

Abstract—In this paper, a recurrent functional-link-based
neural fuzzy system (RFLNFS) is proposed for prediction of
time sequence and skin color detection. The proposed RFLNFS
model uses functional link neural network as the consequent
part of fuzzy rules. The RFLNFS model can generate the
consequent part of a nonlinear combination of the input
variables. The recurrent network is embedded in the RFLNFS
by adding feedback connections in the second layer, where the
feedback units act as memory elements. An online learning
algorithm, which consists of structure learning and parameter
learning, is also presented. Finally, the RFLNFS is applied to
two simulations. The simulation results of the dynamic system
modeling have shown that the RFLNFS model can solve the
temporal problem and the RFLNFS model has superior
performance than other models.

I. INTRODUCTION
OR a dynamic system, the output is a function of past
input or past output or both, identification of this system

is not as direct as a static system, and to deal with temporal
problem of dynamic system, the recurrent neural network and
the recurrent neural fuzzy system have been attracting great
interest. Hence, for nonlinear system processing, the most
commonly used model is the neural network or neural fuzzy
system. If a feedforward network is adopted for this task, then
we should know the number of delayed input and output in
advance, and feed these delayed input and output as a taped
line to the network input [1]. The problem of this approach is
that the exact order of the dynamic system is usually
unknowns. To solve this problem, interest in using recurrent
networks for processing dynamic system has been stably
growing in recent years [2]-[5].

In this paper, a recurrent functional-link-based neural
fuzzy system (RFLNFS) is proposed. The RFLNFS is a
recurrent multiplayer connectionist network for fuzzy
reasoning and can be constructed from a set of fuzzy rules.
The RFLNFS model, which combines neural fuzzy network
with functional link neural network (FLNN) [6], is designed
improve the accuracy of functional approximation. Each
fuzzy rule that corresponds to a FLNN consists of functional
expansion of the input variables. The orthogonal polynomials
and linearly independent functions are adopted as functional

C. H. Chen and C. T. Lin are with the Dept. of Electrical and Control

Engineering, National Chiao-Tung University, Hsinchu 300, Taiwan, R.O.C.
C. J. Lin is with the Dept. of Computer Science and Information

Engineering, Chaoyang University of Technology, No.168, Jifong E. Rd.,
Wufong Township, Taichung County 41349, Taiwan, R.O.C.

* Corresponding author. (E-mail: chchen.ece93g@nctu.edu.tw)

link neural network bases. At the same time, the recurrent
property is achieved by feeding the output of each
membership function back to itself so that each membership
value is influenced by its previous value. An online learning
algorithm, consisting of structure learning and parameter
learning, is proposed to construct the RFLNFS model
automatically. The structure learning algorithm determines
whether or not to add a new node which satisfies the fuzzy
partition of the input variables. The parameter learning
algorithm is a recursive learning algorithm based on the
ordered derivative scheme [7]. The proposed RFLNFS model
has three characteristics. First, the consequent of the fuzzy
rules is a nonlinear combination of the input variables. This
study uses the functional link neural network to the
consequent part of the fuzzy rules. Second, the online
learning algorithm can automatically construct the RFLNFS
model. Third, the RFLNFS model can solve temporal
problems effectively.

II. FUNCTIONAL LINK NEURAL NETWORKS
The functional link neural network is a single layer network

in which the need for hidden layers is eliminated. While the
input variables generated by the linear links of neural
networks are linearly weighted, the functional link acts on an
element of input variables by generating a set of linearly
independent functions, which are suitable orthogonal
polynomials for a functional expansion, and then evaluating
these functions with the variables as the arguments.
Therefore, the FLNN structure considers trigonometric
functions. For example, for a two-dimensional input

Txx] [21=X , enhanced data are obtained using
trigonometric functions as

T,...xcos,xsin,x,...,xcos,xsin,x,]) () () () (1[222111 ππππ=Φ .
Thus, the input variables can be separated in the enhanced
space [8]. In the FLNN structure with reference to Fig. 1, a set
of basis functions Φ and a fixed number of weight
parameters W represent)(xf W . The theory behind the
FLNN for multidimensional function approximation has been
discussed elsewhere [6] and is analyzed below. Consider a set
of basis functions Κ∈Φ∈=Β kk A)}({φ , } 2 1{ ...,,=Κ with the

following properties; 1) 11 =φ , 2) the subset M
kj k

}{
1=

Β∈=Β φ

is a linearly independent set, meaning that if ∑ =
=

M

k kkw
1

0φ ,

A Recurrent Functional-Link-Based Neural Fuzzy System
and Its Applications

Cheng-Hung Chen*, Cheng-Jian Lin, Member, IEEE, and Chin-Teng Lin, Fellow, IEEE

F

415

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Image and Signal Processing (CIISP 2007)

1-4244-0707-9/07/$25.00 ©2007 IEEE

then 0=kw for all M...,,,k 2 1= , and 3)

[] ∞<∑ =

21

1

2 /j

k Akjsup φ .

x1

x2 F.E. .
.
.

xN

.

.

.

.

.

.

.

.

.

1φ

2φ

Mφ

∑

∑

∑

'ˆ1y

'ˆ2y

'ˆmy

1ŷ

2ŷ

mŷ

X

W

Ŷ

Fig. 1. Structure of FLNN.

 Let M
kM k 1
}{

=
=Β φ be a set of basis functions to be

considered, as shown in Fig. 1. The FLNN comprises M basis
functions MM...,,, Β∈} { 21 φφφ . The linear sum of the jth node
is given by

∑
=

=
M

k
kkjj)(wŷ

1

Xφ (1)

where Nℜ⊂Α∈X , T
Nxxx],...,,[21=X is the input vector

and T
jMjjj www],...,,[21=W is the weight vector associated

with the jth output of the FLNN. jŷ denotes the local output
of the FLNN structure and the consequent part of the jth fuzzy
rule in the RFLNFS model. Thus, Eq.(1) can be expressed in
matrix form as Φ= jj

ˆ Wy , where
T

N x,...xx)](),(),([21 φφφ=Φ is the basis function vector,
which is the output of the functional expansion block. The
m-dimensional linear output may be given by Φ= Wŷ ,

where T
mŷ...ŷŷˆ],,,[21=y , m denotes the number of

functional link bases, which equals the number of fuzzy rules
in the RFLNFS model, and W is a (m by M)-dimensional
weight matrix of the FLNN given by T

mwww],...,,[21=W .
The jth output of the FLNN is given by)ŷ('ŷ jj ρ= , where

the nonlinear function () ()⋅=⋅ tanhρ . Thus, the
m-dimensional output vector is given by

)()(xfŷˆ
WY == ρ (2)

where Ŷ denotes the output of the FLNN. In the RFLNFS
model, the functional link bases do not exist in the initial
state, and the amount of functional link bases generated by
the online learning algorithm is consistent with the number of
fuzzy rules. Section IV details the online learning algorithm.

III. STRUCTURE OF RFLNFS MODEL
This section describes the recurrent functional-link-based

neural fuzzy system (RFLNFS). Figure 2 presents the
structure of the proposed RFLNFS model. The RFLNFS
realizes a fuzzy if-then rule in the following form.

Rule-j: NjNjijijjjjj AhAhAhAh is and ... is and ... is and is IF 2211

MMjjj

M

k
kkjj

w...ww

wŷ

φφφ

φ

+++=

= ∑
=

2211

1

 THEN
 (3)

where for i=1,2,…,N; ij
)(

ij
)(

iij tutuh θ⋅−+=)1()(21 ; jŷ is local
output variables; Aij is the linguistic term of the precondition
part with Gaussian membership function; N is the number of
input variables; wj is the link weight of the local output; kφ is
the basis trigonometric function of the input variables; M is
the number of basis function, and Rule-j is the jth fuzzy rule.
That is, the input of each membership function is the network
input xi plus the temporal term ij

)(
iju θ2 . Therefore, the fuzzy

system, with its memory (feedback units), can be considered a
dynamic fuzzy inference system.

Next, we shall introduce the operation functions of the
nodes in each layer of the RFLNFS model are described. In
the following description, u(l) denotes output of a node in the
lth layer.

Layer 1 (Input Node): No computation is done in this layer.
Each node in this layer is an input node, which corresponds to
one input variable, only transmits input values to the next
layer directly.

i
)(

i xu =1 (4)

Layer 2 (Input Term Node): Nodes in this layer correspond
to one linguistic label of the input variables in Layer1 and a
unit of memory, i.e., the membership value specified the
degree to which an input value and a unit of memory belongs
a fuzzy set is calculated in Layer 2. The Gaussian
membership function, the operation performed in Layer 2 is










 −
−= 2

2
2][

ij

ijij)(
ij

mh
expu

σ
 (5)

where mij and σij are, respectively, the mean and variance of
Gaussian membership function of jth term of ith input
variable xi. In addition, the inputs of this layer for discrete
time t can be defined by

ij
)(

ij
)(

iij tututh θ⋅−+=)1()()(21 (6)

where)1(2 −tu)(
ij denotes the feedback unit of memory, which

store the past information of the system, and ijθ denotes the
link weight of the feedback unit.

Layer 3 (Rule Node): Nodes in this layer represent the
preconditioned part of a fuzzy logic rule. They receive
one-dimensional membership degrees of the associated rule
from the nodes of a set in layer 2. Here, the product operator
described above is adopted to perform the IF-condition
matching of the fuzzy rules. As a result, the output function of
each inference node is

 ∏=
i

)(
ij

)(
j uu 23 (7)

where the ∏
i

)(
iju 2 of a rule node represents the firing strength

of its corresponding rule.
Layer 4 (Consequent Node): Nodes in this layer are called

consequent nodes. The input to a node in layer 4 is the output
from layer 3, and the other inputs are nonlinear combinations
of input variables from a functional link neural network,

416

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Image and Signal Processing (CIISP 2007)

where the nonlinear combination function has not used the
function ()⋅tanh , as shown in Fig. 2. For such a node,

∑
=

⋅=
M

k
kkj

)(
j

)(
j wuu

1

34 φ (8)

where wkj is the corresponding link weight of functional link
neural network and kφ is the functional expansion of input
variables. The functional expansion uses a trigonometric
polynomial basis function, given by
[]) () () () (222111 xcosxsinxxcosxsinx ππππ for
two-dimensional input variables. Therefore, M is the number
of basis functions, NM ×= 3 , where N is the number of input
variables.

Layer 5 (Output Node): Each node in this layer
corresponds to a single output variable. The node integrates
all of the actions recommended by layers 3 and 4 and acts as a
defuzzifier with,

∑

∑

∑

∑ ∑

∑

∑

=

=

=

= =

=

= ==== R

j

)(
j

R

j
j

)(
j

R

j

)(
j

R

j

M

k
kkj

)(
j

R

j

)(
j

R

j

)(
j

)(

u

ŷu

u

wu

u

u
uy

1

3

1

3

1

3

1 1

3

1

3

1

4

5

φ
 (9)

where R is the number of fuzzy rules, and y is the output of the
RFLNFS model.

F.E.

x1

x2

y

w11
w21

wM1
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

N
or

m
al

iz
at

io
n

1ŷ

2ŷ

3ŷ

Z-1

Z-1

Z-1

Z-1

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5

Z-1

Z-1

1φ

2φ

Mφ

∑

∑

∑

11θ

12θ

13θ

21θ

22θ

23θ

Fig. 2. Structure of the proposed RFLNFS.

IV. THE ONLINE LEARNING ALGORITHM
This section presents an online learning algorithm for

constructing the RFLNFS model. The proposed learning
algorithm consists of a structure learning phase and a
parameter learning phase. Structure learning is based on the
degree used to determine the number of fuzzy rules.
Parameter learning is based upon supervised learning
algorithms. The ordered derivative algorithm that minimizes
a given cost function adjusts the weights in the consequent
part, the parameters of the membership functions, and the
weights of the feedback.

Initially, there are no nodes in the network except the
input-output nodes, i.e., there are no any rule nodes and
memberships. They are created dynamically and
automatically as learning proceeds upon receiving online
incoming training data by performing the structure and
parameter learning processes. The details of the structure
learning phase and the parameter learning phase are described
in the rest of this section.

A. Structure Learning Phase
The first step in the structure learning is to determine

whether or not to extract a new rule from training data as well
as the number of fuzzy sets on the universal of discourse of
each input variable. Since one cluster in the input space
corresponds to one potential fuzzy logic rule, with mij and σij
representing the mean and variance of that cluster. For each
incoming pattern xi the strength a rule is fired can be
interpreted as the degree the incoming pattern belongs to the
corresponding cluster. For computational efficiency, we can
use compensatory operation of the firing strength obtained
from ∏

i

)(
iju 2 directly as this degree measure

∏=
i

)(
ijj uF 2 (10)

where]1 0[,Fj ∈ . Using this degree measure, we can obtain
the following criterion for the generation of a new fuzzy rule
of new incoming data is described as follows. Find the
maximum degree Fmax

jRjmax FmaxF
)t(≤≤

=
1

 (11)

where R(t) is the number of existing rules at time t. If FFmax ≤ ,

then a new rule is generated where]1 0[,F ∈ is a prespecified
threshold that decays during the learning process. Once a new
rule is generated, the next step is to assign initial mean,
variance, weight of feedback for the new membership
function, and the corresponding link weight for consequent
part. Since our goal is to minimize an objective function and
the mean, variance, weight of feedback, and weight of
consequent part are all adjustable later in the parameter
learning phase. Hence, the mean, variance, weight of
feedback, and weight of consequent part for the new rule are
set as follow:

i
R

ij xm t =+)()1((12)

init
R

ij
t σσ =+)()1((13)

]1 ,1[)()1(−=+ randomtR
ijθ (14)

]1 ,1[)()1(−=+ randomw tR
kj (15)

where xi is the new input variable and initσ init is a
prespecified constant. The whole algorithm for the generation
of new fuzzy rules as well as of fuzzy sets in each input
variable is as follows. We make the assumption that no rules
initially exist:
Step 1: IF xi is the first incoming pattern THEN do

{Generate a new rule

417

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Image and Signal Processing (CIISP 2007)

with mean mi1=xi, variance initi σσ =1 ,
weight of feedback randomi =1θ ,
weight of consequent part wk1=random

 where initσ is a perspecified constant
}

Step 2: ELSE for each newly incoming xi, do
{Find

jRj
FF

t)(1max max
≤≤

=

IF FF ≥max
do nothing

ELSE
{R(t+1) = R(t) +1

generate a new rule
with mean i

R
ij xm t =+)1(, variance init

R
ij

t σσ =+)1(,

weight of feedback randomtR
ij =+)1(θ ,

weight of consequent part randomw tR
kj =+)1(

where initσ is a perspecified constant.}
}

B. Parameter Learning Phase
After the network structure is adjusted according to the

current training pattern, the network then enters the parameter
learning phase to adjust the parameters of the network
optimally based on the same training pattern. The learning
process involves determining the minimum of a given cost
function. Because the RFLNFS is a dynamic system with
feedback connections, the learning algorithm used in adaptive
fuzzy systems [8] cannot be applied to it directly. Also, due to
the online learning property of the RFLNFS, the offline
learning algorithms for the recurrent neural networks, like
backpropagation through time and time-dependent recurrent
backpropagation [9], cannot be applied here. Instead, the
ordered derivative [7], which is a partial derivative whose
constant and varying terms are defined using an ordered set of
equations, is used to derive our learning algorithm. When the
single output case is considered for clarity, our goal is to
minimize the cost function E, which is defined as follows:

2)]1()1([
2
1)1(+−+=+ tytytE d (16)

where Y(t+1) is the model output and Yd(t+1) is the desired
output at time t+1 . When the ordered derivative learning
algorithm is used, the free parameters of the RFLNFS are
adjusted such that the error defined in Eq. (16) is less than the
desired threshold value after a given number of training
cycles. The parameter learning algorithm based on the
ordered derivative algorithm is described below:

Layer 5: There is no parameter to be adjusted in this layer.
Only the error term needs to be computed and propagated.
The error term is derived by

).t(y)t(y)t(
y
E)t(d)(11115 +−+=+

∂
∂

−=+δ (17)

Layer 4: The error term to be propagated is calculated as

.tut

tu
tyt

y
Et

u
Et

R

j

)(
j

)(

)(
j

)(
j

)(









⋅+=













∂
+∂









+

∂
∂

−=+
∂
∂

−=+

∑
=1

35

44

4

)(1)1(

)(
)1()1()1()1(

δ

δ
 (18)

And the weight of consequent part is updated by the amount

().ttut

t
w
u

tu
tEt

w
Etw

k
)(

j
)(

kj

)(
j

)(
jkj

kj

)()()1(

)(
)(
)1()1()1(

34

4

4

ϕδ ⋅+=













∂
∂













∂
+∂

−=+
∂
∂

−=+∆
 (19)

The weight in layer 4 is updated according to the following
equation:

())()()1()(
)1()()1(

34 ttuttw
twtwtw

k
)(

j
)(

wkj

kjwkjkj

ϕδη

η

⋅++=

+∆+=+
 (20)

where the factor wη is the learning rate parameter of the
weight, and t denotes the iteration number of the jth.

Layer 3: In this layer, only the error term needs to be
computed and propagated

.ttwt

t
u
u

tu
tEt

u
Et

M

k
kkj

)(

)(
j

)(
j

)(
j

)(
j

)(







⋅+=













∂
∂













∂
+∂

−=+
∂
∂

−=+

∑
=1

4

3

4

43

3

)()()1(

)(
)(
)1()1()1(

ϕδ

δ
 (21)

Layer 2: The error term is calculated as follows:

())()1(

)(
)(
)1()1()1(

23

2

3

32

2

tut

t
u
u

tu
tEt

u
Et

)(
ljil

)(

)(
ij

)(
j

)(
j

)(
ij

)(

≠
∏⋅+=













∂
∂













∂
+∂

−=+
∂
∂

−=+

δ

δ
 (22)

where l is the lth dimension. The update mean is













−
∂
∂











 −

+=













∂
∂













∂
+∂

−=+
∂
∂

−=+∆

1)()(
][2

)()1(

)(
)(
)1()1()1(

2
22

2

2

t
m
h

t
mh

tut

t
m
u

tu
tEt

m
Etm

ij

ij

ij

ijij)(
ij

)(

ij

)(
ij

)(
ijij

ij

σ
δ

 (23)

where

.t
m
h

t
mh

tutt
m
h

ij

ij

ij

ijij)(
ijij

ij

ij











−−

∂
∂

⋅












−
−−

⋅−=
∂
∂

1)1()1(
][2

)1()()(
2

2

σ
θ (24)

The updated variance is

[][]










 ∂∂−−−

+=













∂
∂













∂
+∂

−=+
∂
∂

−=+∆

)(
)()(2

)()1(

)(
)(
)1()1()1(

3
22

2

2

t
hmhmh

tut

t
u

tu
tEtEt

ij

ijijijijijijij)(
ij

)(

ij

)(
ij

)(
ijij

ij

σ
σσ

δ

σσ
σ

(25)

where
[][]

.t
hmhmh

tutt
h

ij

ijijijijijijij)(
ijij

ij

ij













−
∂∂−−−

⋅−=
∂
∂

)1(
)()(2

)1()()(
3

2

σ
σσ

θ
σ

(26

)
The updated weight of the feedback is













∂
∂











 −−

+=













∂
∂













∂
+∂

−=+
∂
∂

−=+∆

)()(
][2

)()1(

)(
)(
)1()1()1(

2
22

2

2

t
h

t
mh

tut

t
u

tu
tEtEt

ij

ij

ij

ijij)(
ij

)(

ij

)(
ij

)(
ijij

ij

θσ
δ

θθ
θ

 (27)

where

418

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Image and Signal Processing (CIISP 2007)

.tut
h

t
mh

tutt
h)(

ij

ij

ij

ij

ijij)(
ijij

ij

ij)1()1()1(
][2

)1()()(2

2

2 −+












−
∂
∂













−
−−

−=
∂
∂

θσ
θ

θ
(28)

The mean and variance of the membership functions and the
weight of the feedback in this layer are updated as follows:

),t(m)t(m)t(m ijmijij 11 +∆+=+ η (29)
),t()t()t(ijijij 11 +∆+=+ σησσ σ (30)
)t()t()t(ijijij 11 +∆+=+ θηθθ θ (31)

where mη , ση , and θη are the learning rate parameters of the
mean, the variance, and the weight of the feedback for the
Gaussian function, respectively. The values ijij m/h ∂∂ ,

ijij /h σ∂∂ , ijij /h θ∂∂ are equal to zero initially and are reset to
zero after a period of time to avoid the accumulation of too far
away errors.

V. ILLUSTRATIVE EXAMPLES

A. Prediction of Time Sequence
To clearly verify if the proposed RFLNFS can learn the

temporal relationship, a simple time sequence prediction
problem found in [10] is used for test in the following
example.

The test bed used is shown in Fig. 3(a). This is an “8” shape
made up of a series with 12 points which are to be presented
to the network in the order as shown. The RFLNFS is asked to
predict the succeeding point for every presented point.
Obviously, a static network cannot accomplish this task, since
the point at coordinate (0,0) has two successors: point 5 and
point 11. The RFLNFS must decide the successor of (0,0)
based on its predecessor; if the predecessor is 3, then the
successor is 5, whereas if the predecessor is 9, the successor is
11.

In this example, the RFLNFS contains only two input
nodes, which are activated with the two dimensional
coordinate of the current point, and two output nodes, which
represent the two dimensional coordinate of the predicted
point. After training, a root-mean-square (RMS) error of
0.000237 is achieved, and the predicted values with 12 fuzzy
logic rules (initσ =0.08) of RFLNFS are shown in Fig. 3(b).
Simulation results show that we can obtain perfect prediction
capability.

Recently, Lee and Teng [4] proposed a model, called
recurrent fuzzy neural network (RFNN) architecture, for
learning and tuning a fuzzy predictor. Our model is similar to
RFNN except layer three. The layer three of the RFNN
performed product operator while the layer three of our
model performed compensatory operator. For initializing
parameters of the RFNN model, the rule number should be
given in advance. But, the users need not give it any a priori
knowledge or even any initial information for our proposed
model. We also applied the RFNN model [4] and a traditional
(non-recurrent) fuzzy neural network (FNN) [11] to this time
prediction problem. Fig. 3(c) shows the prediction results
using the RFNN model [4]. In this figure, the RFNN also
obtain prediction capability, but some time prediction points

cannot be matched exactly. Fig. 3(d) shows that a
feedforward fuzzy neural network cannot predict successfully.
From the simulation results shown in Fig. 2(d), we can see
that the FNN is inappropriate for time sequence prediction
because of its static mapping. To give a clear understanding of
this performance comparison with the RFNN [4] and FNN
[11] on the same problem is made in Table 1. The results show
that the proposed RFLNFS model is able to maintain a
smaller RMS error than other methods.

x1

x2

12

11

9

876

5

4,10

3

21

(a)

(d)

Fig. 3. Simulation results of time sequence prediction. (a) Test bed for the
next sample prediction experiment in Example 1. (b) Results of prediction
using the RFLNFS. (c) Results of prediction using the RFNN. (d) Results of
prediction using the FNN.

Table 1: Performance comparison of various existing models.

 RFLNFS RFNN [4] FNN [11]
Rule numbers 12 12 12

RMS error 0.000237 0.0063 0.1758
Epochs 1000 1000 1000

B. Skin Color Detection
Skin color detection from images is a key problem in

human computer interaction studies and pattern recognition
research. We exploit one database, which is the California
Institute of Technology face database (CIT) via
http://www.vision.caltech.edu/Image_Datasets/faces/,
including 450 color images, each of size 320*240pixels,
containing 27 different people and a variety of lighting,
backgrounds and facial expressions. The three input
dimensions (Y, Cb, and Cr) are used in this experiment and
we choose 6000 training data and 6000 testing data. We
exploit the CIT database to produce both the training data and
the testing data. Moreover, the 6000 skin and non-skin pixels
training data in the color images are randomly chosen, testing
data uses the same method.

The experiment calculated the training and testing
accuracy rates (e.g. best, worst and average situations) by the
RFLNFS and the RFNN model. The comparison result with
various existing models for the CIT database is tabulated in
Tables 2.

The color images from the CIT database are shown in Figs.

419

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Image and Signal Processing (CIISP 2007)

4. The well-trained network would generate binary outputs
(1/0 for skin/non-skin) to detect the facial region. Fig. 5 and 6
demonstrate the results of skin color detection by RFNN and
RFLNFS, respectively. Experimental result has shown that
the performance of the RFLNFS is superior to the RFNN.

Fig. 4. Original of California Institute of Technology (CIT) face database.

Fig. 5. Test result of 3-dimension input by the RFLNFS.

Fig. 6. Test result of 3-dimension input by RFNN.

VI. CONCLUSION
A recurrent functional-link-based neural fuzzy system

(RFLNFS) is proposed in this paper. The RFLNFS model is
able to form the consequent part of a nonlinear combination
of the input variables to be approximated more effectively. A
recurrent network that solves temporal problems is embedded
in the RFLNFS by adding feedback connections in the second
layer, where the feedback units act as memory elements. An
online learning algorithm is proposed to perform the structure

learning and the parameter learning. Finally, the proposed
RFLNFS model also obtains better simulation results than
other existing models in some circumstances.

Table 2: Performance comparison with the RFLNFS and RFNN for CIT
database

 RFLNFS RFNN [4]
Training Data 6000 6000

Best Worst Best Worst Accuracy Rate
(Training) 94.48% 87.93% 84.55% 83.53%

Avg(Training) 91.17% 71.68%
Best Worst Best Worst Accuracy Rate

(Testing) 93.27% 83.73% 80.67% 61.5%
Avg(Testing) 88.02% 66.62%

ACKNOWLEDGMENT
This research was sponsored by Department of Industrial
Technology, Ministry of Economic Affairs, R.O.C. under the
grant 95-EC-17-A-02-S1-029.

REFERENCES
[1] K. S. Narendra and K. Parthasarathy, “Identification and control of

dynamical systems using neural networks,” IEEE Trans. on Neural
Networks, vol. 1, no.1, pp. 4-27, 1990.

[2] J. Zhang and A. J. Morris, “Recurrent neuro-fuzzy networks for
nonlinear process modeling,” IEEE Trans. on Neural Networks, vol. 10,
no. 2, pp.313-326, 1999.

[3] C. F. Juang and C. T. Lin, “A recurrent self-organizing neural fuzzy
inference network,” IEEE Trans. on Neural Networks, vol. 10, no. 4,
pp.828-845, July 1999.

[4] C. H. Lee and C. C. Teng, “Identification and control of dynamic
systems using recurrent fuzzy neural networks,” IEEE Trans. on Fuzzy
Systems, vol. 8, no. 4, pp. 349-366, Aug. 2000.

[5] C. J. Lin and C. C. Chin, “Prediction and identification using
wavelet-based recurrent fuzzy neural networks,” IEEE Trans. on Syst.,
Man, Cybernet, vol. 34, pp. 2144-2154, 2004.

[6] J. C. Patra and R. N. Pal, “A functional link artificial neural network for
adaptive channel equalization,” Signal Process, vol. 43, pp. 181-195,
May 1995.

[7] P. Werbos, “New tools for prediction and analysis in the behavior
sciences,” Ph.D. dissertation, Harvard Univ., Cambridge, MA, 1974.

[8] L. X. Wang, Adaptive fuzzy systems and control, Englewood Cliffs, NJ:
Prentice-Hall, 1994.

[9] C. T. Lin and C. S. G. Lee, Neural Fuzzy Systems: A Neuro-Fuzzy
Synergism to Intelligent System, NJ: Prentice-Hall, 1996.

[10] S. Santini, A. D. Bimbo, and R. Jain, “Block-structured recurrent neural
networks,” Neural Networks, vol. 8, no. 1, pp. 135-147, 1995.

[11] C. T. Chao, T. J. Chen, and C. C. Teng, “Simplification of fuzzy-neural
systems using similarity analysis,” IEEE Trans. Syst., Man, Cybernet,
vol. 26, no. 2, pp. 344-354, 1996.

420

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Image and Signal Processing (CIISP 2007)

