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Abstract—TaN/SrTiO3/TaN capacitors with a capacitance
density of 28–35 fF/µm2 have been developed by using a
high-κ (κ = 147−169) SrTiO3 dielectric containing nanometer-
sized microcrystals (3–10 nm). A small capacitance effective thick-
ness was achieved by reducing the interfacial TaON using N+

treatment on the lower TaN electrode during post-deposition
annealing. The small (92 ppm/V2) voltage coefficient of the capac-
itance and the 3 × 10−8 A/cm2 leakage current at 2 V exceed the
International Technology Roadmap for Semiconductors’ require-
ments for analog capacitors at year 2018.

Index Terms—Capacitor, International Technology Roadmap
for Semiconductors (ITRS), metal–insulator–metal (MIM),
SrTiO3 (STO).

I. INTRODUCTION

A CCORDING to the International Technology Roadmap
for Semiconductors (ITRS) [1], the capacitance density of

future metal–insulator–metal (MIM) capacitors has to increase
to help reduce chip sizes and the cost of ICs. Besides the high
capacitance density (ε0κ/td) and the limited thermal budget
necessary for back-end integration, a low leakage current and a
small voltage dependence of the capacitance (∆C/C) are also
necessary for analog functions. To meet these requirements,
high dielectric constant (κ) materials [2]–[19] provide the
only solution, since decreasing the dielectric thickness (td)
to increase the capacitance density degrades both the leakage
current and the ∆C/C performance. Therefore, the high-κ
dielectrics used in MIM capacitors have evolved from SiON
(κ ∼ 4 − 7) [3]–[5], Al2O3 (κ = 10) [13], HfO2 (κ ∼ 22)
[7]–[11], Ta2O5 (κ ∼ 25) [12], [15] to Nb2O5 (κ ∼ 40) [16]
or TaTiO (κ ∼ 45) [17]–[19].
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SrTiO3 (STO) is a potential candidate to increase the κ value
beyond 45. It has the well-known perovskite-type structure
and has a para-electric phase above 105K and a high κ value
of ∼ 300 at room temperature. It is an attractive candidate
for DRAM [20]–[24] due to the high charge storage capacity
and para-electricity (no fatigue or aging problems). To achieve
the high κ value, the STO requires heat treatment at 450 ◦C–
500 ◦C under an oxygen ambient for crystallization [20]–[23].
Therefore, it also requires a Pt or RuO2 lower electrode [21]
to withstand the high temperature oxidation, but the high
cost and availability of noble metals pose concerns for mass
production.

To address this issue, we have fabricated STO MIM capac-
itors on a conventional TaN electrode, where a NH3 plasma
treatment on the lower TaN has been used to improve the elec-
trode stability and capacitance density degradation by forming
interfacial TaON during the postdeposition anneal (PDA). We
obtained a 28-fF/µm2 capacitance density, a small quadratic
voltage coefficient of capacitance (α) of 92 ppm/V2, and low
3 × 10−8 A/cm2 leakage current at 2 V. This performance
meets the specifications for analog capacitors as set out by the
ITRS for the year 2018.

II. EXPERIMENTAL PROCEDURE

The MIM capacitors were fabricated on a 4-µm SiO2 that had
been deposited on a Si wafer. The lower capacitor electrodes
were formed by depositing 0.05-µm TaN on a 1-µm Ta layer,
where the thick Ta was chosen to reduce the parasitic resistance
of the electrode and the TaN served as a barrier layer for the
STO. After patterning the lower electrode, the TaN was treated
by NH3 plasma nitridation at 100 W to improve the lower in-
terface. The 43- and 55-nm STO (Sr/Ti = 1.1) dielectric layers
were then deposited using RF magnetron sputtering. This was
done using a ceramic STO target in a 4:1 Ar/O2 gas mixture
at a total pressure of 10 mtorr. This was followed by 400 ◦C–
450 ◦C furnace annealing for 30 min to ∼ 1 h under an
oxygen ambient—for crystallization and quality improvement.
Finally, TaN/Al was deposited and patterned to form the top
capacitor electrode. Cross-sectional transmission electron mi-
croscopy (TEM) and secondary ion mass spectroscopy (SIMS)
were used to study the metal interface and dielectric prop-
erties. The fabricated MIM capacitors were characterized by
J–V and capacitance–voltage (C–V ) measurements using an
HP4156C curve tracer and HP4284A precision LCR meter,
respectively.
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Fig. 1. (a) C–V and (b) J–V characteristics of TaN/STO/TaN MIM capaci-
tors processed under various conditions. The 400 ◦C PDA yields a capacitance
density of 17 fF/µm2, which increases to 28 fF/µm2 for a 450 ◦C PDA and is
better with the N+ treatment (35 fF/µm2).

III. RESULTS AND DISCUSSION

A. Electrical J–V and C–V Characteristics

Fig. 1(a) and (b) shows the C–V and J–V characteristics of
TaN/STO/TaN capacitors, respectively, which were processed
differently. The capacitance density increased from 17 to
28 fF/µm2 with increasing O2 PDA temperature and the use of
nitrogen plasma (N+) treatment on the TaN. At the same time,
better frequency dispersion, lower leakage current, and higher
breakdown voltage (BV) of the MIM devices were obtained.
Application of the N+ treatment on the lower TaN improved
the capacitor density from 28 to 35 fF/µm2 and decreased the
leakage current by nearly an order of magnitude at < 2 V.

Examination of the device performance at 125 ◦C [Fig. 2(a)]
shows that N+ treatment still improves the leakage current at
positive bias. The leakage current and the capacitance density
under various process conditions are summarized in Fig. 2(b).
The higher O2 PDA temperature and N+ treatment gener-
ally improve the leakage current and capacitance density of
TaN/STO/TaN capacitors.

Fig. 2. (a) J–V characteristics for the devices in Fig. 1 measured at 125 ◦C.
(b) Comparison of the C–V and J–V characteristics of TaN/STO/TaN MIM
capacitors.

Fig. 3. J–V and C–V (insert) characteristics of an STO MIM capacitor using
optimum process conditions.

To address the ITRS requirements for low leakage current
for analog capacitors (at year 2018), we also fabricated high-
performance MIM capacitors of other thicknesses. This was
done in an attempt to achieve the ITRS goals of 10 fF/µm2

density, J/(C · V ) < 7 fA/(pF · V), and α < 100 ppm/V2 [1].
Fig. 3 shows the J–V characteristics of a 28-fF/µm2 density
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Fig. 4. Plot of ln(J) versus E1/2 under electron injection from the (a) bottom
and (b) top electrode.

capacitor (inserted figure) with a 55-nm thickness fabricated
under the optimal conditions of a 450 ◦C PDA and N+-treated
TaN. A low leakage current of 3 × 10−8 A/cm2 at 2 V was
measured, which gives a J/(C · V ) of 5.4 fA/(pF · V). This
meets the ITRS leakage current requirement at 2018 along with
2.8 times better capacitance density. The leakage current under
reverse bias (top electron injection) is markedly higher than
that under positive bias (injection from the lower electrode).
This may be due to the surface roughness originating from
the crystallized STO. However, crystallization is needed for the
STO to display a high κ value.

B. Current Conduction Mechanism

To investigate the large leakage current difference for dif-
ferent voltage polarities, we have plotted ln(J) versus E1/2 in
Fig. 4(a) and (b) for electrons injected from the bottom and
top electrodes, respectively. A linear ln(J)−E1/2 relation is
shown, although a strong process dependence and a different
slope are observed. The different slopes in the ln(J)−E1/2 plot
suggest different current conduction mechanisms. It is known
that both Schottky emission (SE) and Frenkel–Poole (FP)

Fig. 5. SIMS profile of STO/TaN with or without N+ treatment on the
lower TaN.

conduction can give such a linear ln(J)−E1/2 relation with
different slopes (γ) as indicated by [22]

J ∝ exp
(

γE1/2 − Vb

kT

)
(1)

γ =
(

e3

ηπε0K∞

)1/2

(2)

where k is Boltzmann’s constant, T is the temperature in kelvin,
e is the electron charge, ε0 is the permittivity in vacuum, K∞
is the high-frequency dielectric constant (= n2, where n is
the refractive index), and η is a constant with its value equal
to 1 or 4 for FP or SE, respectively. The different slopes
γ for the SE and FP cases arise from the different energy
barriers Vb, corresponding to the work function of the metal-
electrode/dielectric in the SE case or the trap energy level in
the dielectric for the FP case. The fits to the experimental data
give slopes of 1.58 × 10−5 or 3.16 × 10−5 eV (m/V)1/2 for
the SE or FP mechanisms, respectively, by using n = 2.4 for
STO [22], [26] in the above equations.

Following the good agreement between measured and cal-
culated data [using (1)], we investigated the dependence of
leakage current on process conditions and voltage polarity.
For electrons injected from the top TaN electrode, the current
conduction mechanism changes from SE at low electric fields
to FP at higher fields. The FP-dominated high-field conduction
arises because the trapped electrons can gain energy and be
emitted from trapped states and contribute to the leakage cur-
rent. The smaller SE current for the device with lower electrode
N+ treatment is related to the smoother STO/TaN surface, as
determined by atomic force microscopy (AFM), where the STO
rms roughness improved from 11.2 to 5.9 nm. For the lower
electrode injection case, the current conduction mechanism
depends on whether the TaN electrode had the N+ treatment.
For the N+-treated case, the current conduction mechanism is
the same as for top electrode injection, i.e., SE at low field,
which changes to FP at high field. However, for the lower
TaN electrode without N+ treatment, the FP mechanism applies
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at both low and high fields. These results indicate a higher
trap density or deeper trap energies in STO or the STO/TaN
interfacial layer when the lower TaN electrode does not have
the N+ treatment.

C. Material Characterization

We measured the SIMS depth profile of the devices to study
the origin of the improved leakage current for the N+-treated
case. As shown in Fig. 5, even under the existing background
level of SIMS system, a higher oxygen concentration can be
observed in the lower TaN layer without N+ treatment. The
interfacial TaON was formed during STO oxidation annealing
but degraded the capacitance effective thickness (CET), capac-
itance density, and overall κ value. In sharp contrast, the device
with N+ treatment on the lower TaN shows less inter-diffusion
and a better interface. In addition, less nitrogen was found in the
STO for the treated sample. It is important to note that such an
interfacial layer is also responsible to the higher leakage current
at low field, as discussed above, and may be due to the higher
trap density from the oxygen deficiency as shown by SIMS.
This would lead to trap-assisted FP conduction.

The fabricated STO/TaN was also examined by X-ray dif-
fraction (XRD) and TEM. As shown in the XRD spectra of
Fig. 6(a), the crystalline phase of STO is dependent on the
PDA temperature and time. STO crystallization starts after
450 ◦C PDA, and the degree of crystallization (XRD intensity)
increases with increasing PDA time. Because the κ value of
perovskite-type STO is known to increase with increasing de-
gree of crystallization, this result explains the larger capacitance
density in Fig. 1(a) at higher PDA temperature. The crystallized
STO is confirmed by the cross-sectional TEM of Fig. 6(b) and
its enlargement in Fig. 6(c). At 43-nm STO thickness, a high κ
value of 169 and improved lower STO/TaN interface, compared
with previous work [17], were found for the 35-fF/µm2 density
device (0.99 nm CET). The microcrystals, consistent with the
XRD measurements, had a grain size of 3–10 nm as indicated
in the TEM image. Such micrograined STO is essential in
producing thin consistent STO layers for devices [25].

D. ∆C/C, α, and Temperature Coefficient of the
Capacitance (TCC)

α is an important parameter of MIM capacitors for analog ap-
plications. The undesirable voltage dependence can be obtained
by fitting the measured C–V characteristics with a second-
order polynomial equation

∆C(V ) = C0(αV 2 + βV ) (3)

where C0 is the capacitance at 0 V, and α and β represent
the quadratic and linear voltage coefficients of capacitance,
respectively. Since the effect of the linear β term can be com-
pensated by circuit design using a differential method [27], the
α term is the main factor in the voltage dependence. Fig. 7(a)
and (b) shows the ∆C/C–V dependence on N+ treatment

Fig. 6. (a) XRD spectra of STO after a 400 ◦C–450 ◦C O2 PDA. Crystal-
lization of STO was found at 450 ◦C O2 PDA. (b) Cross-sectional TEM of
STO/N+-treated TaN with (c) an enlarged STO image.

and capacitance density, respectively. Good fits to (3) were
obtained in all the cases and yielded α. The N+ treatment can
dramatically reduce α from 1978 to 542 ppm/V2 at 1 MHz. This
significantly better α is consistent with the improved leakage
current and interface properties shown above. An even better α
was measured as the STO thickness was increased, although
a trade-off of the capacitance density is needed. Under the
best conditions—450 ◦C PDA and N+-treated lower TaN—a
small α of 92 ppm/V2 was obtained in a 28-fF/µm2 capacitor.
This meets the ITRS specifications for year 2018 with nearly
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Fig. 7. ∆C/C–V characteristics for STO MIM capacitors and the depen-
dence on (a) plasma nitridation on the lower TaN and (b) different capacitance
densities of 28–49 fF/µm2. (c) Frequency dispersion of the 28-fF/µm2 density
capacitor.

three times better capacitance density. The frequency dispersion
of the capacitance can have a significant impact in precision
analog circuit applications [28]. As shown in Fig. 7(c), sig-
nificantly better frequency dispersion of the capacitance was

Fig. 8. (a) Temperature-dependent normalized capacitance for MIM capaci-
tors with or without plasma nitridation of the lower TaN. (b) α, TCC, and CET
as a function of various treated MIM capacitors.

measured for positive bias than negative bias. This is consistent
with the lower leakage current in the lower electrode injection
case and may be due to the better STO/TaN interface, as
discussed above.

Since modern ICs usually operate at elevated temperature,
TCC is important. Fig. 8(a) shows the temperature dependence
of the normalized capacitance for STO MIM capacitors with
and without plasma treatment. TCC increases with increasing
temperature but decreases with increasing frequency [7]. It is
also strongly dependent on processing conditions. As summa-
rized in Fig. 8(b), higher PDA temperatures and N+ treat-
ment improved the TCC characteristics. This is similar to the
α improvement, which suggests that the primary mechanism
determining the TCC is also trap related.

E. Performance Comparison

Fig. 9 shows the dependence of α as a function of CET or
the inverse capacitance density (1/C). An exponential decrease
of α with increasing CET or 1/C was observed for the Ta2O5

[12], HfO2 [10], Tb-doped HfO2 [8], TiTaO [18], and STO
MIM capacitors. This is due to the trap-related leakage current
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Fig. 9. ∆C/C−1/C plot of TaN/STO/TaN and various high-κ MIM capac-
itors. The exponential decrease with increasing 1/C is important for designing
capacitors for different applications.

TABLE I
COMPARISON OF VARIOUS HIGH-κ CAPACITORS. TaN/STO/TaN

CAPACITOR SHOWS THE BEST PERFORMANCE, EXCEEDING

THE REQUIREMENTS OF THE ITRS FOR 2018

that also has an exponential dependence on CET [7]. For the
same CET or capacitance density value, the STO device has
the lowest α. This is due to the high κ value of 147–169,
which exceeds the κ ∼ 22−45 values for HfO2, Ta2O5, and
TiTaO. The α−1/C dependence is important in choosing the
required C density and also in meeting the analog specifications
of a low α.

The important device parameters for the analog capacitors
are summarized in Table I. Among the various high-κ capaci-
tors, the TaN/STO/TaN capacitor shows the best performance,
meeting the ITRS requirements for 2018 and with 2.8 times
better capacitance density.

IV. CONCLUSION

Using micro-crystallized high-κ SrTiO3 and a N+ treatment
on the lower TaN, TaN/STO/TaN capacitors show good device
integrity along with 28-fF/µm2 capacitance density, an α of
92 ppm/V2, and leakage current of 3 × 10−8 A/cm2 at 2 V.
These data exceed the ITRS specifications for analog capacitors
for 2018 and have the advantage of simple dielectric processing
without requiring noble metal electrodes.
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