 0.15, and 0.20. Similarly, the cases of the
upper and two-sided 100(1 − α)% interval estimation and related sample size calculation can be
conducted.

4. Multiple and Partial-Multiple Correlation Coefficients

This section describes the methods for multiple and partial-multiple correlation analysis in
the light of the general result given in Theorem 1 for multivariate normal regression models.

4.1. Multiple Correlation Coefficient

Without loss of generality, let (Yi , XT
i )T, i = 1, . . . , N , represent the variables in a multi-

variate correlation model and have a joint (p + 1)-dimensional multivariate normal distribution
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Np+1(µµ, �), where Xi = (Xi1, . . ., Xip)T,

µµ =
[

µµY

µµX

]
and � =

[
σ 2

Y �YX

�T
YX �X

]
.

One major use of multivariate correlation models is to make inferences on the association between
variables Yi and Xi . A useful measure is the population squared multiple correlation coefficient
defined as R2 = �YX�−1

X �T
YX/σ 2

Y and the population multiple correlation coefficient R is the
positive square root of R2. The usual sample squared multiple correlation coefficient is denoted
by R2 = SYXS−1

X ST
YX/s2

Y , where SYX = YT (IN − J/N)XD and s2
Y = YT (IN − J/N)Y. As in

the previous case of simple correlation analysis, the following definitions of notation connect
the correlation model of multinormal variables with the multivariate normal regression model:
β0 = µY − �YX�−1

X µµX, ββ1 = �−1
X �T

YX, and σ 2 = σ 2
Y − �YX�−1

X �T
YX. Furthermore, assume

the coefficient matrix C = Ip and θθ = 0p in the linear hypothesis of H0 : Cββ1 = θθ, then
several simplifications and implications follow from Theorem 1. In particular, 	 turns into
	1 = ββT

1 �Xββ1/σ 2 = R2/(1 −R2), the population squared multiple correlation coefficient
defined above becomes a one-to-one function of the noncentrality 	1. This leads to the well-
known result that the overall test of regression coefficients H0 : ββ1 = 0p is equivalent to the
test H0 : R2 = 0. Hence, the inference of R2 can be accomplished with the simplified F∗

statistic:

F1 = R2/p

(1 − R2)/(N − p − 1)

and the test H0 : R2 = 0 is rejected if F1 > Fp, N − p−1,α . It is evident from (6) and (7) that

F1|�1 ∼ F (p,N − p − 1,�1) and �1 ∼ 	1 · χ2(N − 1),

and the power function of F1 can be written as

P {F1 > Fp,N−p−1,α} =
∫ ∞

0
P {F (p,N − p − 1,	1 · K1) > Fp,N−p−1,α} · f (K1)dK1,

where 	1 = R̄2/(1 − R̄2), f(K1) is the probability density function of K1 and K1 ∼ χ2(N − 1).
For comparative purpose, the suggested simplifying formulation is employed to investigate

the accuracy of Lee’s (1971, Sec. 5.1) F approximation to the distribution function of R2 for
different values of p and N. Table 3 contains the errors corresponding to Lee’s F transformation
for p = 3 with N = 10 and 50. The numerical results suggest that Lee’s F transformation for the
distribution of R2 is considerably more accurate than the aforementioned Fisher’s z approximation
to the distribution of r. To some extent, the performance still varies with the sample size N and
the number of parameters p. When p = 3 and N = 10, there are some cases in Table 3 that give
comparatively large errors than other situations. This phenomenon shall continue to exist in other
approximations with relatively small p and small N.

The power and sample size calculations can be performed in a similar fashion as in the
instance of simple correlation coefficients by the direct substitution of the noncentral t distribu-
tion with the noncentral F distribution. It is important to note that the family of noncentral F
distributions possesses the same monotonicity properties as those of the family of noncentral t
distributions (see Ghosh, 1973).

By pivoting the cumulative density function, a 100(1 − α)% one-sided confidence interval

of R
2

in the form of (0, R
2
U ) can be computed by solving the following equation for R

2
U :∫ ∞

0
P {F (p,N − p − 1,	1U · K1) > F1O} · f (K1) dK1 = 1 − α,
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TABLE 4.
The minimum sample sizes required for the
prescribed interval [0, R

2 + b) of squared
multiple correlation coefficient with cover-
age probability at least 0.95 and p = 5.

b

R
2

0.05 0.10 0.15 0.20

0.00 221 110 73 55
0.05 414 154 90 63
0.10 551 184 101 68
0.15 649 204 108 70
0.20 714 215 111 71
0.25 749 219 111 70
0.30 757 217 108 67
0.35 744 210 103 63
0.40 711 197 96 58
0.45 662 182 87 53
0.50 600 163 78 46
0.55 529 142 67 40
0.60 451 120 57 33
0.65 371 98 46 27
0.70 291 76 35 20
0.75 214 56 25 14
0.80 145 37 17 NA
0.85 85 21 NA NA
0.90 39 NA NA NA
0.95 NA NA NA NA

where 	1U = R̄2
U/(1 − R̄2

U ), F1O = {(N − p − 1)/p}{R2
O/(1 − R2

O)}, and R2
O is the observed

value of the squared multiple correlation coefficient. However, proper positive values of R
2
U are

found only if F1O > Fp,N−p−1,1−α . Additionally, it is of interest to consider the planning of
sample sizes for interval estimation with the prescribed length and desired accuracy. With the
specified quantities of population squared multiple correlation coefficient R

2
, target probability

1 − α, and the bound b (>0), the minimum sample size N required for the interval [0, R̄2 + b)
with coverage probability at least 1 − α can be computed from∫ ∞

0
P {F (p,N − p − 1,	1 · K1) < F1U } · f (K1) dK1 ≥ 1 − α,

where 	1 = R
2
/(1 − R

2
), F1U = {(N − p − 1)/p}{R2

U/(1 − R
2
U )}, and R

2
U = R

2 + b < 1. For
demonstration, the minimum sample sizes needed to guarantee the prescribed interval [0, R

2 + b)

with coverage probability at least 0.95 and p = 5 are presented in Table 4 for R
2

ranges from 0 to
0.95 with an increment of 0.05 and b = 0.05, 0.10, 0.15, and 0.20. Furthermore, the extensions for
the upper and two-sided 100(1 − α)% interval estimation and related sample size determination
are straightforward.

4.2. Partial-Multiple Correlation Coefficient

Another problem of particular interest is the analysis of population squared partial-multiple
correlation R

2
2.1 between Y and X(p − q + 1), . . ., X(p) after controlling X(1), . . ., X(p − q) where

p > q > 0. To fix the idea, the p variables Xi are divided into two sets X1i and X2i of size
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p − q and q, respectively. Use the following notation for partitioning the corresponding arrange-
ment of the matrices

�YX = [
�Y1 �Y2

]
and �X =

[
�X1 �X12

�T
X12 �X2

]
.

Furthermore, define[
σ 2

Y.1 �Y2.1

�T
Y2.1 �X2.1

]
=

[
σ 2

Y �Y2

�T
Y2 �X2

]
−

[
�Y1

�T
X12

]
�−1

X1[�T
Y1�X12].

Then, it follows that R
2
2.1 = �Y2.1�

−1
X2.1�

T
Y2.1/σ

2
Y.1. According to the definition of ββ1 = �−1

X �T
YX

given before, its last q components can be written as ββ2 = �−1
X2.1�

T
Y2.1. Then �Y2.1�

−1
X2.1�

T
Y2.1 =

ββT
2 �X2.1ββ2 = σ 2(R

2 − R
2
1)/(1 − R

2
) and σ 2

Y.1 = σ 2(1 − R
2
1)/(1 − R

2
), where R̄2

1 is the popula-
tion squared multiple correlation coefficient between variables Y and X(1), . . ., X(p − q). Hence,
the hypothesis testing of H0 : R

2
2.1 = 0 is equivalent to the one of H0 : ββ2 = 0q , where the last

test can be expressed in the form of linear hypothesis H0 : Cββ1 = θθ with c = q, C = [0q×(p−
q ), Iq], and θθ = 0q , where 0q×(p− q ) is a q × (p − q) matrix of all 0’s. As an illustration of the
general F∗ statistic defined in (4), the resulting partial F statistic is

F2 = (R2 − R2
1)/q

(1 − R2)/(N − p − 1)
,

where R2
1 is the sample squared multiple correlation coefficient between Y and the first p − q

independent variables X(1), . . ., X(p − q). The distribution of F2 follows as a direct consequence
of Theorem 1 that F2|�2 ∼ F(q, N − p − 1, �2) and �2 ∼ 	2·χ2(N − p + q − 1), where

	2 = (R2 − R2
1/(1 − R2) = R2

2.1/(1 − R
2
2.1). Hence, the test H0 : R

2
2.1 = 0 is rejected if F2 >

Fq , N −p−1,α . The power function becomes

P {F2 > Fq,N−p−1,α} =
∫ ∞

0
P {F (q,N − p − 1,	2 · K2) > Fq,N−p−1,α} · f (K2) dK2,

where f(K2) is the probability density function of K2 and K2 ∼ χ2(N − p + q − 1).
It is noteworthy that the strong resemblances between the distributions and power functions

of F1 and F2 for the tests of multiple and partial-multiple correlation coefficients, respectively.
Fundamentally, the inferences of the partial-multiple correlation coefficient can be conducted in
a similar manner as presented in the previous section for the multiple correlation coefficient. The
details are not provided here.

5. Conclusions

This paper presents a simplified treatment of multivariate normal regression models that
are tied to correlation models with multinormal variables. A full range of exact methods for
correlation analysis is then considered. The proposed results are notable in the conceptual clarity
of formulations for the well-known but complicated distributions of simple, multiples and partial-
multiple correlations. Consequently, the suggested procedures provide alternative approaches
to perform normal correlation analysis in conjunction with basic computation techniques that
require only standard numerical methods of one-dimensional integration and an interval-halving
algorithm. The integration is theoretically exact provided that the auxiliary functions can be
evaluated exactly. The essential part involves the auxiliary functions of noncentral t and F and
central χ2 distributions. The SAS/IML codes for carrying out the computation of the proposed
methods are available from the website: www.ms.nctu.edu.tw/faculty/shieh.
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