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Abstract

This paper presents a neural network model of simulating tides at multi-points considering tide-generating forces. A comparison on the root
mean square and correlation coefficient of three-year mixed tides at a single point computed with harmonic method, response—orthotide method,
the NAO.99b model and the proposed model was made to show the prediction accuracy of each method. The proposed model is examined
efficient as the harmonic method to estimate the tides at a single point. Extended application of the proposed model to predicting tides at some
points neighboring to an original interest point identifies accurately simulating multi-point tides as the NAO.99b numerical model.

© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

The oceanic tide refers to the rhythmic rise and fall of sea
level with time made evident at a coast by the periodic ad-
vancing and receding of the waters from the shore. Tidal
motions tend to get amplified (or reduced) across broad shelves,
and response to meteorological conditions more vigorously than
those in deep water. In shallow water, local effects can modify
tidal constituents particularly by producing harmonics whose
frequencies are simple multiples of the frequency of the con-
stituent concerned. These harmonics result from frictional in-
teraction between the sea bed and the ebb and flow of the tide.
Coastlines can reflect tidal waves to make actual tides in a
specific area higher or lower than expected by the astronomical
forcing. The combined constraint of ocean basin geometry and
the influence of the Coriolis force results in the development of
amphidromic systems, in each of which the crest of the tidal
wave at high water circulates around an amphidromic point
once during each tidal period. Although the interactions of all
the forces and factors are so complex that the coastal tide times
and ranges on the shore, the coastal tide could not be very
accurately predicted. In coastal engineering, calculating tidal
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level can decide a design level for the top of marine structures
and the safe ship navigation in a harbor. An expected accurate
prediction of tidal levels becomes of importance for coastal
engineering and marine navigation.

The harmonic method (abbreviated HM) developed by Darwin
(1907) assumes that the tides can be regarded as superposition of
different harmonics whose frequencies are known from astron-
omy (Doodson, 1921; Desai, 1996). The information can then be
used to provide reliable predictions for future tides at the same
point. The remarkably good accuracy of these predictions im-
presses researchers understanding of how the tide behaves in the
ocean. The length of record needed to extract different com-
ponents depends primarily on the closeness in frequency of the
components that are to be extracted and on the lowest frequency
of the components chosen. Normally, 369 days of hourly data at a
point are needed to extract 20 to 30 constituents with adequate
separation of closely spaced constituents using the least squares
method. Le Provost et al. (1998) used 26 major constituents in
their numerical model.

The disadvantage of HM can be solved by the inherent
smoothness of the admittance function, which acts on the tide-
generating, giving the observed tide as its output. Tidal con-
stituents that are closely spaced to one another and hence have
essentially the same admittance function are treated indepen-
dently of one another. It is possible to take advantage of the


mailto:hkc@faculty.nctu.edu.tw
http://dx.doi.org/10.1016/j.coastaleng.2006.05.001

858 H.-K. Chang, L.-C. Lin / Coastal Engineering 53 (2006) 857-864

inherent smoothness of the tidal response function to make
accurate tidal prediction with a smaller number of constituents
(Munk and Cartwright, 1996; Groves and Reynolds, 1975). The
response—orthotide method (abbreviated R-O) is introduced in
detail by Ray (1998) and Desai (1996) and is often preferred in
the tidal models for estimating the linear tides in the global
oceans, such as Desai and Wahr (1995), Han et al. (2000),
Matsumoto et al. (2000). Both HM and R-O are applicable for
tidal predictions only for one point where observed data are
used to determine unknown constants.

Nevertheless, R-O explains that the actual tides depend on
the tide-generating forces. The resulting conclusion implies that
there is a comparable relationship existing between actual tides
and tide-generating forces. If the relationship can be established,
computed tide-generating forces by astronomy can be used to
estimate the tides through the well established relationship.

The paper addresses an efficient tool of artificial neural
network (ANN) to obtain the relationship between actual tides
and tide-generating forces. ANN has high functioning with fast
computation and a considerable memory to solve the problems
concerning extremely nonlinear interactions and complex
effective variables. Accordingly, ANN has newly been imple-
mented widely in different areas. Some examples of using
neural network in marine engineering and science are demon-
strated by Vaziri (1997), Deo and Shidhar Naidu (1998), Tsai
and Lee (1999), Deo et al. (2002), Lee and Jeng (2002), Lee et
al. (2002), Makarynskyy (2004), Lee (2004) and Chang and
Chien (2006, in press), etc.

For particular application of ANN to tidal prediction, Vaziri
(1997) presents both ANN model and ARIMA model for
predicting Caspian Sea surface water level. Tsai and Lee (1999)
applied an ANN model to forecast the tidal levels of diurnal and
semidiurnal tides without determining the harmonic parameters.
Later four discussions by Kumar and Minocha (2001), Mandal
(2001), Medina (2001) and Walton and Garcia (2001) on the
paper of Tsai and Lee (1999) were raised some practicality and
theoretical issues. One of the disadvantages is that the application
of the ANN model of Tsai and Lee (1999) gives only one-hour
tidal predictor due to the sequentially observed tidal data required
as inputs of which the lead time is 1 h. Lee et al. (2002) employ an
application of ANN for predicting and supplementing the tidal
level using short term observed data. Lee and Jeng (2002)
developed an ANN model associated short term measured data in
the learning stage to provide a long term predictor in tides. The
drawback of the ANN model of Lee and Jeng (2002) is that it
needs several lead time tidal data observed to be input in the ANN
model for predicting sequential tides. These ANN tidal models are
limited to a single point tidal predictor.

Matsumoto et al. (2000) developed a global ocean tidal
model, which is called NAO.99b, for 16 major short period
constituents by assimilating about five years of 7/P altimeter
data into numerical hydrodynamical model. NAO.99b is
examined to have comparable agreement with many tide
gauge data as well as CSR4.0 and GOT99.2b. The accuracy
of simulation on tides by NAO.99b is confirmed so that
NAO.99b is widely accepted and used to evaluate the accuracy
of simulating tides using the proposed ANN model.

The authors use tide-generating forces of astronomy as inputs
in the proposed ANN model to establish the valid relationship
between tides and tide-generating forces. Thus the proposed
model is named by TGF-NN. TGF-NN is compared with the
commonly accepted HM to have accurate estimation on tides at
a single point. Furthermore, TGF-NN is extended to predict the
tides at some points neighboring the point where tidal data are
used to develop TGF-NN. For engineering practices the
proposed TGF-NN can be used to estimate tides at a point,
where tide station is not established to collect tide data and some
observed data can be available from a neighboring point.

2. Tide-generating potential

Oceanic tides are mostly the combined result of the
gravitational attraction between the earth and the moon, and
the gravitational attraction between the earth and the sun. Tides
due to other planetary bodies are negligible. For gravitational
purposes, a geocentric coordinate system shown in Fig. 1 is
considered to conveniently describe the tides in the earth. In this
coordinate system, the gravitational potential at any point P on
the earth’s surface with a vector r due to a mass M of the body at
another point with a vector r is given (Lamb, 1945) as

GM
T (1)

where G~6.67x10""" Nm/kg” is the coefficient of universal
gravitation; R=|r| ~6.371 x 10° m is the radius of the earth; D is
the distance between the earth’s center and the center of the
body; E=1d| is the distance between the point P and the center of
the body. This gravitational potential causes gravitational force
F,=GM/& which points towards the center of the body.

The centrifugal force due to the mutual rotation of two
bodies shown in Fig. 1 at any point on the earth opposite poin-
ting towards d is given as

GM
:F

¢a:

F., (2)

The radial component of the centrifugal force at point P is F
cosf and the tangential component is F, sinf where 6 is the

radial

Fig. 1. Geometry of gravitational force and centrifugal force on a point P at the
surface of the earth.
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Fig. 2. Location of tidal gauge observed.

angle between two vectors, r and d. A potential, ¢, can be
related to the centrifugal force and given as

GM
¢, = *Frcosﬁ + do (3)

where ¢ is an integral constant that can be determined by a
resulting tidal potential ¢p=¢,+¢. specified. Assuming zero
tidal potential at the earth’s center, that is ¢=0 at =0, 6=0 and
&=D, ¢po=—GM/D is then decided. The resulting tidal potential
due to tidal generating forces at the point P on the earth’s
surface is thus obtained

1 Rcos) 1) ()

b =GM ( et

The simple theory of the oceanic response to tidal potential is
that the ocean is taken a shape which keeps its surface in
instantaneous gravitational equilibrium with the combination of
tidal accelerations and the earth’s gravity. In this equilibrium
theory, ocean surface is one of uniform total gravitational
potential. Neglecting the nonlinear interaction between all
possible components of the tidal potential, the tidal displace-
ment of the oceanic free surface due to a body is then expressed
as

& DX D

n=- = 5)

~GM (1 _ RcosO l)
g g

where g is the acceleration due to the gravity of the earth.
Considering both the solar and lunar tides, Eq. (5) results in

equilibrium tides
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Fig. 3. Equilibrium tides computed by Eq. (6) at the Hua-Lien for Jan. 2001.

where the subscripts of m and s denote the physical quantity
corresponding to the moon and the sun, respectively; the mass
of the moon is M,,~7.38 x 10?*> kg and the mass of the sun is
M,~1.989x10% kg; the distance between these two bodies is
Dy, ~3.84x10® m and the earth itself orbits around the sun once
a year by a mean distance Dy~ 1.495x10"" m. The solar tide
computed by Eq. (6) due to the sun’s gravitational force is about
0.459 times that of the moon. When the values of &, § and D at
any time of some locations around Taiwan are obtained by
astronomy, the equilibrium tides can be obtained by Eq. (6).
Seven locations are chosen and plotted in Fig. 2.

The equilibrium tides computed by Eq. (6) and observed tides
at the Hua-Lien which is located at the central coast of eastern
Taiwan and shown in Fig. 2 for January 2001 are depicted in Figs.
3 and 4, respectively. Visual comparison on tides of Figs. 3 and 4
illustrates that although the tidal range and diurnal inequality of
the equilibrium tides and observed tides are significantly
different, the neap-spring tidal cycle is almost in phase.

3. The construction of back-propagation neural network

The back-propagation network (BPN) with multiple-layer
networks and nonlinear differentiable transfer functions is po-
pularly used to solve many problems whose solutions that need
optimization. Input vectors and the corresponding target vectors
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Fig. 4. Observed tides at the Hua-Lien for Jan. 2001.
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Fig. 5. Sketch of the construction of back-propagation network.

are used to train a BPN, until it can approximate a function that
associates the input vectors with specific the output vectors.
Networks with biases, a sigmoid layer and a linear output layer
can approximate any function with a finite number of discon-
tinuities (Demuth and Beale, 2000). A properly trained BPN tends
to generate reasonable answers when inputs are provided with it.
Therefore, the back-propagation algorithm is an extensively used
algorithm in neural networks. TGF-NN is established using the
neural network toolbox of the MATLAB software and is shown in
Fig. 5.

The symbol P; in Fig. 5 is the input vector, and I, and b, are
the matrices of weights and of biases between the input neurons
and the hidden layer neurons, respectively, Trans. is the transfer
function, and L, and b, are the matrices of weights and biases
between the output neurons and the hidden layer neurons,
respectively. The connections between the input neurons and
hidden layer neurons, and those between the hidden perceptions
and outputs can be formulated as the following equations

a; =f(I P +by) (7)
and
a; = f(Lya; +by) (8)

where a, is the value of the first hidden layer; a, is the output
value of the network, and f(x)=2/(1+e )~ 1 is the hyperbolic
tangent sigmoid transfer function. For sigmoid units, the output
varies continuously but not linearly as the input changes. Thus
sigmoid units bear a greater resemblance to real neurons than do
the other two kinds, linear or threshold units.

Networks with biases can present relationships between in-
puts and outputs more easily than can networks without biases.
Accordingly, a bias matrix in TGF-NN is considered. TGF-NN
consists of one input layer, one hidden layer and one output
layer. The supervised learning rule is applied to modify the
weights and biases of a network by comparing the outputs to the
targets when the inputs are applied to the network. The new
values of all elements of the weight and the bias matrices must
be checked by computing the network outputs for each input
vector to determine whether all targets are reached.

The squared difference between the desired response Y and
the network response a, states the learning error or training

error, £, and can be written as

lla,~YII?
E=—2 " 9
- ©)

where N is the total number of data and lla,—Y]l is the norm of
the vector a,—Y.

When the learning error £ is less than a specified tolerance, of
which the value is 10~ used in this paper, the iteration terminates.
This study uses the Levenberg—Marquardt (L-M) algorithm to
determine the weight and the bias matrices in the each iteration.
An approximation to the Hessian matrix in a Newton-like update
is used for the L-M algorithm as follows

Xeor = X070+ ] o7 (10)

where X and X, represent the time steps that precede and
follow an iteration, respectively; J” is the transpose matrix of J; I
is the identity matrix, and i and e are a small value and the error
matrix at time z. When u is zero, Eq. (10) specifies Newton’s
method, using an approximate Hessian matrix. When u tends to
be large, Eq. (10) becomes the gradient descent method, with a
small step size. Thus, performance function will always be re-
duced at each iteration of the algorithm (Gill et al., 1981).

The input parameters D, & and 6 between the sun and the
earth and between the moon and the earth at any time are key
parameters for determining tide behavior. The angle ¢ between
two vectors from the center of the earth to the center of the sun
and moon determines the relative positions of the sun, the moon
and the earth. When the moon and the sun are on the same or
opposite side of the earth, that is, o =%, the tides are the largest
and are known as high spring tides. When the sun and the moon
are perpendicular, the tides are lowest and are called low neap
tides. Spring tide occurs when cos¢p =+ 1. Neap tide arises when
cosp=0. Thus, the cos¢ can be adopted to identify the spring-
neap tidal cycle.

From Eq. (5) equilibrium tides relate to 1/£, cos¢/D? and 1/D.
Although real tides are possibly influenced by local effects, such
as ocean basin geometry, frictional interactions, boundary
reflection etc., tide-generating forces play an important role in
the rise and fall of real tides. Therefore, real tides respond to the
tide-generating forces of which the expression can be chosen as
the input parameters in the ANN model. The seven crucial pa-
rameters, R/Dy (1), R/Dy(t), RIEn(f), RIE(T), [RIDm(1)]* c0S0um(0),
[R/Dy(1)]* cosB(f) and cosp(f), form an input vector and are
related to the output, observed tides at the Hua-Lien, in TGF-NN
to establish the valid weight and bias matrices. The proposed
model has one hidden layer with five neurons. The number of
neurons was determined by examining several cases of different
numbers of neurons in the hidden layer, and selecting the number
leading to the smallest target error. The maximum iteration was
set to 1500 in the optimal procedure.

Some advanced architectures and learning schemes like RBF
and ANFIS are available. The neurons of RBF only respond to
relatively small regions of the input space. The larger the input
space is the more RBF neurons are required. The proposed input
matrix is [21 *8760] when 21 inputs and 8760 data are used.
ANFIS provides membership functions with some inputs to
establish the fuzzy rules having M’ where M is the number of
membership functions and / is the number of inputs (Atsalakis
etal., 2005). If 2 membership functions are used in the TGF-NN
which has 21 inputs, thus there are 22! fuzzy rules. Therefore,
huge memory and computation time are required for training
ANFIS. However, it is possibly applicable for any potential
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Table 1
Annual RMS and * between modeled and observed tides at the Hua-Lien (unit:
cm)

Year RMS HM(60) TGF-NN (lead time)
I - 3 2 1 0

2001 RMS 6.57 8.43 6.37 8.64 17.58
” 0.975 0.955 0.976 0.933 0.843

2002 RMS 10.28 14.45 10.57 13.02 15.75
” 0.939 0.867 0.935 0.874 0.832

researcher to apply RBF or ANFIS to this problem for com-
paring the predictions with the proposed TGF-NN model.

4. Model validity
4.1. Simulating tides at an interest point

Commonly the simulation performance of predictors by a
model is evaluated by the root mean square (RMS) or the square

of correlation coefficient (+*) (see Kleinbaum et al., 1988). The
RMS and #* are defined as
- 2
> ]
RMS = || = 11
= (1)
and
2 $ 2
= Z ;/Im tl Z nm tl l ]
i=1 i=1 (12)

where #,(f;) and n,(t;) are the measured and calculated tidal
levels, respectively, at time #; #,, is the mean of all predictors. "
varies from zero to one. Small RMS and large #* indicate that
the simulation performance is good.

The tidal data at the Hua-Lien were applied to assess the
simulation accuracy of TGF-NN. The mean spring tidal range
and mean overall tidal range at the Hua-Lien are 1.99 m and
1.06 m, respectively. One-year tidal data in 2001 were used to
find the coefficients in HM(60) and to train TGF-NN. The tidal
data in next three years were utilized to study the simulating
capacity of each method.

Tides move as long waves which propagate periodically in
time. The tide at time ¢ may be composed of previously se-
quential tidal waves. The probable lead time of tides was ex-
amined for TGF-NN. When the n-hour lead time was
considered, the number of neurons in the input layer was set
to 7n. Table 1 displays the RMS obtained by HM(60) and TGF-
NN considering the lead time effect, demonstrating that the
proposed model with 2-hour lead time inputs had the smallest
RMS=6.37 cm and the largest 7*=0.976 among all cases in
2001. The corresponding RMS from predicting one-year tidal
data in 2002 using TGF-NN was 10.57 cm, which is slightly
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Fig. 6. Time history of simulated and observed tides at the Hua-Lien for Jan.
2001.

larger than that obtained by HM(60) and significantly smaller
than that of TGF-NN with different lead time inputs. The largest
#*=0.935 among all cases in 2002 is comparable to that by HM
(60). Therefore, the proposed TGF-NN including one output
neuron and one hidden layer with five neurons and seven-
parameter input vector including 2-hour lead time effect was
found to have comparable accuracy for calculating tidal levels
compared with HM(60) and is suitably used for further
application hereafter. The authors also use the raw causative
variables to test the NN model and then find that the training
error is worse than that of the TGF-NN model when
dimensionless data are used in the proposed TGF-NN.

Time history and scatter plot of observed data and simulated
tides by TGF-NN in training stage at the Hua-Lien for 2001 are
depicted in Figs. 6 and 7, respectively. Small disparity between
observed and simulated tides in Fig. 6 demonstrates a possibly
narrow scatter plotted in Fig. 7 in which 7 is 0.976. Figs. 8 and
9 show the time history and scatter plot for 2002 in the veri-
fication stage. A slightly wider scatter in Fig. 9 than that in Fig.
7 illustrates that TGF-NN has larger RMS in verification stage
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Fig. 7. Scatter plot of simulated and observed tides at the Hua-Lien for 2001.
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Fig. 8. Time history of simulated and observed tides at the Hua-Lien for Jan. 2002.

than in the learning stage. This is a common result in estab-
lishing an ANN model.

Table 2 lists the RMS and r* obtained by HM, R-O,
NAO.99b and TGF-NN. The RMS and #* obtained by HM with
60 and 26 constituents are listed in the second and third rows,
respectively. The RMS in the second column of Table 2 and r*
in the sixth column from 2001 indicates that HM with 60
constituents and TGF-NN have similarly small RMS and large
*. The RMS of simulated tides for the next three years listed in
the third to fifth columns reveals that both HM with 60 con-
stituents and TGF-NN have comparably high accuracy of
simulating tides with RMS varying from 10.28—12.21 cm.
Good simulations by HM and TGF-NN can be also established
by comparing 72 in the last three columns of Table 2. A
comparison on RMS and #* in Table 2 shows that HM with 26
constituents, R-O and NAO.99b have comparable simulation on
tides, but slightly worse than both HM with 60 constituents and
TGF-NN. NAO.99b considers 16 main constituents at each grid
in the tidal solutions and corrects the predicted tides using
altimetry tidal data. Thus the simulation accuracy of NAO.99b
is similar to that of HM with 26 constituents, because the tides at

15
1.0 el

05 | A

05

1.0+

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
Nolm)

Fig. 9. Scatter plot of simulated and observed tides at the Hua-Lien for 2002.

Table 2
Annual RMS and #* between modeled and observed tides at the Hua-Lien for
four years (unit: cm)

Method ~ RMS ”

2001 2002 2003 2004 2001 2002 2003 2004

HM(60) 6.57 10.28 1221 1038 0975 0.939 0.964 0.937
HM(26) 1521 11.34 1035 13.76 0.866 0917 0.909 0.888
R-O 1524 11.28 1034 1352 0.865 0.918 0.938 0.891
NAO.9% 15.61 11.69 10.69 14.05 0.861 0911 0.930 0.884
TGF-NN 6.37 10.57 11.70 11.96 0977 0935 0.954 0919

the Hua-Lien are mixed but predominantly semidiurnal in a
coastal region. TGF-NN addresses the tidal generating forces
which can induce many possible constituents. Therefore, TGF-
NN is proportionate to HM with many constituents. Normally,
R-O is examined good to predict the amplitude and phase of
main constituents when the short tidal record is employed. More
tidal data in coastal regions in this study probably can not pro-
mote R-O worse for estimating tides. For application to a single
point, TGF-NN is as powerful as the standard HM for esti-
mating tides when trained with one-year tidal data.

4.2. Extension to predicting tides at neighboring points

The proposed model was developed using the tidal data at the
Hua-Lien in the training procedure, and was examined to ensure
that it would accurately simulate tides at the Hua-Lien at any time.
The developed model is extended herein to six points neighboring
to the Hua-Lien. Six points, Long-Dong (LD), Tou-Cheng (TC),
Su-Ao (SA), Cheng-Gong (CG), Lan-Yu (LY), and Heng-Chun
(HC), depicted in Fig. 2, at the eastern coast of Taiwan, are
selected as the examined points. The Long-Dong, Tou-Cheng and
Su-Ao are about 131, 106 and 72 km, respectively, north of the
Hua-Lien. The Cheng-Gong, Lan-Yu and Heng-Chun are about
102, 214 and 243 km, respectively, south of the Hua-Lien. The
Lan-Yu station is located at a small island away from eastern
Taiwan by a distance of about 78 km.

Tides at a point can be either predominantly semidiurnal,
predominantly diurnal, or mixed. Their nature is determined by
the ratio F=(K;+O,)/(M>+S,) where K;, O, M, and S, are the
amplitudes of four main constituents at a point in general. If
F<0.25, the tides are predominantly semidiurnal and if 7>3.0,
the tides are predominantly diurnal. If 0.25<F<1.5, the tides are
mixed, but mainly semidiurnal, and if 1.5<F<3.0, the tides are
mixed, but mainly diurnal. The six points from north to south are
examined to have F=1.14, 0.71, 0.64, 0.49, 042 and 1.18,
respectively. F'=0.48 is estimated for the Hua-Lien. All values of
F at chosen points indicate mixed tides, but mainly semidiurnal.
The mean tidal ranges at chosen points vary within a range of 65—
109 cm.

Table 3 presents the RMS and #* of simulated tides at six
points in 2001 and 2002 using NAO.99b and TGF-NN. The
input parameter values were separately computed for the six
points and inserted into the well developed model to directly
output their tides. Tidal data at the Long-Dong for year 2001 are
not available for estimating RMS. The difference of annual
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Table 3
Annual RMS and 7 between observed and predicted tides at six points (unit:
cm)

Year Index Method Location

LD TC SA CG LY HC

2001 RMS TGF-NN - 18.57 1437 1347 1571 24.77
NAO.99% - 17.96 13.03 9.80 16.45 13.17
7 TGF-NN - 0.845 0.878 0.950 0.860 0.648
NAO.9%b - 0.611 0.895 0955 0.847 0.837
2002 RMS TGF-NN 2746 17.61 14.19 11.73 16.79 25.18

NAO.9%9% 17.05 1871 1426 13.76 13.55 11.46
”? TGF-NN  0.537 0.856 0.861 0923 0836 0.629
NAO.99% 0.703 0.596 0.883 0.907 0.890 0.874

RMS between observed tides at TC, SA, CG and LY for year
2001 and 2002 and those predicted with both models varies
within a range of only 0.07-3.67 cm. For four cases TGF-NN
has slightly better prediction on tides than dose NAO.99b.
Contrarily, TGF-NN 1is worse for simulating tides than is
NAO.99b for the other four cases. Applying TGF-NN to pos-
sible locations, SA, CG and LD, obtains equivalent +* as
NAO.99b. The insignificant difference in RMS and 7 between
TGF-NN and NAO.99b shows that TGF-NN has comparably
well simulating tides at a point neighboring to the original
interest point and its accuracy is equivalent to that of NAO.99b.

TGF-NN has higher RMS of simulating tides at the both LD
and HC than dose NAO.99b by more than 10 cm. Both points
are rather far from the Hua-Lien. The F values at the TC, SA,
CG and LY approximate to that of the Hua-Lien indicating tidal
types are all alike at those points. However, the F’ values at both
LD and HC are much higher than that of the Hua-Lien by 0.68
implying that the tides at both points behavior in different type
from those at the Hua-Lien. Bad simulations at LD, TC and HC

by TGF-NN result from time delay of tidal propagation due to
bathymetrical variation on continental shelf. The topography
and bathymetry around Taiwan is shown in Fig. 10. SA, HL,
CG, and LY are located along the edge of continental shelf of
western Pacific Ocean. LD and TC are located at the western
end of Okinawa trough and separated from the other locations
by Ryukyu Arc. HC is on the Heng-Chun Ridge and in shallow
waters. The bathymetries of LD and HC are different from those
of the other locations. TGF-NN is developed using the observed
data at the Hua-Lien so that it is limited to simulate tides of
different type at a point, where complex bathymetrical variation
happens, far from the Hua-Lien. When the tide type, tide range
or bathymetry of a position is comparably different from that of
the interest point where tide data are used for training TGF-NN
model, the trained TGF-NN model can not be applicable for this
position, even closely neighboring to the interest point.

The hydrodynamic model used in NAO.99b needs topograph-
ical data for calculating global ocean tides and an assimilation
procedure by 5 years of altimeter is used to modify the model-
predicted tidal heights. TGF-NN needs only one-year astronom-
ical data that can be easily obtained by astronomy at an interest
point and used as input data and corresponding observed tidal data
are used as outputs to establish TGF-NN. When astronomical data
at the same point or at some point neighboring to the interest point
are available, the well developed TGF-NN takes only few seconds
to compute one-year tides at the point. It is accepted that TGF-NN
more easily provides with accurately predicting tides at multi-
points than dose NAO.99b for engineering practices.

5. Conclusions

For coastal and harbor engineering applications, it is very
important to accurately calculated the tidal levels at all times.

Depth in metes.
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Fig. 10. The topography and bathymetry around Taiwan.
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The traditional HM is restricted to tidal prediction at a single
point, although its predictions are highly reliable. Based on tide
theory this investigation explored an alternative TGF-NN which
expresses tide-generating forces in terms of input parameters R/
Dun(t), RID(1), Rfem(1), REES1), [RIDw(0)]” cos0m(2), [R/D(1)])*
cosf(#) and cosp(f). The proposed TGF-NN considers essential
physical concepts of tidal propagation and tide-generating
forces. The proposed model has five neurons in the hidden layer
and a 2-hour lead time input, and is as powerful as HM with 60
constituents for calculating tides for a single point.

The proposed TGF-NN was applied to predict tides at points
neighboring to point where the model is trained with tidal data.
The predictive accuracy was compared with that of NAO.99b.
The slight difference in annual RMS confirms that both methods
estimate tides accurately and that the proposed TGF-NN is
applicable for multi-point tidal prediction for points of which the
tidal type is similar to that of the original interest point. TGF-NN
is limited to simulate tides of different type and tide range at a
point, where complex bathymetrical variation happens, away
from the interest point where the TGF-NN model is developed.
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