
 
 

 

  

Abstract—In this paper, a recurrent functional-link-based 
neural fuzzy system (RFLNFS) is proposed for prediction of 
time sequence and skin color detection. The proposed RFLNFS 
model uses functional link neural network as the consequent 
part of fuzzy rules. The RFLNFS model can generate the 
consequent part of a nonlinear combination of the input 
variables. The recurrent network is embedded in the RFLNFS 
by adding feedback connections in the second layer, where the 
feedback units act as memory elements. An online learning 
algorithm, which consists of structure learning and parameter 
learning, is also presented. Finally, the RFLNFS is applied to 
two simulations. The simulation results of the dynamic system 
modeling have shown that the RFLNFS model can solve the 
temporal problem and the RFLNFS model has superior 
performance than other models. 

I. INTRODUCTION 
OR a dynamic system, the output is a function of past 
input or past output or both, identification of this system 

is not as direct as a static system, and to deal with temporal 
problem of dynamic system, the recurrent neural network and 
the recurrent neural fuzzy system have been attracting great 
interest. Hence, for nonlinear system processing, the most 
commonly used model is the neural network or neural fuzzy 
system. If a feedforward network is adopted for this task, then 
we should know the number of delayed input and output in 
advance, and feed these delayed input and output as a taped 
line to the network input [1]. The problem of this approach is 
that the exact order of the dynamic system is usually 
unknowns. To solve this problem, interest in using recurrent 
networks for processing dynamic system has been stably 
growing in recent years [2]-[5]. 

In this paper, a recurrent functional-link-based neural 
fuzzy system (RFLNFS) is proposed. The RFLNFS is a 
recurrent multiplayer connectionist network for fuzzy 
reasoning and can be constructed from a set of fuzzy rules. 
The RFLNFS model, which combines neural fuzzy network 
with functional link neural network (FLNN) [6], is designed 
improve the accuracy of functional approximation. Each 
fuzzy rule that corresponds to a FLNN consists of functional 
expansion of the input variables. The orthogonal polynomials 
and linearly independent functions are adopted as functional 
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link neural network bases. At the same time, the recurrent 
property is achieved by feeding the output of each 
membership function back to itself so that each membership 
value is influenced by its previous value. An online learning 
algorithm, consisting of structure learning and parameter 
learning, is proposed to construct the RFLNFS model 
automatically. The structure learning algorithm determines 
whether or not to add a new node which satisfies the fuzzy 
partition of the input variables. The parameter learning 
algorithm is a recursive learning algorithm based on the 
ordered derivative scheme [7]. The proposed RFLNFS model 
has three characteristics. First, the consequent of the fuzzy 
rules is a nonlinear combination of the input variables. This 
study uses the functional link neural network to the 
consequent part of the fuzzy rules. Second, the online 
learning algorithm can automatically construct the RFLNFS 
model. Third, the RFLNFS model can solve temporal 
problems effectively. 

II. FUNCTIONAL LINK NEURAL NETWORKS 
The functional link neural network is a single layer network 

in which the need for hidden layers is eliminated. While the 
input variables generated by the linear links of neural 
networks are linearly weighted, the functional link acts on an 
element of input variables by generating a set of linearly 
independent functions, which are suitable orthogonal 
polynomials for a functional expansion, and then evaluating 
these functions with the variables as the arguments. 
Therefore, the FLNN structure considers trigonometric 
functions. For example, for a two-dimensional input 

Txx ]  [ 21=X , enhanced data are obtained using 
trigonometric functions as 

T,...xcos,xsin,x,...,xcos,xsin,x, ]) ( ) (  ) ( ) (  1[ 222111 ππππ=Φ . 
Thus, the input variables can be separated in the enhanced 
space [8]. In the FLNN structure with reference to Fig. 1, a set 
of basis functions Φ  and a fixed number of weight 
parameters W  represent )(xf W . The theory behind the 
FLNN for multidimensional function approximation has been 
discussed elsewhere [6] and is analyzed below. Consider a set 
of basis functions Κ∈Φ∈=Β kk A)}({φ , } 2 1{ ...,,=Κ  with the 

following properties; 1) 11 =φ , 2) the subset M
kj k

}{
1=

Β∈=Β φ  

is a linearly independent set, meaning that if  ∑ =
=

M

k kkw
1

0φ , 
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Fig. 1. Structure of FLNN. 

 Let M
kM k 1
}{

=
=Β φ  be a set of basis functions to be 

considered, as shown in Fig. 1. The FLNN comprises M basis 
functions MM...,,, Β∈}   { 21 φφφ . The linear sum of the jth node 
is given by 

∑
=

=
M

k
kkjj )(wŷ

1

Xφ                                (1) 

where Nℜ⊂Α∈X , T
Nxxx ],...,,[ 21=X  is the input vector 

and T
jMjjj www ],...,,[ 21=W  is the weight vector associated 

with the jth output of the FLNN. jŷ  denotes the local output 
of the FLNN structure and the consequent part of the jth fuzzy 
rule in the RFLNFS model. Thus, Eq.(1) can be expressed in 
matrix form as Φ= jj

ˆ Wy , where 
T

N x,...xx )](),(),([ 21 φφφ=Φ  is the basis function vector, 
which is the output of the functional expansion block. The 
m-dimensional linear output may be given by Φ= Wŷ , 

where T
mŷ...ŷŷˆ ],,,[ 21=y , m denotes the number of 

functional link bases, which equals the number of fuzzy rules 
in the RFLNFS model, and W  is a (m by M)-dimensional 
weight matrix of the FLNN given by T

mwww ],...,,[ 21=W . 
The jth output of the FLNN is given by )ŷ('ŷ jj ρ= , where 

the nonlinear function ( ) ( )⋅=⋅ tanhρ . Thus, the 
m-dimensional output vector is given by 

)()( xfŷˆ
WY == ρ                                (2) 

where Ŷ  denotes the output of the FLNN. In the RFLNFS 
model, the functional link bases do not exist in the initial 
state, and the amount of functional link bases generated by 
the online learning algorithm is consistent with the number of 
fuzzy rules. Section IV details the online learning algorithm. 

III. STRUCTURE OF RFLNFS MODEL 
This section describes the recurrent functional-link-based 

neural fuzzy system (RFLNFS). Figure 2 presents the 
structure of the proposed RFLNFS model.  The RFLNFS 
realizes a fuzzy if-then rule in the following form. 

Rule-j: NjNjijijjjjj AhAhAhAh  is  and ...  is  and ...  is  and  is  IF 2211  

MMjjj

M

k
kkjj

w...ww

wŷ

φφφ

φ

+++=

= ∑
=

2211

1

 THEN
                         (3) 

where for i=1,2,…,N; ij
)(

ij
)(

iij tutuh θ⋅−+= )1()( 21 ; jŷ  is local 
output variables; Aij is the linguistic term of the precondition 
part with Gaussian membership function; N is the number of 
input variables; wj is the link weight of the local output; kφ  is 
the basis trigonometric function of the input variables; M is 
the number of basis function, and Rule-j is the jth fuzzy rule. 
That is, the input of each membership function is the network 
input xi plus the temporal term ij

)(
iju θ2 . Therefore, the fuzzy 

system, with its memory (feedback units), can be considered a 
dynamic fuzzy inference system. 

Next, we shall introduce the operation functions of the 
nodes in each layer of the RFLNFS model are described. In 
the following description, u(l) denotes output of a node in the 
lth layer. 

Layer 1 (Input Node): No computation is done in this layer. 
Each node in this layer is an input node, which corresponds to 
one input variable, only transmits input values to the next 
layer directly. 

i
)(

i xu =1                                           (4) 

Layer 2 (Input Term Node): Nodes in this layer correspond 
to one linguistic label of the input variables in Layer1 and a 
unit of memory, i.e., the membership value specified the 
degree to which an input value and a unit of memory belongs 
a fuzzy set is calculated in Layer 2. The Gaussian 
membership function, the operation performed in Layer 2 is                       










 −
−= 2

2
2 ][

ij

ijij)(
ij

mh
expu

σ
                              (5) 

where mij and σij are, respectively, the mean and variance of 
Gaussian membership function of jth term of ith input 
variable xi. In addition, the inputs of this layer for discrete 
time t can be defined by  

ij
)(

ij
)(

iij tututh θ⋅−+= )1()()( 21                            (6) 

where )1(2 −tu )(
ij  denotes the feedback unit of memory, which 

store the past information of the system, and ijθ  denotes the 
link weight of the feedback unit.  

Layer 3 (Rule Node): Nodes in this layer represent the 
preconditioned part of a fuzzy logic rule. They receive 
one-dimensional membership degrees of the associated rule 
from the nodes of a set in layer 2. Here, the product operator 
described above is adopted to perform the IF-condition 
matching of the fuzzy rules. As a result, the output function of 
each inference node is 

        ∏=
i

)(
ij

)(
j uu 23                                      (7) 

where the ∏
i

)(
iju 2  of a rule node represents the firing strength 

of its corresponding rule. 
Layer 4 (Consequent Node): Nodes in this layer are called 

consequent nodes. The input to a node in layer 4 is the output 
from layer 3, and the other inputs are nonlinear combinations 
of input variables from a functional link neural network, 
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where the nonlinear combination function has not used the 
function ( )⋅tanh , as shown in Fig. 2. For such a node, 

∑
=

⋅=
M

k
kkj

)(
j

)(
j wuu

1

34 φ                                   (8) 

where wkj is the corresponding link weight of functional link 
neural network and kφ  is the functional expansion of input 
variables. The functional expansion uses a trigonometric 
polynomial basis function, given by 
[ ]) ( ) (  ) (  ) ( 222111 xcosxsinxxcosxsinx ππππ  for 
two-dimensional input variables. Therefore, M is the number 
of basis functions, NM ×= 3 , where N is the number of input 
variables. 

Layer 5 (Output Node): Each node in this layer 
corresponds to a single output variable. The node integrates 
all of the actions recommended by layers 3 and 4 and acts as a 
defuzzifier with, 
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where R is the number of fuzzy rules, and y is the output of the 
RFLNFS model. 
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Fig. 2. Structure of the proposed RFLNFS. 

IV. THE ONLINE LEARNING ALGORITHM 
This section presents an online learning algorithm for 

constructing the RFLNFS model. The proposed learning 
algorithm consists of a structure learning phase and a 
parameter learning phase. Structure learning is based on the 
degree used to determine the number of fuzzy rules. 
Parameter learning is based upon supervised learning 
algorithms. The ordered derivative algorithm that minimizes 
a given cost function adjusts the weights in the consequent 
part, the parameters of the membership functions, and the 
weights of the feedback. 

Initially, there are no nodes in the network except the 
input-output nodes, i.e., there are no any rule nodes and 
memberships. They are created dynamically and 
automatically as learning proceeds upon receiving online 
incoming training data by performing the structure and 
parameter learning processes. The details of the structure 
learning phase and the parameter learning phase are described 
in the rest of this section. 

A. Structure Learning Phase 
The first step in the structure learning is to determine 

whether or not to extract a new rule from training data as well 
as the number of fuzzy sets on the universal of discourse of 
each input variable. Since one cluster in the input space 
corresponds to one potential fuzzy logic rule, with mij and σij 
representing the mean and variance of that cluster. For each 
incoming pattern xi the strength a rule is fired can be 
interpreted as the degree the incoming pattern belongs to the 
corresponding cluster. For computational efficiency, we can 
use compensatory operation of the firing strength obtained 
from ∏

i

)(
iju 2  directly as this degree measure 

∏=
i

)(
ijj uF 2                                   (10) 

where ]1 0[ ,Fj ∈ . Using this degree measure, we can obtain 
the following criterion for the generation of a new fuzzy rule 
of new incoming data is described as follows. Find the 
maximum degree Fmax 

jRjmax FmaxF
)t(≤≤

=
1

                                (11) 

where R(t) is the number of existing rules at time t. If FFmax ≤ , 

then a new rule is generated where ]1 0[ ,F ∈  is a prespecified 
threshold that decays during the learning process. Once a new 
rule is generated, the next step is to assign initial mean, 
variance, weight of feedback for the new membership 
function, and the corresponding link weight for consequent 
part. Since our goal is to minimize an objective function and 
the mean, variance, weight of feedback, and weight of 
consequent part are all adjustable later in the parameter 
learning phase. Hence, the mean, variance, weight of 
feedback, and weight of consequent part for the new rule are 
set as follow: 

i
R

ij xm t =+ )( )1(                                 (12) 

init
R

ij
t σσ =+ )( )1(                              (13) 

]1 ,1[ )( )1( −=+ randomtR
ijθ                       (14) 

]1 ,1[ )( )1( −=+ randomw tR
kj                       (15) 

where xi is the new input variable and initσ  init is a 
prespecified constant. The whole algorithm for the generation 
of new fuzzy rules as well as of fuzzy sets in each input 
variable is as follows. We make the assumption that no rules 
initially exist: 
Step 1: IF xi is the first incoming pattern THEN do 

{Generate a new rule 
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with mean mi1=xi, variance initi σσ =1 , 
weight of feedback randomi =1θ , 
weight of  consequent part wk1=random 

          where initσ  is a perspecified constant 
} 

Step 2: ELSE for each newly incoming xi, do 
{Find  

jRj
FF

t )(1max max
≤≤

=  

IF  FF ≥max  
do nothing 

ELSE 
{R(t+1) = R(t) +1 

generate a new rule 
with mean i

R
ij xm t =+ )1( , variance init

R
ij

t σσ =+ )1( , 

weight of feedback randomtR
ij =+ )1(θ , 

weight of  consequent part randomw tR
kj =+ )1(  

where initσ  is a perspecified constant.} 
} 

B. Parameter Learning Phase 
After the network structure is adjusted according to the 

current training pattern, the network then enters the parameter 
learning phase to adjust the parameters of the network 
optimally based on the same training pattern. The learning 
process involves determining the minimum of a given cost 
function. Because the RFLNFS is a dynamic system with 
feedback connections, the learning algorithm used in adaptive 
fuzzy systems [8] cannot be applied to it directly. Also, due to 
the online learning property of the RFLNFS, the offline 
learning algorithms for the recurrent neural networks, like 
backpropagation through time and time-dependent recurrent 
backpropagation [9], cannot be applied here. Instead, the 
ordered derivative [7], which is a partial derivative whose 
constant and varying terms are defined using an ordered set of 
equations, is used to derive our learning algorithm. When the 
single output case is considered for clarity, our goal is to 
minimize the cost function E, which is defined as follows: 

2)]1()1([
2
1)1( +−+=+ tytytE d                       (16) 

where Y(t+1) is the model output and Yd(t+1) is the desired 
output at time t+1 . When the ordered derivative learning 
algorithm is used, the free parameters of the RFLNFS are 
adjusted such that the error defined in Eq. (16) is less than the 
desired threshold value after a given number of training 
cycles. The parameter learning algorithm based on the 
ordered derivative algorithm is described below: 

Layer 5: There is no parameter to be adjusted in this layer. 
Only the error term needs to be computed and propagated. 
The error term is derived by 

).t(y)t(y)t(
y
E)t( d)( 11115 +−+=+

∂
∂

−=+δ           (17) 

Layer 4: The error term to be propagated is calculated as 
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And the weight of consequent part is updated by the amount 
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The weight in layer 4 is updated according to the following 
equation: 

( ))()()1()(
)1()()1(

34 ttuttw
twtwtw

k
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j
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ϕδη

η

⋅++=
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where the factor wη  is the learning rate parameter of the 
weight, and t denotes the iteration number of the jth. 

Layer 3: In this layer, only the error term needs to be 
computed and propagated 
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Layer 2: The error term is calculated as follows: 
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where l is the lth dimension. The update mean is 
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The updated variance is 
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The updated weight of the feedback is 
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where 
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The mean and variance of the membership functions and the 
weight of the feedback in this layer are updated as follows: 

),t(m)t(m)t(m ijmijij 11 +∆+=+ η                      (29) 
),t()t()t( ijijij 11 +∆+=+ σησσ σ                      (30) 
)t()t()t( ijijij 11 +∆+=+ θηθθ θ                       (31) 

where mη , ση , and θη  are the learning rate parameters of the 
mean, the variance, and the weight of the feedback for the 
Gaussian function, respectively. The values ijij m/h ∂∂ , 

ijij /h σ∂∂ , ijij /h θ∂∂  are equal to zero initially and are reset to 
zero after a period of time to avoid the accumulation of too far 
away errors. 

V. ILLUSTRATIVE EXAMPLES 

A. Prediction of Time Sequence 
To clearly verify if the proposed RFLNFS can learn the 

temporal relationship, a simple time sequence prediction 
problem found in [10] is used for test in the following 
example. 

The test bed used is shown in Fig. 3(a). This is an “8” shape 
made up of a series with 12 points which are to be presented 
to the network in the order as shown. The RFLNFS is asked to 
predict the succeeding point for every presented point. 
Obviously, a static network cannot accomplish this task, since 
the point at coordinate (0,0) has two successors: point 5 and 
point 11. The RFLNFS must decide the successor of (0,0) 
based on its predecessor; if the predecessor is 3, then the 
successor is 5, whereas if the predecessor is 9, the successor is 
11. 

In this example, the RFLNFS contains only two input 
nodes, which are activated with the two dimensional 
coordinate of the current point, and two output nodes, which 
represent the two dimensional coordinate of the predicted 
point. After training, a root-mean-square (RMS) error of 
0.000237 is achieved, and the predicted values with 12 fuzzy 
logic rules ( initσ =0.08) of RFLNFS are shown in Fig. 3(b). 
Simulation results show that we can obtain perfect prediction 
capability.  

Recently, Lee and Teng [4] proposed a model, called 
recurrent fuzzy neural network (RFNN) architecture, for 
learning and tuning a fuzzy predictor. Our model is similar to 
RFNN except layer three. The layer three of the RFNN 
performed product operator while the layer three of our 
model performed compensatory operator. For initializing 
parameters of the RFNN model, the rule number should be 
given in advance. But, the users need not give it any a priori 
knowledge or even any initial information for our proposed 
model. We also applied the RFNN model [4] and a traditional 
(non-recurrent) fuzzy neural network (FNN) [11] to this time 
prediction problem. Fig. 3(c) shows the prediction results 
using the RFNN model [4]. In this figure, the RFNN also 
obtain prediction capability, but some time prediction points 

cannot be matched exactly. Fig. 3(d) shows that a 
feedforward fuzzy neural network cannot predict successfully. 
From the simulation results shown in Fig. 2(d), we can see 
that the FNN is inappropriate for time sequence prediction 
because of its static mapping. To give a clear understanding of 
this performance comparison with the RFNN [4] and FNN 
[11] on the same problem is made in Table 1. The results show 
that the proposed RFLNFS model is able to maintain a 
smaller RMS error than other methods. 
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Fig. 3. Simulation results of time sequence prediction. (a) Test bed for the 
next sample prediction experiment in Example 1. (b) Results of prediction 
using the RFLNFS. (c) Results of prediction using the RFNN. (d) Results of 
prediction using the FNN. 
 
Table 1: Performance comparison of various existing models. 

 RFLNFS RFNN [4] FNN [11] 
Rule numbers 12 12 12 

RMS error 0.000237 0.0063 0.1758 
Epochs 1000 1000 1000 

B. Skin Color Detection 
Skin color detection from images is a key problem in 

human computer interaction studies and pattern recognition 
research. We exploit one database, which is the California 
Institute of Technology face database (CIT) via 
http://www.vision.caltech.edu/Image_Datasets/faces/, 
including 450 color images, each of size 320*240pixels, 
containing 27 different people and a variety of lighting, 
backgrounds and facial expressions. The three input 
dimensions (Y, Cb, and Cr) are used in this experiment and 
we choose 6000 training data and 6000 testing data. We 
exploit the CIT database to produce both the training data and 
the testing data. Moreover, the 6000 skin and non-skin pixels 
training data in the color images are randomly chosen, testing 
data uses the same method. 

The experiment calculated the training and testing 
accuracy rates (e.g. best, worst and average situations) by the 
RFLNFS and the RFNN model. The comparison result with 
various existing models for the CIT database is tabulated in 
Tables 2. 

The color images from the CIT database are shown in Figs. 
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4. The well-trained network would generate binary outputs 
(1/0 for skin/non-skin) to detect the facial region. Fig. 5 and 6 
demonstrate the results of skin color detection by RFNN and 
RFLNFS, respectively. Experimental result has shown that 
the performance of the RFLNFS is superior to the RFNN. 

  

  
Fig. 4. Original of California Institute of Technology (CIT) face database. 

  

  
Fig. 5. Test result of 3-dimension input by the RFLNFS. 

  

  
Fig. 6. Test result of 3-dimension input by RFNN. 

VI. CONCLUSION 
A recurrent functional-link-based neural fuzzy system 

(RFLNFS) is proposed in this paper. The RFLNFS model is 
able to form the consequent part of a nonlinear combination 
of the input variables to be approximated more effectively. A 
recurrent network that solves temporal problems is embedded 
in the RFLNFS by adding feedback connections in the second 
layer, where the feedback units act as memory elements. An 
online learning algorithm is proposed to perform the structure 

learning and the parameter learning. Finally, the proposed 
RFLNFS model also obtains better simulation results than 
other existing models in some circumstances. 
 
Table 2: Performance comparison with the RFLNFS and RFNN for CIT 
database 

 RFLNFS RFNN [4] 
Training Data 6000 6000 

Best Worst Best Worst Accuracy Rate 
(Training) 94.48%     87.93% 84.55%   83.53% 

Avg(Training) 91.17% 71.68% 
Best Worst Best Worst Accuracy Rate 

(Testing) 93.27%    83.73% 80.67%     61.5% 
Avg(Testing) 88.02% 66.62% 
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