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Maximum Contrast Beamformer for Electromagnetic
Mapping of Brain Activity
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Abstract—Beamforming technique can be applied to map
the neuronal activities from magnetoencephalographic/electro-
encephalographic (MEG/EEG) recordings. One of the major
difficulties of the scalar-type MEG/EEG beamformer is the de-
termination of accurate dipole orientation, which is essential to
an effective spatial filter. This paper presents a new beamforming
technique which exploits a maximum contrast criterion to max-
imize the ratio of the neuronal activity estimated in a specified
active state to the activity estimated in a control state. This cri-
terion leads to a closed-form solution of the dipole orientation.
Experiments with simulation, phantom, and finger-lifting data
clearly demonstrate the effectiveness, efficiency, and accuracy of
the proposed method.

Index Terms—EEG, electromagnetic brain mapping, maximum
contrast beamformer, MEG.

I. INTRODUCTION

MAGNETOENCEPHALOGRAPHY (MEG) and elec-
troencephalography (EEG) are tools for functional brain

imaging that noninvasively measure the magnetic induction
and scalp potentials, respectively, produced by the electrical
brain activities. Compared to functional magnetic resonance
imaging (fMRI) that detects the relatively slow hemodynamic
changes which are the correlates of neuronal activities, MEG
and EEG directly measure the neuronal activities with superior
temporal resolution. This advantage enables MEG/EEG to offer
the possibility to penetrate the brain dynamics and neuronal
coupling between cell assemblies.

The electromagnetic field recorded by MEG sensors or EEG
electrodes is the ensemble of neuronal activities within the
whole brain. From the given primary current sources, how the
external electromagnetic field should appear can be calculated
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according to the forward solutions [1], [2]. The electromagnetic
inverse problem is to estimate the neuronal activities in the
brain based on the MEG/EEG recordings [3], [4]. This kind of
inverse problem is inherently ill-posed. Approximations such as
the equivalent current dipole (ECD) model, assumptions such
as a fixed number of dipoles within an epoch, and constraints
such as the anatomical constraint and the minimum-norm
constraint are usually required to obtain reasonable solutions
for the inverse problem.

Dipole fitting is the most widely-used method for solving
the inverse problem. This method assumes that the sources of
brain activity consist of a fixed number of ECDs and estimates
the parameters of the ECDs, including location, orientation,
and strength, by minimizing the squared difference between
the MEG/EEG recordings and the electromagnetic signals
predicted by these ECDs [1], [3]. The major difficulty of the
dipole fitting method is how to determine the a priori number
of sources. Moreover, the involved minimization process may
trap in local minima and result in significant localization errors
if nonlinear simplex or gradient-based search is engaged [5].
As alternatives, MUSIC and its extensions [6]–[8] can avoid
this problem by scanning through the region of interest and
determining the locations with peak projections of forward
models in the signal subspace. Another kind of inverse methods
estimate the brain activities distributed on the cortical surface,
which can be extracted from the magnetic resonance imaging
(MRI) of the head. Each tessellation element of the surface
model is associated with a current dipole, whose orientation is
either set to be on the tangential plane or normal to the local
cortical surface. This anatomical constraint leads to a linear es-
timation of dipole strengths distributed on the cortical surface.
However, this estimation problem is usually underdetermined
and regularization such as the minimum-norm constraint is
required to obtain a unique solution [9]–[11]. This solution,
unfortunately, tends to emphasize the cortical regions closer to
the MEG sensors or EEG electrodes due to the preference of
smaller dipole strength [12].

During the past decade, beamforming methods [13], [14],
which are spatial filtering techniques that linearly integrate
information over multiple spatially distributed sensors, have
becoming more and more attractive for the localization of brain
activities [15]–[20]. Beyond the topographic mapping of signal
power at the sensors, we can obtain the tomographic mapping of
source power within the head by using beamforming methods
to scan the head region and reveal locations having significant
neuronal activation. For inter-subject investigation of brain
function, grand-average activation maps or group comparison
results can be obtained from the individual tomographic map-
pings, after proper statistical flattening [12], [21].
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MEG/EEG beamformer intends to concentrate the array
of MEG sensors or EEG electrodes on the neuronal activities
coming from only one particular position at a time. More specif-
ically, this beamformer can obtain the activation magnitude of
the targeted source by imposing the unit-gain constraint while
suppressing the contribution from other sources by applying the
minimum variance criterion. Given a unit dipole with specified
position and orientation, this method can analytically calculate
a spatial filter from the data covariance matrix and the lead field
of this dipole. Filter output at this position can be obtained by
passing the electromagnetic recordings through the calculated
spatial filter. Individually repeating the above procedure for
each position while scanning through the head region results in
a distribution map of brain activity [15], [16].

There are two types of MEG/EEG beamformers in the litera-
ture. The first one is the vector-type beamformer [15], [17]. This
approach decomposes the dipole into three orthogonal compo-
nents, each one with a fixed orientation. Three spatial filters are
analytically computed for these three orthogonal components
and then can be used to estimate the output source power as
well as the activity index in the linearly constrained minimum
variance (LCMV) beamformer method [15]. Another type of
MEG/EEG beamformers is the scalar-type beamformer [16],
[22], in which only one spatial filter is used to estimate the brain
activity for each targeted position. The dipole orientation is in-
volved in the calculation of the spatial filter to maximize the
output pseudo-Z statistic [16].

One of the advantages of the vector beamformer is that it is
efficient to compute the spatial filters because all the involved
procedures are deterministic. Compared to the vector beam-
formers, the scalar beamformer benefits from its higher output
signal-to-noise ratio (SNR) and more focal spatial extent of the
estimated brain activity distribution [22], [23]. Notice that it is
essential to accurately determine the dipole orientation in the
scalar-type beamforming methods. Only when the dipole orien-
tation is accurate can result in effective spatial filter [23], [24].
If the dipole orientation is deviated from the ground truth, the
spatial filter with high specificity may suppress the contribution
from the true source and fail to reveal the source energy (see
Section IV-A for more details).

One way to determine the dipole orientation is to simply align
it to the local cortical surface normal [24], [25]. Unfortunately,
surface reconstruction for convoluted cortex is very difficult and
the reconstruction deviation will decrease the accuracy of the
dipole orientation. Hillebrand and Barnes reported in [24] that
the anatomical constraints can be advantageous only when the
estimation error of the surface normal is smaller than 10 . In
[16], Robinson and Vrba proposed the synthetic aperture mag-
netometry (SAM) method in which the dipole orientation was
determined by maximizing the pseudo-Z statistic. In general,
it is computationally infeasible to obtain the optimal orienta-
tion by exhaustively evaluating all the possible candidates. Non-
linear optimization method is more efficient, but only can guar-
antee to find the suboptimal solution. Recently, Sekihara et al.
proposed an optimal solution to the determination of dipole ori-
entation that maximizes the output SNR (pseudo-Z statistic)
[22]. The dipole orientation can be calculated very efficiently
in a closed-form manner.

In this paper, we develop a novel spatial filtering technique,
called the maximum contrast beamformer (MCB), for statis-
tical mapping of neuronal activities. This MCB method has the
advantages of good output SNR and focal activity distribution
as in scalar beamformers, while the dipole orientation is deter-
mined accurately and efficiently. In addition to the unit-gain
constraint and the minimum-variance criterion, as in the con-
ventional beamformers, our method exploits a maximum-con-
trast criterion that maximizes the ratio of the reconstructed neu-
ronal activities in the active state to those in the control state.
The maximum-contrast criterion helps to analytically and accu-
rately determine the dipole orientation in a closed-form manner.
The spatial filter can, thus, be obtained very efficiently for each
targeted position. Once the activity waveform is reconstructed
in the source space by spatially filtering the electromagnetic
recordings, an F-statistic map can be calculated to reveal cortical
regions with significant difference of activities between the ac-
tive and control states. Compared to the pseudo-Z statistic [16],
[22] in which the sensor noise is considered, F statistic gives the
statistical inference between two contrast states [12]. According
to our experiments with simulation and phantom data, the MCB
can estimate the dipole orientation and then locate the source,
efficiently and accurately. When applied to a finger-lifting study,
the F-statistic map computed from the movement-evoked field
clearly identifies the sensorimotor area with high contrast. In
this paper, we apply the MCB method for MEG studies. The
same method can also be applied for EEG source localization.

II. METHODS

A. Scalar Beamformer

Consider a unit dipole with parameters , where
is the dipole location and is a unit vector representing the

dipole orientation. Denote the column vector to be
the lead field vector of this unit dipole. The lead field vector
contains the predicted measurements of MEG sensors that
can be calculated by

(1)

Here, is the lead field matrix and can be derived from
the forward solution [2], [4]. Now suppose the source strength
of this dipole is . Let us decompose the MEG recordings

into two components

(2)

where denotes the predicted magnetic field
originated from the targeted source with parameters and

denotes the sensor noise plus the magnetic field origi-
nated from all other sources.

For the dipole source with parameters , the ultimate goal of
a scalar MEG beamformer is to determine a spatial filter , an

column vector, such that the output signal obtained
by passing the MEG recordings through the spatial filter

(3)
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approximates the source strength of this dipole. Toward
this goal, the spatial filter can be determined by applying the
unit-gain constraint, , and by minimizing the variance
of the filter output [15]. Because

(4)

minimization of the variance of means the suppression
of the leakage, , contributed from all other sources
and sensor noise, while preserving the magnitude of the source
strength . Therefore, the optimal spatial filter can be
obtained by

(5)

where denotes the expectation value and is the parameter
of Tikhonov regularization [26] for restricting the norm of the
spatial filter . By substituting (3) into the above equation and
solving the constrained optimization problem via the method of
Lagrange multipliers, we can obtain the analytical solution of

[15], [16], [27]:

(6)

where is the covariance
matrix of the MEG measurements and is the
identify matrix.

B. Statistical Mapping

For each targeted position , the spatial filter for the dipole
with specified orientation can be calculated by using (6). Once
obtained, the spatial filter estimates the dipole activity at the tar-
geted position by using (3). By scanning the head region
and performing the above-mentioned beamforming procedure
for each probed position individually, we obtain the activities
of the whole head. Notice that the norm of the spatial filter is
location-dependent. Compared to a superficial dipole, the lead
field norm of a deeper dipole is smaller [1] and, thus, its cor-
responding spatial filter has a larger norm, as well as a larger
response, according to the unit-gain constraint. There may be
strong non-task-related activity in the filtered outputs. There-
fore, the strength of the estimated activity is not necessarily pro-
portional to the observability of a task-related source. We need
a metric that can normalize task-related output by non-task-re-
lated output.

Beamforming methods provide statistical maps to reveal the
regions having significant neuronal activities [15], [16]. Instead
of the source power, we calculate the F statistic which is the
variance ratio of the filtered activity estimated in an active state
to that estimated in a control state. For each dipole source with

parameters , we calculate the spatial filter by using (6) and
then calculate the F statistic as

(7)

where and are the covariance matrices estimated from
the MEG measurements in active and control states, and

, respectively. Therefore, the value of indicates the sig-
nificant level that the neuronal activity is stronger in the active
state than that in the control state at the targeted position with
dipole orientation .

There are three covariance matrices involved in the beam-
forming process so far, that is, , , and . The matrix
is used to calculate the spatial filter and the corresponding time
interval of should be large enough to contain meaningful
activities. The matrix is used to calculate the F-statistic value
within the time interval of . There are many options to es-
timate the covariance matrix in the denominator of (7). For
the dual-state MEG experiments, can be calculated from the
MEG recordings within the time window of the control state.
In this case, the F-statistic map represents the contrast of the
neuronal activation of the brain between the active and control
states. The other way to calculate the covariance matrix is to
exploit the empty room MEG signals that can be recorded for a
period of time when there is no subject in the shielding room.
From these signals we calculate and keep only the diagonal
part while setting all other elements of this covariance matrix to
be zero. The diagonal part of this covariance matrix can be re-
garded as the sensor gains without considering the correlations
among different sensors. The F-statistic map in this case re-
veals regions having significant brain activity for the single-state
MEG experiments. In another way, we can simply set to be
the identity matrix. This means that the sensors are assumed to
have uniform gain and the sensor noises are independent and
identically distributed.

C. Maximum Contrast Beamformer

The analytical solution of the spatial filter and the following
F-statistic calculation are derived for a dipole with given param-
eters . The position parameters can be set to be
the sampling positions sequentially. However, the dipole orien-
tation is difficult to determine.

Instead of the time-consuming exhaustive search or the sub-
optimal nonlinear search, we propose a closed-form solution to
the determination of dipole orientation in the following. By sub-
stituting (1) into (6), we rewrite the solution of as

(8)

where both and depend
only on the dipole position . We determine the optimal dipole
orientation as the one that can maximize the contrast of the
source power estimated in the active state to that estimated in



1768 IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 53, NO. 9, SEPTEMBER 2006

the control state. By substituting (8) into (7) and maximizing
the F statistic, we obtain

(9)

in which the term in both the numerator and denomi-
nator is a scalar and can be eliminated, the 3 3 matrix

, and the 3 3 matrix . The
solution of in the above equation is the eigenvector corre-
sponding to the maximum eigenvalue of the matrix .
Because these two matrices, and , are both 3 3,
we can solve the matrix inverse problem and the eigenproblem
in a closed-form manner [28], [29]. In practice, we replace the
matrix with the matrix to avoid the singularity
problem, where is another regularization parameter and is
the 3 3 identity matrix.

Although there is an matrix inverse process in the
calculation of and

(10)

(11)

these two terms and
are location-independent

and can be calculated when both the MEG recordings are avail-
able and the time windows are set. Once calculated, these two
terms can be used to derive and , the optimal dipole
orientation , and the spatial filter for each position .

III. EXPERIMENTS

In this paper, we performed experiments, including sim-
ulations, phantom studies, and a finger movement study, to
evaluate the accuracy of source localization and dipole ori-
entation estimation by using the proposed MCB method. The
magnetic signals were recorded from or simulated according
to the 204 planar gradiometers of a whole-head neuromagne-
tometer (Vectorview system, Neuromag Ltd., Finland). The
homogeneous spherical model was adopted as the head con-
ductor model in the calculation of forward solutions.

A. Simulations

Three dipole sources with temporal profiles of sinusoidal
waves were located in the brain, as shown in Fig. 1(a) and (b).
Notice that the structural MRI shown in the simulation studies
is only for visualization purpose. Because the MEG sensors are
much more sensitive to tangential sources than to radial ones,
the orientation of each of the three dipoles in our simulation
was arbitrarily set but lay on the plane tangential to the head
conductor sphere. Strengths of the red, blue, and green dipoles
were all zeros from 1 s to 0 s and were 10, 50, and 50 nAm,

Fig. 1. Ground truth and estimated sources of three dipoles in a simulation
study. This figure illustrates (a) the temporal profiles of these three dipole as
well as (b) their positions superimposed on a head MRI. The F-statistic map
calculated by using the proposed MCB method is tomographically shown in
(c) with two regions around the estimated sources enlarged.

respectively, from 0 s to 1 s. Frequencies of the temporal
profiles for the red and blue dipoles were the same, but were
different from that for the green dipole. Zero-mean Gaussian
random noise with standard deviation 5 nAm was added to
the temporal profile of the red dipole. Correlation coefficient
of the temporal profiles of the red and blue dipoles was about
0.58. Temporal profile of the green dipole was not correlated
to those of the other two dipoles (with correlation coefficient
values about 0.03 to the red dipole and 0 to the blue one).
In addition to these three dipoles, 3000 random dipoles were
uniformly distributed throughout the brain region to simulate
the nontask-related activities. The strength of each random
dipole was drawn from a zero-mean Gaussian random number
with standard deviation 10 nAm. Based on the forward MEG
solutions, the simulated magnetic signals were then calculated
at a 1-ms interval from 1 s to 1 s. Sensor noises with variance
estimated from the empty room recordings of the MEG system
were also added to the simulated signals. The simulated signals



CHEN et al.: MCB FOR ELECTROMAGNETIC MAPPING OF BRAIN ACTIVITY 1769

Fig. 2. Illustration of the mean and the standard deviation (SD) of the orien-
tation estimation error (mean � SD) for different regularization value � and
varying sensor noise levels.

were then processed by a bandpass filter (1 20 Hz) followed
by a baseline correction procedure.

1) Accuracy of Source Localization: The proposed MCB
method was used to calculated the F-statistic map for the simu-
lated magnetic signals, in which the time windows of the active
and control states were 0 1 s and s, respectively.
Fig. 1(c) illustrates the obtained F-statistic map overlaid on
MRI slices. The scanning proceeded voxel-by-voxel and the
red, blue, and green dipoles were located in the scanning space
when they were used to simulate the MEG signals. Obviously
we can find three sources in the obtained F-statistic map and
the three peak F-value locations accurately match with the
ground-truth locations of these three dipoles.

Among the three dipoles, the green dipole was the most focal
and significant one revealed in the F-statistic map because its
dipole strength was larger and its temporal waveforms were
not correlated to others. Although the blue dipole had the same
dipole strength as the green one, but it was close to another cor-
related source, the red dipole, such that the F statistic for the
blue dipole was smaller than that for the green one, as discussed
in [15]. This phenomenon was even worse for the red dipole
in which the F statistic was diversely distributed, as shown in
Fig. 1(c), due to its relative small dipole strength.

2) Accuracy of Dipole Orientation Estimation: The above-
mentioned procedure was repeated to simulate the magnetic sig-
nals for the assessment of dipole orientation estimation accu-
racy by using the proposed MCB method. Only the blue dipole,
instead of the three dipoles concurrently, was engaged in this
case. Ninety dipole orientations were regularly sampled on the
tangential plane for the blue dipole to generate ninety sets of
magnetic signals. Fig. 2 illustrates the accuracy performance of
orientation estimation by using the proposed method. The circle,
square, and triangle marks indicate the results when the regular-
ization parameters were set to be 0.00003, 0.0003, and 0.003
times the maximum eigenvalue of the active state covariance
matrix, respectively. The horizontal axis represents the levels

of sensor noise in the simulated data, ranging from 0.01 to 1
times the standard deviation of the empty room measurements.
The vertical axis represents the average of orientation estima-
tion errors for ninety trials. From this figure, we can see that the
average of the orientation estimation errors can be under 2.1
when the regularization is set appropriately. When the recorded
signals are of high SNR, that is, the sensor noise is low, a smaller
regularization value can achieve better accuracy. Nevertheless,
it remains a challenging issue to determine a proper regulariza-
tion value in the beamforming method.

B. Phantom

An MEG phantom (Neuromag Ltd., Finland) was used to
evaluate the localization accuracy of the MCB. Four-head po-
sition indicator (HPI) coils fixed on the phantom were engaged
to obtain the position of the phantom with respect to the sensor
device. Sixteen fixed current dipoles located on two orthog-
onal planes were activated sequentially to generate the magnetic
fields. The current strength of each dipole was set to be 50 nAm.
For each dipole, 50 trials were recorded by the MEG system at
a sampling rate of 1000 Hz and then averaged according to the
activation onset time. The averaged data were then processed
by a bandpass filter (7.5 Hz to 35 Hz) followed by a baseline
correction procedure. We chose the time window from 30 ms to
90 ms as the active state to calculate the covariance matrix
(and ). Empty room measurements were used to calculated as
the control state covariance matrix . The regularization value
was set to be 0.0003 times the maximum eigenvalue of the co-
variance matrix .

The MCB method was applied to calculate the F-statistic map
and the position with peak value was located as the estimated
dipole position. The Euclidean distance between the ground
truth and the estimated position was calculated as the position
estimation error. The average of position estimation error for
the engaged sixteen dipoles was 1.6381 mm with standard
deviation 0.4971 mm, which is similar to those in the literature
[30], [31]. The average of orientation estimation error was
1.9362 with standard deviation 0.7054 . These results clearly
demonstrate the effectiveness and accuracy of the proposed
MCB method.

C. Self-Paced Finger Movement

In this study, the movement-evoked magnetic fields of one
right-handed healthy subject were acquired. The subject was
asked to sit in a comfortable chair with eyes open in a magnet-
ically shielded room. The subject performed self-paced, brisk
left/right index finger extension (finger lifting) movements at ir-
regular time intervals longer than 8 s. Finger extension was im-
mediately followed by brief muscle relaxation. The commence-
ment of finger movement was registered using an optical pad
and the trigger time was defined as onset time 0 ms.

Vertical and horizontal electrooculogram (EOG) were
recorded to obtain the EOG-free epochs which were not contam-
inated by eye movements and/or blinks. About 100 EOG-free
epochs of MEG measurements with a sampling rate of 250 Hz
were acquired and then averaged according to the trigger
onsets followed by bandpass filtering (3 35 Hz) and baseline
correction. Four HPI coils, two attached on the forehead and
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Fig. 3. F-statistic map of the estimated sources of left and right index finger
movement-evoked fields using the MCB method.

two behind the ears, were used to locate the head of the subject
as regard to the sensor array before data recordings.

The MRI volume of size was scanned with
a Siemens MR system where the MR-RAGE pulse sequence
was performed with , ,

, and . The coordinate
systems between the MR volume and MEG device were co-reg-
istered by means of locating three landmarks (left pre-auricular,
right pre-auricular, and nasion points) in both systems.

The proposed method was again employed to map the sources
of movement-evoked fields. The active state was defined as the
duration from 120 ms before onset to 360 ms after onset. The
covariance matrix of the control state was estimated from the
empty room recordings of 40 s in order to obtain a large amount
of sample data for good estimate of the covariance matrix. Fig. 3
illustrates the calculated F-statistic map. In this figure, the po-
sition of the maximum F-value locates around the hand area of
the primary sensorimotor cortex in the contralateral hemisphere
for both left/right finger movement tasks.

IV. DISCUSSION

A. Importance of Accurate Orientation Estimation

Dipole orientation estimation is a critical issue in scalar-type
beamforming methods [22]–[24]. The spatial filter calculated
for a dipole with inaccurate orientation fails to correctly esti-
mate the neuronal activity, particularly when the specificity of
the spatial filter is high, that is, when the regularization pa-
rameter is small. In this case, the beamformer may not re-
veal the true significance level of task-related activities at this
probed position. Below we discuss this issue theoretically and
experimentally.

The following theorem describes that under certain assump-
tions, the source will be missed by the optimal solution of
the scalar beamformer even when the true source location is
targeted.

Theorem 1: Assume that there is no noise and the MEG sig-
nals are originated from a single source with dipole parame-
ters in the brain, where the source activity

is with zero mean and non-zero power. Consider the calcula-
tion of a scalar spatial filter targeted at the true source loca-
tion, where represents the dipole with location
and orientation deviating from the true source orientation ,

. Then there exists an optimal solution of the scalar spa-
tial filter with ultimate spatial specificity , based on
the unit-gain constraint and minimum variance criterion, such
that the filter output of is zero.

Proof: Since there is no noise, the MEG signals can be
measured as

(12)

Because the mean of the source activity and are both
zeros, (5) can be rewritten as

where is the non-zero power of the source activity. Since the
matrix is real symmetric, is true for all

. Obviously the vector satisfying the condition
of achieves the minimum value of the objective func-
tion . Combined with the unit-gain constraint

, the vector which satisfies both the conditions of
and is the optimal solution of the spatial

filter, . As a result, the F statistic can be calculated as

(13)

That is, the filter output and F statistic are both
zeros.

From the geometric point of view, represents the
hyperplane that has the normal vector and passes through
the origin , as shown in Fig. 4. Similarly, rep-
resents the hyperplane with the normal vector and with
distance to the origin. Therefore, the optimal solution
of is the intersection line of these two hyperplanes and

. This line can be represented by

(14)

where , ,
, , is the angle between

and , and is the parameter of the line.Notice that this
line exists only when the angle , or equivalently, .
Fig. 4 illustrates the geometric relationship between these two
planes and the optimal solution of the spatial filter.



CHEN et al.: MCB FOR ELECTROMAGNETIC MAPPING OF BRAIN ACTIVITY 1771

Fig. 4. Optimal solution of the spatial filter in a special case. Under the as-
sumptions that there is no noise and the MEG signals are originated from a
single dipole source with lead field l , the optimal solution of the ultimate-speci-
ficity spatial filter ŵ for dipole � is the intersection of two hyperplanes,
w l = 0 (� ) and w l = 1 (� ), where l is the lead field of dipole � .

According to the above theorem, the source will be missed by
an ultimate-specificity scalar beamformer with deviated dipole
orientation when noise-free MEG measurements originate from
a single dipole source. Practically, there exist various kinds of
noise in the MEG measurements, including physiological ar-
tifacts, instrumentation perturbation, and environment interfer-
ence. To accommodate the spatial filter to the influence of the
noise, the regularization parameter can be used to control the
norm of the spatial filter. Increasing the value of will prefer the
spatial filter with lower norms; thus, can increase the noise resis-
tance capability of the spatial filter at the expense of degrading
its spatial specificity. Consequently, the spatial filter does not
lie on the intersection line such that the targeted dipole source
will not be totally missed in this case. However, leakage from
the sensor noise and all the sources other than the targeted one
inevitably contribute to the spatial filter output. Accurate dipole
orientation is very essential to differentiate the response of the
targeted source from those of noise and other sources.

We generated a set of simulation data to investigate the issue
that how the dipole orientation influence the performance of
scalar beamformers. The procedure of generating simulation
data described in Section III-A was repeated to produce the
magnetic signals. The red and blue dipoles were both engaged
and the green dipole was discarded in this case, as shown in
Fig. 5(a). The orientation of the red dipole was aligned to the

axis. The blue dipole was oriented to have included angles
of 54.7 from each of the three coordinate axes. The top and
bottom parts of Fig. 5(b) show the F-statistic map calculated
by using the proposed MCB method and the pseudo-Z statistic
map calculated by using the scalar beamformer with dipole ori-
entation specified as the axis, respectively. The regularization
parameter was set to be 0.0003 for both methods.

Obviously, the proposed MCB method can accurately esti-
mate the dipole orientation and produce two focal distributions

Fig. 5. Effect of dipole orientation on scalar beamformer. (a) Two dipoles for
generating the simulated MEG signals. (b) F-statistic map calculated by using
the proposed MCB method (top) and the pseudo-Z statistic map calculated by
the scalar beamformer with orientation specified as the y axis (bottom).

that match these two dipole sources. Besides, the blue dipole
has a more focused distribution than the red one because the
former has higher SNR. The scalar beamformer also obtained
strong pseudo-Z statistic around the red dipole position because
the orientation is correctly specified as the true source orienta-
tion, the axis. However, the activity distribution around the
blue dipole position is not significant because the specified ori-
entation is largely deviated to the blue dipole.

B. Comparison With LCMV Beamformer

As noted in [23], the scalar beamformer achieves higher
output SNR than that of the vector beamformer when the
probed dipole orientation is accurately matched to the source
dipole orientation. However, the performance of the scalar
beamformer degrades when the probed dipole orientation
deviates from the source. Because the vector beamformer is
independent of the dipole orientation, we need to evaluate
the performance of the scalar beamformer, relative to that of
the vector beamformer, with respect to the accuracy of dipole
orientation estimation. The experiment for this purpose is
described below.

The procedure of generating simulation data described in
Section III-A was repeated to produce the magnetic signals.
In this case, the blue dipole was engaged while the red and
green dipoles were discarded. Targeted at the ground-truth
location, the F values were calculated by the scalar beamformer
and LCMV beamformer where was set to be 0.003 times
the maximum eigenvalue of the covariance matrix . For the
scalar beamformer, the F value decreases when the deviation
of the probed dipole orientation becomes large, as indicated
by the square marks in Fig. 6(a). When the dipole orientation
deviation is below around 6 , the scalar beamformer produces
higher F values than the LCMV method does, as indicated
by the dotted line in Fig. 6(a). However, the performance of
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Fig. 6. Performance comparison between MCB and LCMV methods. (a) F value obtained by the scalar beamformer degrades when dipole orientation deviation
becomes large, as indicated by the square marks. It drops below what LCMV beamformer obtains when the orientation deviation is larger than around 6 (the
dotted line). In our experiments, the proposed MCB method can achieve around 2 of orientation estimation error and, thus, can obtain superior F values. (b) Cross-
sectional spatial extents of the source activity estimated by the MCB (square marks) and LCMV (circle marks) methods and the widths at half-peak values are
3.02 mm and 3.97 mm, respectively.

the scalar beamformer drops below that of the LCMV method
when the dipole orientation deviation is larger than 6 . In our
simulation and phantom studies described in Section III, the
proposed MCB method can achieve orientation estimation
accuracy around 2 , which is much less than the turning point
of 6 .

Fig. 6(b) illustrates the cross-sectional spatial extents of the
source activities estimated by the MCB and LCMV methods.
The horizontal axis represents the displacement between the
true source location and the probed dipole location along the
depth. Targeting at the true source location, the peak F values

estimated by the MCB and LCMV methods are 15.75 and
9.86, respectively. The width at half-peak F value obtained
by the MCB method is 3.02 mm and that obtained by the
LCMV method is 3.97 mm. The width ratio of LCMV to
MCB is 1.31, which is close to that of LCMV to SAM (which
is ), as reported in [23]. These results demonstrate the the
superiority of the MCB method in imaging brain activities
because it can achieve high F value and focal spatial extent
of the estimated brain activity distribution. Notice that the
experiments presented here were performed on a 204-channel
sensor array. Performance of the MCB method will degrade
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Fig. 7. Statistic maps of source activities estimated with measurements of dif-
ferent control states. (a) F-statistic map of source activity when the dipole ac-
tivity contributes to the control-state measurements. Only the blue dipole is
revealed due to its high activity ratio between the active and control states.
(b) F-statistic map when the control-state measurements only contain sensor
noise. Two dipoles are revealed because they both have large activities during
the active state compared to the sensor noise.

relative to the LCMV method when the sensor number in-
creases [23].

C. Influence of Measurements in Control State

The MCB method calculates the F value, which is the vari-
ance ratio of the filtered activity obtained from the active state
to that obtained from the control state. Choices of control state
affect the calculated F value as well as the resulted distribution
of neuronal activation. We performed the following experiment
by using simulation data to investigate this issue. The procedure
of generating simulation data described in Section III-A was re-
peated to produce the magnetic signals. The blue dipole was en-
gaged with its position depicted in Fig. 1(b). In this case, the blue
source dipole was activated only in the active state (that is, from
0 to 1 s) with strength 30 nAm. Another engaged source dipole
was located on the same horizontal plane as and at a distance of
7.2 mm of the blue dipole. This additional dipole with strength
50 nAm was activated from 1 to 1 s, that is, throughout both
the control and active states.

The simulated MEG recordings in the active and control
states were used to calculate the corresponding covariance
matrices, and , respectively. Then, the F-statistic map
of source activity was calculated by the MCB method where

was set to be 0.003 times the maximum eigenvalue of the
covariance matrix . As shown in Fig. 7(a), the blue dipole is
clearly revealed because there is significant contrast of source
activity between the active and control states. On the other
hand, the other dipole is not revealed due to its relatively low
activity contrast between active and control states, compared
to the blue one. Therefore, this choice of control state is useful
for dual-state experiments.

If the measurements in the control state only contain the
sensor noises that are independent and identically distributed,
the covariance matrix is the identity matrix times the
variance of the sensor noise. In this case the F value becomes
the output SNR (pseudo-Z statistic) in the method proposed
by Sekihara et al. [22]. As shown in Fig. 7(b), two dipoles are
revealed because their activities during the active state are both
large compared to the sensor noise.

D. Computation Time

In addition to its capability of estimating dipole orientation
accurately, the MCB method is also superior in computation ef-
ficiency due to its closed-form solution of dipole orientation.
Only the matrix inverse and eigenproblem for a 3 3 matrix
are involved in the orientation estimation procedure, which is
apparently very efficient. In the SAM method, the dipole orien-
tation is determined by searching in the solution space according
to the calculated value of pseudo-Z statistic. The involved opti-
mization procedure is inherently time-consuming and may trap
in the local minimum.

For efficiency comparison, we applied both the MCB and
SAM methods to determine the dipole orientation for the sim-
ulation data set used in Section III-A. We tackled the search
problem of the SAM method by exhaustively probing the so-
lution space of dipole orientation at an interval of 5 . The solu-
tion space can be either restricted on the two-dimensional (2-D)
tangential plane or the three-dimensional (3-D) space in gen-
eral. The comparison did not include the vector beamformer
methods because there is no orientation determination proce-
dure involved in these methods.

The comparison was performed on a computer equipped with
an AMD Athlon XP 3000 CPU (2.17 GHz) and 512 MB
RAM. The dipole orientation determination procedure was re-
peated 100 000 times and the total computation time was mea-
sured for each method. The SAM method required 4.0 s and
282.3 s to probe 36 and 2592 candidates on the 2-D plane and
in the 3-D space, respectively. The proposed MCB method used
only 1.3 s, which is more than three times and 200 times faster
than the SAM method in 2-D and 3-D cases, respectively.

V. CONCLUSION

In this paper, we have proposed a novel beamforming ap-
proach, the MCB method, for statistically mapping the brain
activity from MEG recordings. Based on the maximum contrast
criterion, the proposed method calculate a spatial filter that can
maximize the significance level, F statistic, indicating the vari-
ance ratio of filtered activities between two specified time win-
dows. The spatial filter is calculated according to the dipole ori-
entation, which can be optimally determined very efficiently in
a closed-form manner. According to our experiments, we have
clearly demonstrated the effectiveness, efficiency, and accuracy
of the proposed method.
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