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Abstract— In the next generation mobile telecommunications,
any third party that provides wireless data services (e.g., mobile
banking) must have its own solution for end-to-end security.
Existing mobile security mechanisms are based on public-key
cryptosystem. The main concern in a public-key setting is
the authenticity of the public key. This issue can be resolved
by identity-based (ID-based) cryptography where the public
key of a user can be derived from public information that
uniquely identifies the user. This paper proposes an efficient ID-
based encryption algorithm. We actually implement the ID-based
encryption schemes and compare the performance to show the
advantage of our approach. Our study indicates that our solution
outperforms a previously proposed algorithm by 20 – 35%.

Index Terms— End-to-end security, identity-based cryptogra-
phy, mobile banking, public key.

I. INTRODUCTION

IN the recent years, the third generation (3G) and beyond
3G (B3G) mobile telecommunications networks [11] have

been widely deployed or experimented. These networks offer
large bandwidths and high transmission speeds to support
wireless data services besides traditional voice services. For
circuit-switched voice services, mobile operators have pro-
vided security protection including authentication and en-
cryption. On the other hand, wireless data services (such as
mobile banking) are likely to be offered by the third parties
(e.g., banks) who cannot trust the security mechanisms of
mobile operators. In this case, the third parties must have their
own solution for end-to-end security [12]. End-to-end security
mechanisms used in mobile services are typically based on
public-key cryptosystem.

In public-key cryptosystem each user has a key pair (KU,
KR), where KU is the public key and KR is the private
key. To generate the key pair, one first chooses a private
key KR and applies some one-way function to KR to obtain
a random and uncontrollable KU. The main concern in a
public-key setting is the authenticity of the public key. If
an attacker convinces a sender that a receiver’s public key
is some key of the attacker’s choice instead of the correct
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public key, he can eavesdrop and decrypt messages intended
for the receiver. This is the well known man-in-the-middle
attack. This authentication problem is typically resolved by
the use of verifiable information called certificate, which is
issued by a trusted third party consisting of the user name and
his public key. In 1984, Shamir [20] introduced the concept of
identity-based (ID-based) cryptography where the public key
of a user can be derived from public information that uniquely
identifies the user. For example, the public key of a user can be
simply his/her email address or telephone number, and hence
implicitly known to all other users. A major advantage of ID-
based cryptosystem is that no certificate is needed to bind user
names with their public keys. The first complete ID-based
encryption scheme was proposed by Boneh and Franklin in
2001 [6]. They used a bilinear map (the Weil pairing) over
elliptic curves to construct the encryption/decryption scheme.
After that, the bilinear pairings have been used to design
numerous ID-based schemes, such as key exchange [13] and
short signature [7].

In addition to the Weil pairing, there exists another bilinear
map on the group of points on an elliptic curve, which is
known as the Tate pairing [19]. From a computational point of
view, the Tate pairing can be done approximately twice as fast
as the Weil pairing as it requires half the evaluations of rational
functions in Weil pairing. As our proposed algorithm improves
the evaluation of a rational function, it can be similarly
applied to the computation of the Tate pairing theoretically.
A disadvantage of the Tate pairing is that the outcome is not
a unique value, which cannot be used in many applications.
This problem can be solved by performing an exponentiation
on the outcome of the Tate pairing [19]. The advantage of the
Weil pairing is that its definition is more comprehensible than
that of the Tate pairing, which involves equivalence classes of
quotient groups. For the reader to easily follow the derivation
of our proposed algorithm, we introduce the Weil pairing and
implement our proposed algorithm on it.

ID-based cryptosystem transparently provides security en-
hancement to the mobile applications without requiring the
users to memorize extra public keys. For example, sending
an ID-based encrypted short message is exactly the same as
sending a normal short message [10] if the mobile phone
number of the short message recipient is used as the public
key. Therefore, the mobile user (the sender) does not need to
memorize the public key of the receiver. This feature is espe-
cially desirable for mobile applications such as bank or stock
transactions. However, in the existing ID-based cryptosystem,
the pairing computing has significant overhead. Therefore,
efficient algorithm for ID-based cryptosystem is essential in
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mobile devices with limited computing power.
The original algorithm for computing Weil pairing was

proposed by Miller [17]. The most important part of the
algorithm is the evaluation of a rational function associated
with an m-torsion point of the elliptic curve. In this paper,
we extend the idea of point halving, which was proposed by
Knudsen [14], to speed up the evaluation of a rational function.
We first introduce the complete ID-based encryption scheme
and provide the background about the elliptic curve group
and Weil pairing used in their scheme. We also describe the
original Miller’s algorithm for computing Weil pairing. Then
we present a new algorithm for computation of Weil pairing
using the point halving technique. We actually implement the
ID-based encryption schemes and compare the performance
to show the advantage of our approach over a previously
proposed popular solution. We then illustrate an applicable
ID-based end-to-end mobile encryption system.

II. PREVIOUS WORK

The first complete ID-based encryption scheme is con-
structed by using an associated bilinear map called Weil
pairing on elliptic curves. To realize Weil pairing, we need a
mathematical tool called divisor on elliptic curves. With this
background, we then present the original algorithm proposed
by Miller for computing the Weil pairing [17].

A. ID-based Encryption

Boneh and Franklin proposed the first complete ID-based
encryption (IBE) scheme using a bilinear map called Weil
pairing over elliptic curves. The bilinear map transforms a
pair of elements in group G1 and sends it to an element
in group G2 in a way that satisfies some properties. The
most important property is the bilinearity that it should be
linear in each entry of the pair. Assume that P and Q are
two elements (e.g., points on elliptic curves) of an additive
group G1. Let e(P,Q) be the element of a multiplicative
group G2, which is the pairing applied to P and Q. Then
the pairing must have the following property: e(rP,Q) =
e(P,Q)r = e(P, rQ), where r is an integer and rP denotes
the element generated by r times of additions on P, e.g.,
2P = P + P, 3P = P + P + P and so on. Weil pairing
on elliptic curves is selected as the bilinear map. That is, they
use the elliptic curve group (the set of point collection to be
defined in Section II-B) as G1 and the multiplicative group
of a finite field as G2. Their ID-based encryption scheme
works as follows. A trusted third party called the private key
generator (PKG) initially chooses a secretive master key s
and announces the public information including elliptic curve
equation, the base point P, the public key sP of the system,
and other needed hash functions. Each user has the public key
KU = QID that is a point on elliptic curve corresponding to
his ID and is known to all other users. The private key is
generated by KR = sQID, which is obtained from the PKG.
To encrypt a message M, the sender randomly chooses an
integer r and sends (U,V) = (rP,M ⊕ h(e(QID, sP)r)) to
the receiver, where h is a hash function announced by PKG
in the public information and e is the Weil pairing function to
be elaborated in Section II-D. To decrypt the received cipher

text (U,V), the receiver uses the private key sQID to compute
M = V⊕h(e(sQID,U)). This decryption procedure yields the
correct message due to the bilinearity of the Weil pairing (i.e.,
e(sQID,U) = e(sQID, rP) = e(QID, sP)r).

The standard security model for a public key encryption
scheme involves indistinguishability of encryptions against
fully adaptive chosen ciphertext attack (IND-CCA) [1]. A
strengthened model of IND-CCA called IND-ID-CCA is the
standard notion of security for ID-based encryption schemes.
Boneh and Franklin’s ID-based encryption scheme is IND-ID-
CCA secure, i.e. their encryption scheme is indistinguishably
secure against adaptively chosen ciphertext attacks, under an
assumption that the Bilinear Diffie-Hellman (BDH) problem
is hard [6]. The BDH problem is defined as follows. Given
P, aP, bP, cP in G1, find out e(P,P)abc in G2. Since the
scheme is constructed on an elliptic curve, the security level
depends on the size of the finite field. For example, an elliptic
curve over a 163-bit finite field currently gives the same level
of security as a 1024-bit RSA [2].

The most significant overhead in implementing the ID-
based encryption scheme is the computation of Weil pairing,
a bilinear pairing defined on the elliptic curve to be described
next.

B. Elliptic Curves

Let p be a prime larger than 3. An elliptic curve over a finite
field of size p denoted by GF (p) can be given by an equation
of the form: y2 = x3 + ax + b, where a, b ∈ GF (p). (The
equation over a finite field of size 2n denoted by GF (2n)
looks slightly different and will be given later.) The set of
points on the curve is the collection of ordered pairs (x, y)
with coordinates in the field such that x and y satisfy the
equation defining the curve, plus an extra point O called the
infinity point. These points form an abelian group E under a
certain addition over GF (p). That is,

E = {(x, y) ∪ O|(x, y) satisfies y2 = x3 + ax+ b,

x, y ∈ GF (p)}.
The group addition operation is defined as follows: to add two
points P = (xP, yP) and Q = (xQ, yQ) on the curve, we first
pass the straight line through them, find out the third point
(xP+Q, y

′
P+Q) intersected with the curve, and then reflect the

point over the x-axis to obtain point P + Q = (xP+Q, yP+Q),
i.e., yP+Q = −y′P+Q (see Fig. 1).

Assume that P = (xP, yP) and Q = (xQ, yQ) are on the
curve, λ is the slope of the line passing through P and Q,
then the coordinates of P + Q = (xP+Q, yP+Q) are

xP+Q = λ2 − xP − xQ

yP+Q = λ(xP − xP+Q) − yP
,

where λ =

{ yQ−yP
xQ−xP

if P �= Q
3x2

P+a
2yP

if P = Q
.

The infinity point O plays a role as the identity element,
that is, P + O = O + P = P for any point P. Each point P
has a unique inverse element −P such that P + (−P) = O.
For P = (xP, yP) in elliptic curve E over GF (p), the unique
additive inverse of P is defined by −P = (xP,−yP).
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Another category of elliptic curves is defined over the finite
field of size 2n denoted by GF (2n). The equation defining
elliptic curves over GF (2n) is of the form y2 + xy = x3 +
ax2 + b , where a, b ∈ GF (2n). The addition operation on
points P and Q is the same as before except that yP+Q =
xP+Q + y

′
P+Q . Therefore we can obtain the addition formula

as follows. Let P = (xP, yP),Q = (xQ, yQ) ∈ E. Let λ be the
slope of the line passing through P and Q, and the coordinates
of P + Q be (xP+Q, yP+Q). Then

xP+Q = λ2 + λ+ xP + xQ + a
yP+Q = λ(xP + xP+Q) + xP+Q + yP

,

where λ =

{
yQ+yP
xQ+xP

if P �= Q
xP + yP

xP
if P = Q

.

The inverse of P = (xP, yP) is defined by −P = (xP, xP +
yP) when P is in elliptic curve E over binary field GF (2n).

For elliptic curves, the group operation is written as addition
instead of multiplication. Thus the exponentiation in general
multiplicative group can be appropriately referred to as the
scalar multiplication in elliptic curve group. That is, we denote
rP as P + P + . . .+ P︸ ︷︷ ︸

r times

for an integer r.

C. Divisor

A divisor is a useful device for keeping track of the zeros
and poles1 of rational functions [16]. A divisor provides a
representation to indicate which points are zeros or poles and
their orders for a rational function over the elliptic curve. A
divisor D can be defined as a formal sum of points on elliptic
curve group E: D =

∑
P∈E nP(P) , where nP is a non-zero

integer that specifies the zero/pole property of point P and its
respective order. Inequality nP > 0 indicates that point P is a
zero, and nP < 0 indicates that P is a pole. For example, for
P,Q,R ∈ E,D1 = 2(P)+ 3(Q)− 3(R) indicates that divisor
D1 has zeros at P and Q with order 2 and 3 respectively, and
a pole at R with order 3. And D2 = 2(P) + (−2P) − 3(O)
indicates that P and −2P are zeros with order 2 and 1, and
O is a pole with order 3 for the divisor D2. Note that the
parenthesis is used to separate the order and the specific point.
For example, (2P) indicates that 2P is a zero with order 1,
while 2(P) indicates that P is a zero with order 2.

The group of divisors on E, denoted as Div(E), forms
an abelian group with the following addition operation.
For D1,D2 ∈ Div(E), if D1 =

∑
P∈E nP(P),D2 =∑

P∈EmP(P), then D1 + D2 =
∑

P∈E nP(P) +∑
P∈EmP(P) =

∑
P∈E(nP + mP)(P). For a divisor D =∑

P∈E nP(P), we define supp(D) = {P ∈ E|nP �= 0}
as the support of divisor D, and deg(D) =

∑
P∈E nP as

the degree of divisor D. For example, if D1 = 2(P) +
3(Q) − 3(R),D2 = 2(P) + (−2P) − 3(O), then supp(D1) =
{P,Q,R}, supp(D2) = {P,−2P,O} and deg(D1) = 2 + 3−
3 = 2, deg(D2) = 2 + 1 − 3 = 0.

From now on, we consider only the set of divisors of
degree zero, denoted as Div0(E). Let f be a rational function

1Let f be a non-zero rational function, and P ∈ E. If f(P) = 0 then f is
said to have a zero at P. If f is not defined at P then f is said to have a pole
at P and we write f(P) = ∞.

from K × K to K , where K is a finite field. For example,
f(x, y) = 3y−2x−5

5y+3x−2 . The evaluation of a rational function f
on a point P = (xP, yP) is defined by f(P) = f(xP, yP)
and the evaluation of f on a divisor D =

∑
P∈E nP(P) is

defined by f(D) =
∏

P∈supp(D) f(P)nP . Define the divisor
of a rational function f as div(f) =

∑
P∈E nP,f(P), where

nP,f is the zero/pole order of point P on f. It is well known
that the degree of the divisor of a rational function must be
zero [16]; that is, div(f) ∈ Div0(E) for any rational function
f. For example, let P = (xP, yP) ∈ E, f(x, y) = x − xP,
then div(f) = div(x− xP) = (P) + (−P) − 2(O). P and −P
are the zeros of f because only they are on both the vertical
line x − xP = 0 and the elliptic curve E. The infinity point
O is a pole of order 2 because div(f) ∈ Div0(E). Then for
two rational functions f1 and f2, we have div(f1) + div(f2) =
div(f1f2) and div(f1) − div(f2) = div(f1/f2).

As an example, let E be the elliptic curve defined by y2 =
x3 + 7x over GF (13). We have P = (4, 1),Q = (5, 2) ∈ E,
and P + Q = (5, 11). Assume that f(x, y) = y−x+3

x−5 . Since
P,Q,−(P + Q) = (5, 2) = Q are on the line y − x+ 3 = 0,
div(y − x + 3) = (P) + (Q) + (−(P + Q)) − 3(O) = (P) +
2(Q) − 3(O). Also, div(x − 5) = (Q) + (−Q) + 2(O) =
(Q)+(P+Q)−2(O) because Q,−Q = (5, 11) = P+Q are
on the line x − 5 = 0. Therefore, we have div(f) = div(y −
x+ 3) − div(x− 5) = (P) + (Q) − (P + Q) − (O).

A divisor D ∈ Div0(E) is defined to be principal if
D = div(f) for some rational function f. The principal divisor
D =

∑
P∈E nP(P) is characterized by

∑
P∈E nPP = O [16],

where
∑

P∈E nPP denotes the sum by applying addition
operation on the points in elliptic curve E. For example, let
D3 = (P)+(−P)−2(O), then D3 satisfies deg(D3) = 0 and
P + (−P)− 2O = P − P = O. Therefore D3 is principal. In
fact, D3 = div(x− xP) for the function x− xP.

Two divisors D1,D2 ∈ Div0(E) are said to be equivalent
(denoted as D1 ∼ D2) if D1−D2 is principal. For any divisor
D =

∑
R∈E nR(R) ∈ Div0(E), there is a unique point P =∑

R∈E nRR ∈ E such that D ∼ (P) − (O). In other words,
D can be always written in canonical form: D = (P)− (O)+
div(f), where f is a rational function.

Now we introduce a formula for adding two divisors in
canonical form, such that the result is still in canonical form.
This formula provides a method of finding a rational function
f such that div(f) = D for a given divisor D, and is critical
for computing Weil pairing. Let D1,D2 ∈ Div0(E) be given
by D1 = (P1)−(O)+div(f1) and D2 = (P2)−(O)+div(f2).
Assume that P1 + P2 = P3. Let hP1,P2(x, y) = ay + bx+ c
be the equation of the straight line passing through P1 and
P2, and hP3(x, y) = x + d be the equation of vertical line
passing through P3. (Note that if P1 = P2, hP1,P2(x, y) is the
line tangent to P1. And if P3 = O, we have hP3(x, y) = 1, a
constant equation.) Then we have div(hP1,P2) = (P1)+(P2)+
(−P3)−3(O) where P1, P2, and −P3 are zeros because they
are on line hP1,P2 , and div(hP3) = (P3)+(−P3)−2(O) where
P3, −P3 are zeros because they are on line hP3 (see Fig. 1).
From the above discussion, the sum of divisors D1 + D2 is
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(xP+Q, yP+Q)

(xP+Q, yP+Q′)

Fig. 1. Group law on an elliptic curve

written as:

D1 + D2 = (P1) + (P2) − 2(O) + div(f1f2)
= (P3) − (O) + div(f1f2) + div(hP1,P2)

− div(hP3)
= (P3) − (O) + div(f1f2hP1,P2/hP3). (1)

Eq. (1) will be used in the computation of Weil pairing in
the following subsection.

D. Weil Pairing

Given an elliptic curve E over a finite field K , let m be
an integer prime to char(K), the characteristic of K [15]. For
example, char(GF (p)) = p and char(GF (2n)) = 2. The Weil
pairing is a function

e : E[m] × E[m] → Um,

where E[m] = {P|mP = O,P ∈ E} is called the m-torsion
group, Um is the group of the mth roots of unity in K , the
algebraic closure of K [15].

Weil pairing e(P,Q) is defined as follows. Given P,Q ∈
E[m], there exist divisors DP,DQ ∈ Div0(E) such that DP ∼
(P) − (O) and DQ ∼ (Q) − (O). Here we randomly choose
points T, U, and assign DP = (P+T)− (T) and DQ = (Q+
U)− (U). It is easy to verify that DP ∼ (P)− (O) and DQ ∼
(Q)− (O). As mP = mQ = O, divisors mDP and mDQ are
principal and there exist rational functions fP , fQ such that
div(fP) = mDP and div(fQ) = mDQ. Suppose that DP and
DQ have disjoint supports, i.e., supp(DP)

⋂
supp(DQ) = φ,

then the Weil pairing of P and Q is defined as:

e(P,Q) =
fP(DQ)
fQ(DP)

.

The Weil pairing has the bilinearity property: for P,Q,R ∈
E[m], we have e(P + Q,R) = e(P,R)e(Q,R) and e(P,Q +
R) = e(P,Q)e(P,R). The first algorithm for e(P,Q) compu-
tation is described as Algorithm 1.

Algorithm 1: Miller’s Algorithm [17]
Input: P,Q ∈ E[m]
Output: e(P,Q)

Step 1. Select random points T,U ∈ E such that P + T, T,
Q + U, U are distinct. Let DP = (P + T)− (T) and
DQ = (Q + U)− (U).

Step 2. Use an evaluation algorithm to compute fP(Q + U),
fP(U), fQ(P + T) and fQ(T), where fP and fQ satisfy that
div(fP) = mDP and div(fQ) = mDQ.

Step 3. Compute e(P,Q) =
fP(DQ)

fQ(DP)
=

fP(Q+U)fQ(T)

fQ(P+T)fP(U)

A crucial part in Miller’s algorithm is the evaluation algo-
rithm in Step 2. The evaluation algorithm for fP(S) produces
fP such that div(fP) = mDP, and computes fP(xS, yS) for
point S = (xS, yS). Recall that DP = (P+T)− (T). For each
integer k, there exists a rational function fk such that

div(fk) = k(P + T) − k(T) − (kP) + (O).

If k = m, then div(fm) = m(P+T)−m(T)− (mP)+(O) =
m(P + T) − m(T), and fP = fm. For any points R, S, let
hR,S and hR be linear functions, where hR,S(x, y) = 0 is the
straight line passing through R, S, and hR(x, y) = 0 is the
vertical line passing through R. Then we have

div(fk1+k2) = (k1 + k2)(P + T) − (k1 + k2)(T)
− ((k1 + k2)P) + (O)

= k1(P + T) − k1(T) − (k1P) + (O)
+ k2(P + T) − k2(T) − (k2P) + (O)
+ (k1P) + (k2P) + (−(k1 + k2)P) − 3(O)
− [((k1 + k2)P) + (−(k1 + k2)P) − 2(O)]

= div(fk1) + div(fk2 ) + div(hk1P,k2P)
− div(h(k1+k2)P),

and hence

fk1+k2 =
fk1 fk2hk1P,k2P

h(k1+k2)P
. (2)

Eq. (2) is recursive with initial conditions f0 = 1 and f1 =
hP+T
hP,T

since

div(f1) = (P + T) − (T) − (P) + (O)
= (P + T) + (−(P + T)) − 2(O)

− [(P) + (T) + (−(P + T)) − 3(O)]
= div(hP+T) − div(hP,T).

Based on Eq. (2), a conventional double-and-add method
was proposed for evaluation of a rational function fP on a
given point S, where fP satisfies div(fP) = m(P+T)−m(T).
The algorithm denoted as double-and-add evaluation algorithm
is described as Algorithm 2.

In the next section, we propose a halve-and-add method to
speed up the evaluation for Weil pairing.

III. EFFICIENT COMPUTATION FOR WEIL PAIRING

We first introduce the point halving operation proposed by
Knudsen in speeding up scalar multiplication on elliptic curve
over GF (2n). The advantage of point halving relies on the
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Algorithm 2: Double-and-Add Evaluation Algorithm
(Step 2, Miller’s Algorithm) [3]

Input: the points P,T, S, and the order m =
�n−1

i=0 bi2
i with

bi ∈ {0, 1}, bn−1 = 1
Output: fm(S) = fP(S)

f1 ← hP+T(S)

hP,T(S)
;

f ← f1; Z← P;
for j ← n− 2, n− 3, ..., 0 do

f ← f2
hZ,Z(S)

h2Z(S)
; Z← 2Z;

if bj = 1 then
f ← f1f

hZ,P(S)

hZ+P(S)
; Z← Z + P;

end
end
return f

fast arithmetic operations over GF (2n) in a normal basis. We
then propose an efficient halve-and-add evaluation algorithm
in Weil pairing computation.

A. Point Halving

We restrict our attention to elliptic curves E over finite
field GF (2n) defined by the equation y2 +xy = x3 +ax2 + b
where a, b ∈ GF (2n), b �= 0. The finite field GF (2n) can be
viewed as a vector space of dimension n over GF (2). That is,
each c ∈ GF (2n) can be represented as a vector (cn−1...c1c0)
where ci ∈ {0, 1}. Let P = (xP, yP) be a point on E, where
P �= −P. The coordinate of Q = 2P = (xQ, yQ) can be
computed as follows:

λ = xP +
yP
xP

(3)

xQ = λ2 + λ+ a (4)

yQ = x2
P + xQ(λ+ 1) (5)

Point halving was first proposed by Knudsen with the fol-
lowing operation: given Q = (xQ, yQ), compute P = (xP, yP)
such that Q = 2P. Point halving provides fast computation
for scalar multiplication on elliptic curve. The basic idea for
halving is to solve Eq. (4) for λ, Eq. (5) for xP, and finally
Eq. (3) for yP if needed. If G is a subgroup of odd order m
in E, point doubling and point halving are automorphisms in
G [14] . Therefore, given a point Q ∈ G, there is a unique
point P ∈ G such that Q = 2P. To uniquely find P, Fong
et al. [9] designed a point halving computation algorithm
using the trace function Tr : GF (2n) → GF (2) defined by
Tr(c) =

∑n−1
i=0 ci, where c = (cn−1...c1c0) ∈ GF (2n).

The halve-and-add method for scalar multiplication uses
two kinds of point representation: the usual affine representa-
tion P = (xP, yP) and the λ-representation (xP, λP), where
λP = xP+(yP/xP) denotes the slope of the tangent line to the
curve at P. As shown in the following point halving algorithm
(Algorithm 3), repeated halving can be performed directly on
the λ-representation of a point. Only when a point addition is
required, a conversion to affine coordinate is needed.

The point halving algorithm requires one field multipli-
cation (Step 2) and three operations: solving the quadratic
equation λ2+λ = xQ+a (Step 1), one trace computation (Step
3), and computing a square root (Step 3). In a normal basis, the

Algorithm 3: Point Halving Algorithm [9]
Input: λ-representation (xQ, λQ) of Q
Output: λ-representation (xP, λP) of P = (xP, yP), where

Q = 2P

Step 1. Find a solution �λ for equation λ2 + λ = xQ + a.
Step 2. Compute c = xQ(xQ + λQ + �λ).
Step 3. If Tr(c) = 0 then λP ← �λ, xP ← √c+ xQ,

else λP ← �λ+ 1, xP ← √c.
Step 4. Return (xP, λP).

time needed for these three operations is negligible compared
to the time needed for a multiplication or an inversion. An
inversion can be computed using a number of multiplications.
The ratio of inversion to multiplication cost is about 8 in our
Pentium III platform. In the next subsection we select a normal
basis and introduce arithmetic operations over it. With the
normal basis we select, the square root operation at Step 3
can be significantly simplified.

B. Normal Basis

Recall that the binary field GF (2n) can be viewed as
a vector space of dimension n over GF (2). That is, there
exists a set of n elements α0, α1, ..., αn−1 in GF (2n) such
that each c ∈ GF (2n) can be written in the form c =∑
ciαi = (cn−1...c1c0). In general, there are many bases

of GF (2n). A typical one is the polynomial basis of the
form {1, x, x2, ..., xn−1}, and a kind of special basis called
normal basis is the set of the form {β, β2, ..., β2n−1}. In a
normal basis, a field element c on GF (2n) is represented
by c =

∑
ciβ

2i

= (cn−1...c1c0). The squaring of c can
be obtained by c2 =

∑n−1
i=0 ciβ

2i+1
=
∑n−1
i=0 ci−1β

2i

=
(cn−2...c0cn−1). That is, squaring of c can be accomplished
by a simple left rotation on the vector representation of c.
On the other hand, the square root computation is just a right
rotation, i.e.,

√
c = (c0cn−1...c1) at Step 3 in point halving

algorithm. Therefore the quadratic equation x2 + x = c can
be solved bitwise at Step 1 in point halving algorithm. These
operations are expected to be inexpensive relative to the field
multiplication or the field inversion. The field multiplication
in a normal basis is more complicated, but, with optimization,
it can be reduced to a series of n cyclic shifts of the
two vector multiplicands. Mullin, Onyszchuk, Vanstone and
Wilson [18] introduced optimal normal bases that can optimize
the time complexity for field multiplication in GF (2n). The
normal basis implementation we proposed [22] is the basic
architecture in the halve-and-add evaluation algorithm to be
described in the next subsection.

C. Halve-and-Add Method for Weil Pairing

Now we propose a halve-and-add method for the evaluation
of rational functions used in the Miller’s algorithm. The eval-
uation algorithm described in Section II-D applies the double-
and-add method to compute Weil pairing. To take advantage
of point halving, we propose a halve-and-add version of the
evaluation algorithm.

Let the λ-representation of a point P = (xP, yP) be
(xP, λP), and the canonical form of a divisor DP be (P) −
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(O) + div(g), where g is a rational function. Assume that
Q = 2P with λ-representation (xQ, λQ) corresponds to a
divisor DQ with canonical form (Q) − (O) + div(f). Let
hP,P(x, y) = 0 be the equation of the tangent line at P and
h2P(x, y) = 0 be the vertical line through Q = 2P. By the
addition formula of two divisors with canonical form (see Eq.
(1)), we have

DP + DP = (2P) − (O) + div(g2 hP,P

h2P
)

= (Q) − (O) + div(f). (6)

We also have

hP,P(x, y) = y + yP + λP(x+ xP) = y + λPx+ x2
P,

h2P(x, y) = x+ xQ. (7)

From Eqs. (6) and (7), we have f = g2 hP,P
h2P

= g2 y+λPx+x
2
P

x+xQ

and thus

g =

√
f

x+ xQ

y + λPx+ x2
P

.

Denote the 1/2-representation of m as (m)1/2 =
(b̂n−1...b̂0) such that m =

∑n−1
i=0 b̂i

1
2i mod r, where r is

the order of point P. In order to apply the halve-and-add
operation in the evaluation of f, we first determine (m)1/2.
A simple translation was described in [14]. For Weil pairing
computation, integer m is not only the scalar in evaluating
f but also the order of the point P, i.e., mP = O. To
evaluate the rational function fm, we first evaluate fm−1 by
using halve-and-add method, and then obtain fm from fm−1.
This is because (m)1/2 is always the zero string (00...0) after
translation and we can not evaluate fm by using the halve-
and-add method directly. The translation of (m − 1)1/2 in
our algorithm is given as follows. Let n = 	log2m
, and
2n−1(m − 1) mod m =

∑n−1
i=0 ci2

i = (cn−1...c0) . Then
(m − 1)1/2 = (b̂n−1...b̂0), where b̂i = cn−1−i for i =
0, ..., n− 1. For example, let m = 25 and n = 	log2 25
 = 5,
we can compute 24 × (25 − 1) mod 25 = 9 and represent it
as (01001). Thus the 1/2-representation of 24 is (10010).

Now we compute Step 2 of the Miller’s algorithm (Algo-
rithm 1) by the following halve-and-add evaluation algorithm
(Algorithm 4).

In our halve-and-add evaluation algorithm, the halving
stage requires 1 inversion, 3 multiplications, 1 squaring, and
1 square root computing, and has an advantage over the
doubling. A detailed comparison will be given in the next
section.

IV. PERFORMANCE EVALUATION

In this section we estimate the saved operations in our halve-
and-add evaluation algorithm (Algorithm 4) compared with
the double-and-add evaluation algorithm (Algorithm 2). When
we consider the arithmetic operations in a normal basis, the
time saved by using halving instead of doubling is significant.
In affine coordinates, both elliptic doubling and addition for
scalar multiplication require 1 inversion, 2 multiplications,
and 1 squaring. In the λ-representation, halving stage for
scalar multiplication requires 1 multiplication and three extra
operations: solving the quadratic equation, trace computation,

Algorithm 4: Halve-and-Add Evaluation Algorithm
Input: the points P,T,S, where P is given by λ-representation

(xP, λP) and the order m
Output: fm(S) = fP(S)

Find the 1/2-representation (m− 1)1/2 = (b̂n−1...̂b0) with
b̂i ∈ {0, 1}, b̂n−1 = 1;
f1 ← hP+T(S)

hP,T(S)
;

f ← f1; Z← P;
for j ← n− 2, n− 3, ..., 0 do

f ←
�

f xS+xZ
yS+λZ/2xS+x2

Z/2
; Z← Z/2;

if b̂j = 1 then
f ← f1f

hZ,P(S)

hZ+P(S)
; Z← Z + P;

end
end
f ← f1f

hZ,P(S)

hZ+P(S)
; Z← Z + P;

return f

TABLE I

ARITHMETIC OPERATIONS FOR SCALAR MULTIPLICATION (n ≥ k)

Operation Double-and-Add Halve-and-Add

Inversion n + k k

Multiplication 2n + 2k n + 3k

Squaring n + k k

Solving λ̂2 + λ̂ = xQ + a 0 n

Square root 0 n

Trace computing 0 n

and square root computation. The addition stage requires an
extra multiplication for the recovery of y-coordinate in the
λ-representation. Let the order of the Weil pairing m be
represented in binary format by a bit string of length n with
k non-zero entries, obviously n ≥ k. Note that our halve-
and-add method requires the 1/2-representation of m − 1 to
apply halving and addition. By the translation of (m− 1)1/2,
(m − 1)1/2 is a bit string of length n with k − 1 non-zero
entries. Since we need an extra addition in the final step to
obtain mP from (m − 1)P, the total addition in halve-and-
add method is still k. The operations needed for the scalar
multiplication are listed in Table I.

In affine coordinates, the doubling stage requires 2 inver-
sions (one for the slope of hZ,Z(S), another for h2Z(S)), 4
multiplications, and 1 squaring. Our halving stage requires 1
inversion, 3 multiplications, 1 squiring, and 1 square root com-
puting in the λ-representation. The addition in our halve-and-
add method requires two extra multiplications for the recovery
of y-coordinate. The operations needed for the evaluation of
a rational function in Weil pairing are listed in Table II.

As shown in Tables I and II, by using halvings, we can save
2n inversions, 2n− 3k (in general, n ≥ 2k as shown in Table
III) multiplications and n squarings at the cost of solving n
quadratic equation, 2n square roots, and n trace computing.
Note that, in a normal basis, the time needed to calculate
the quadratic equation, square root, and the trace is negligible
compared with the time needed to compute a multiplication
or an inversion.

To investigate our improvement in computing the Weil pair-
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TABLE II

ARITHMETIC OPERATIONS FOR RATIONAL FUNCTION EVALUATION

(n ≥ k)

Operation Double-and-Add Halve-and-Add

Inversion 2n + 2k n + 2k

Multiplication 4n + 5k 3n + 7k

Squaring n n

Square root 0 n

TABLE III

THE ORDERS OF WEIL PAIRING IN THE NIST CURVES

NIST m (order of Weil pairing n (length k (weight

Curve in decimal) of (m)2) of (m)2)

B-163 5846006549323611672814742442 163 41

876390689256843201587

B-233 6901746346790563787434755862 233 59

2770255558398127373450135553

79383634485463

B-409 6610559687902485989519153080 409 103

3277103982840468296428121928

4648798304157774827374805208

1437237621791109659798672883

66567526771

ing, we implement the Boneh-Franklin’s ID-based encryption
(IBE) scheme over the NIST recommended curves [8] on a
700MHz Intel Pentium III. Their scheme requires one pairing
operation for both encryption and decryption. The recent IBE
schemes proposed by Boneh-Boyen [4][5] and Waters [21]
pre-compute one pairing operation before encryption, thus
require no pairing for encryption but use two pairings for
decryption. Their contributions focus on constructing secure
provable IBE schemes in different security models such as
selective-ID model and standard model without random or-
acle. As our algorithm improves the computation of pairing
which is primitive in IBE schemes, we can implement these
new schemes in the future work. Our implementation is
programmed in C and uses the free GNU Multiple Precision
(GMP) arithmetic library to deal with the big number opera-
tions. The traditional double-and-add method and our halve-
and-add method are both implemented for computation of Weil
pairing in the ID-based encryption scheme over NIST recom-
mended curves of different strength. Curves B-163, B-233 and
B-409 have the same form: y2 +xy = x3 +x2 +b over binary
fields GF (2163), GF (2233) and GF (2409), respectively. The
orders of the Weil pairing m chosen in these curves are listed
in Table III. The representation of elements in the binary field
is over a normal basis [22]. The size of message encrypted
in our implementation is 160 ASCII characters. Table IV lists
the execution times in the ID-based encryption scheme using
double-and-add method and halve-and-add method, and shows
the improvements. The Weil pairing is the primitive operation
for both encryption and decryption in the ID-based encryption
scheme. Therefore, the efficient computation for Weil pairing
improves both encryption and decryption.

Our method reduces a number of inversions and multipli-
cations which are expensive in computing the Weil pairing.

TABLE IV

EXECUTION TIMES (IN msec) IN ID-BASED ENCRYPTION SCHEMES FOR

THE NIST CURVES

Double-and Halve-and Improvement

-Add -Add

Pairing Evaluation 10.76 6.95 35%

B-163 Encryption 16.72 12.45 26%

Decryption 12.95 8.37 35%

Pairing Evaluation 41.56 30.48 27%

B-233 Encryption 76.28 50.13 34%

Decryption 46.75 37.48 20%

Pairing Evaluation 126.48 91.35 28%

B-409 Encryption 198.43 135.97 31%

Decryption 150.25 110.64 26%

Fig. 2. ID based End-to-end Encryption System

Overall a 20 – 35% improvement in encryption/decryption
has been accomplished.

V. ID-BASED END-TO-END MOBILE ENCRYPTION

SYSTEM

End-to-end security mechanisms used in mobile services
are typically based on public-key cryptosystem. Under tradi-
tional public-key cryptosystem, the sender has to request the
receiver’s public key and verify its validity before encrypting
a message. The sender can not communicate with the receiver
to request the public-key when the receiver is off-line. On the
other hand, in an ID-based cryptosystem, the sender can use
the receiver’s ID (i.e., the telephone number) as his public
key without any request and verification. Thus, even if the
receiver’s device is power-off, the sender can still send an
encrypted short message (which will be queued in the Short
Message Service Center, and is forwarded to the receiver
later when it is power-on) to achieve the end-to-end security.
Based on the algorithm (Algorithm 4) proposed in Section
III, an efficient ID-based end-to-end encryption scheme for
mobile services is illustrated in Fig. 2. The PKG (Fig. 2 (1))
constructs the ID-based cryptosystem and uses, for example,
the phone number as the ID (Fig. 2 (2)). Every mobile user
involved in the ID-base cryptosystem is given a SIM card (Fig.
2 (3)) at the subscription time. The ID (phone number) and
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its corresponding private key KR are loaded in the SIM card
by the network operator. The mobile equipment contains two
security modules: ID-based encryption module (Fig. 2 (4)) and
ID-based decryption module (Fig. 2 (5)). When a mobile user
Alice (the sender; (Fig. 2 (6))) wants to encrypt a message
to Bob (the receiver), she uses Bob’s phone number (Fig. 2
(7)) as the public key and encrypts the message through the
ID-based encryption module. Once Bob receives the cipher
(the encrypted message), he uses the private key KR (Fig. 2
(8)) stored in the SIM card to decrypt the cipher through the
ID-based decryption module and obtain the original message.

In some applications, the sender may choose an arbitrary
string as the public key instead of the receiver’s phone number.
For instance, an account number can be used as the public
key to encrypt the transaction information. While receiving
the account number and the encrypted message, the receiver
authenticates himself to the network operator and requests for
corresponding private key to the account number. Then the
network operator extracts the correct private key and sends it
securely to the receiver. The dynamic private key extraction
provides flexible security for end-to-end network services.

VI. CONCLUSION

This paper proposed an efficient ID-based cryptography
scheme for end-to-end mobile security system. We proposed a
fast method for computing the Weil pairing using point halv-
ing. With the λ-representation in a normal basis, significant
improvement in terms of time saving has been demonstrated
in computing Weil pairing. Our study indicates that this new
approach significantly outperforms a well-known, previously
proposed ID-based solution. To sum up, our contribution
is twofold: firstly, we are the first to apply point halving
algorithm to the ID-based scheme; secondly, we proposed an
efficient approach to compute the rational function evaluation
algorithm. By reducing the computation complexity, our ap-
proach provides an appropriate ID-based encryption solution
for mobile services where the mobile terminals have limited
computing power.
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