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Abstract

The purpose of this paper is to study the zero-dispersion limit of the water wave interaction equations
which arise in modelling surface waves in the present of both gravity and capillary modes. This topic is also
of interest in plasma physics. For the smooth solution, the limiting equation is given by the compressible
Euler equation with a nonlocal pressure caused by the long wave. For weak solution, when the coupling
coefficient λ is small order of ε, λ = o(ε), the wave map equation is derived and the scattering sound wave
is shown to satisfy a linear wave equation.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

In this paper we study the behavior of solutions to the water wave interaction equations in the
limit ε → 0+, where the parameter ε is analogous to the Planck constant in quantum mechanics.
This system has the form
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εi∂tψ
ε + ε2

2
∂xxψ

ε − (
α
(∣∣ψε

∣∣2 − 1
) + V ε

)
ψε = 0, (1.1)

∂tV
ε = −λ∂x

(∣∣ψε
∣∣2)

, (1.2)

where the complex-valued function ψε and the real-valued function V ε represent the envelope
of the short wave and the amplitude of the long wave, respectively. The two real parameters α

and λ are assumed to be positive for convenience. The initial values are given by

ψε(x,0) = ψε
0 (x) = A0(x) exp

(
i

ε
S0(x)

)
, (1.3)

V ε(x,0) = V ε
0 (x), (1.4)

where S0 is a function of Hs(R) (Sobolev spaces) for s large enough, and A0 is a function,
polynomial in ε, with coefficients of Sobolev regularity in x. More precisely, we are concerned
with the behavior of solutions to (1.1), (1.2) as ε tends to zero with the rapid oscillating initial
data for the short wave. The small parameter ε represents the space and time scales introduced
in (1.1), (1.2), as well as the typical wave length of oscillations of the initial data. In the special
case of Schrödinger equation with vanishing Planck’s constant this is precisely the semiclassical
limit.

Under the assumptions of long wave–short wave resonance, Benney [4] proposed several
systems of dispersive equations. One of the systems is given by (1.1), (1.2) which has frequently
been used to model for interactions between long and short waves in a variety of physical settings
[4,6,10,11,30,31,34]. For example, Djordjevic and Redekopp [11] derived (1.1), (1.2) for α = 0
as a model for the interaction between long gravity waves and capillary waves on the surface of
shallow water, in the case when the group velocity of capillary wave coincides with the velocity
of the long wave. They pointed out that the physical significance of Eqs. (1.1), (1.2) is such
that the dispersion of the short wave is balanced by the nonlinear interaction of the long wave
with the short wave, while the evolution of the long wave is driven by the self-interaction of
the short wave. When α = 0 this model is integrable by the inverse scattering method [26].
Another example arises from the study of resonant ion–acoustic/Langmuir wave interactions in
plasma under the assumption that the ion–sound wave is unidirectional. This system has also
been employed to substitute for the Davey–Stewartson system due to the effect of resonance, a
phenomenon which occurs when the group velocity of the short waves matches the phase velocity
of the long waves [11,31]. Note that Eqs. (1.1), (1.2) can be also served as the simplified version
of the Zakharov system for the Langmuir turbulence of the plasma physics [1,29,31]. When
V ε = 0, (1.1) uncouples from (1.2) and it becomes a nonlinear Schrödinger equation which has
been studied by Zakharov and Shabat [35]. Depending on the sign of α, this equation has soliton
or decaying oscillatory solutions. If λ = 0, V ε depends on the space variable x only and (1.1) is
known as cubic nonlinear Schrödinger equation with stationary potential V ε = V ε

0 (x).
The solvability of (1.1), (1.2) is considered under various settings. When ε = 1, applying

the smoothing effects of the free Schrödinger operator, it was shown by Tsutsumi and Hatano

[32,33] that the initial value problem is locally and globally well posed in H
1
2 (R) when α = 0

and in H
1
2 +m(R), m = 1,2, . . . when α �= 0. For the largest space, i.e., H 1(R) × H

1
2 (R) and the

conservation laws hold, it was proved by Ogawa [28] (see also [2,3,19] and references therein).
To investigate the singular limit employing the structure of the nonlinear Schrödinger equation
we will transform the system (1.1), (1.2) into a single equation and serve (1.2) as a constraint
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[2,28,32,33]. Integrating (1.2) in t and eliminating V ε from (1.2), we can rewrite (1.1) and (1.2)
as a single equation for ψε

εi∂tψ
ε + ε2

2
∂xxψ

ε = −λ

[ t∫
0

∂x

(∣∣ψε(x, τ )
∣∣2)

dτ

]
ψε + [

V ε
0 (x) + α

(∣∣ψε
∣∣2 − 1

)]
ψε, (1.5)

ψε(x,0) = ψε
0 (x), x ∈ R. (1.6)

The first nonlocal or memory term induced by the long wave on the right-hand side of (1.5)
causes the so-called derivative loss phenomenon which prevent one to apply the well-known Se-
gal nonlinear semigroup theory in a simple manner. This difficulty can be overcome by using the
smoothing-effects estimates of solutions of linear Schrödinger evolution equations developing
by Kenig et al. [17,18] (see also [2,3]).

The semiclassical or small dispersion problem (i.e., small ε) has been the subject of research
in the last 20 years. According to the correspondence principle, the classical world should emerge
from the quantum world whenever the Planck constant is negligible. But the limit as the Planck
constant tends to zero is mathematically singular. This fact complicates the reduction to classical
mechanics. Thus the mathematical rigorous analysis of the semiclassical limit for Schrödinger
type equations (or more general dispersive equations) is an issue of importance and full of chal-
lenge to mathematical analysis. For linear Schrödinger equation or Schrödinger–Poisson, the
idea of kinetic formulation to solve it global-in-time is the followings. By applying the Wigner
transform, we can obtain a kinetic integro-differential equation the so-called Wigner equation.
The investigation of the kinetic structure of the Wigner equation and the application of the mo-
ments methods to its solutions, which provide information of macroscopic densities, help us to
pass limit as the Planck constant tends to 0 in the Wigner equation and the macroscopic den-
sities. We have the Vlasov (Vlasov–Poisson) equation, which is the quantum (hydrodynamic)
limiting system of the linear Schrödinger-type equations [12,13]. The analysis of the limiting
system gives us the similar macroscopic densities and results to those obtained by the geometric
optics approach to the WKB limit of Schrödinger equations and reveals a close relation between
the semiclassical limit of quantum fluid equations and the kinetic equations [13].

However, the situation is quite different for nonlinear Schrödinger-type equations because
the theory of Wigner transform and the semiclassical (or zero-dispersion) limit are still under
investigation for nonlinear Schrödinger-type equations. Most of the rigorous global analysis of
the limiting behavior are restricted to the integrable nonlinear wave equations (see [15,25] and
references therein). Thus, any analytical or numerical results related to (1.1), (1.2) should be
important in the study of short-wave–long-wave interactions. In particular, the zero-dispersion
limit, when one could expect creation of shock waves and interesting limiting dynamics of the
conserved quantities. Therefore the study of the semiclassical limit of (1.1), (1.2) will signifi-
cantly enhance our understanding of the general semiclassical behavior of nonlinear dispersive
waves. Our approach to the dispersive limit of (1.1), (1.2) is the WKB analysis. Since the WKB
method has the drawback of being local in time, thus we treat the local smooth solutions only [8,
9,14]. This work about the zero-dispersion limit of the short-wave–long-wave interaction equa-
tions was motivated by the a natural mathematical question; however, the problem is also of
direct importance to water wave and plasma physics.

The plan of the paper is as follows. In Section 2, we derive the hydrodynamical structure
and the local conservation laws of the short-wave–long-wave equations (1.1), (1.2). The formal
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dispersive limit is also discussed. We employ the modified Madelung transformation to represent
the water wave interaction equations as a perturbation of a quasilinear symmetric hyperbolic
system in Section 3. For suitable initial data in the Sobolev space Hs(R) with s sufficiently
large, the classical solutions of (1.1)–(1.4) exist for a time T independent of ε and converge
pointwise together with some number of derivatives to a classical solution of the compressible
Euler equation with nonlocal potential. In Section 4, we study the zero-dispersion limit of (1.1),
(1.2) directly motivated by the defocussing cubic nonlinear Schrödinger equation [5,25]. In the
case when there are no vortices (uniform bounded energy as ε → 0), we show that the limit of
the wave functions solve the wave map equations and the associated phase functions satisfy a
linear wave equation which is the same as the defocussing cubic nonlinear Schrödinger equation.
This concludes that the long wave plays no role in the zero-dispersion limit.

2. Hydrodynamical structures and conservation laws

The semiclassical limit of Eqs. (1.1), (1.2) is to determine the limiting dynamics of any func-
tions of the fields ψε as ε → 0. However, it is not clear directly from (1.1) what form such
a dynamics might take. Insight into this question can be gained by considering the conserva-
tion laws associated with (1.1), (1.2). To this end, we make the geometric optic (semiclassical)
ansatz [8,9,14]

ψε(x, t) = Aε(x, t) exp

(
i

ε
Sε(x, t)

)
= √

ρε(x, t) exp

(
i

ε
Sε(x, t)

)
. (2.1)

This transformation is usually called the Madelung transformation and was originally introduced
in the context of the linear Schrödinger equation for quantum mechanics. The real amplitude Aε ,
phase function Sε and V ε obey the following equations:

∂tA
ε + ∂xA

ε∂xS
ε + 1

2
Aε∂xxS

ε = 0, (2.2)

∂tS
ε + 1

2

(
∂xS

ε
)2 + (

α
(∣∣Aε

∣∣2 − 1
) + V ε

) = ε2

2Aε
∂xxA

ε, (2.3)

∂tV
ε + 2λAε∂xA

ε = 0, (2.4)

where Eq. (2.3) is the quantum deformation of the Hamilton–Jacobi equation by quantum poten-
tial. Consider the new variables

ρε ≡ ∣∣Aε
∣∣2 = ∣∣ψε

∣∣2
, uε ≡ ∂xS

ε, (2.5)

we have the following two local conservation laws

∂tρ
ε + ∂x

(
ρεuε

) = 0, (2.6)

∂tu
ε + ∂x

( |uε|2
2

+ αρε + V ε

)
= ε2

2
∂x

(
∂xx

√
ρε

√
ρε

)
. (2.7)

Equations (2.6), (2.7) comprise a closed system governing ρε and uε , which have the form of a
perturbation of the Euler equations with V ε satisfying
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∂tV
ε + λ∂xρ

ε = 0, (2.8)

which is equivalent to

V ε(x, t) = V ε
0 (x) − λ

t∫
0

∂xρ
ε(x, τ ) dτ. (2.8′)

This is the local conservation law of mass (or amplitude) of the long wave V ε . From (2.6) and
(2.7) we can also derive the equation for the canonical momentum με ≡ ρεuε

∂tμ
ε + ∂x

( |με|2
ρε

+ α

2

∣∣ρε
∣∣2

)
+ ρε∂xV

ε = ε2

4
∂x

(
ρε∂xx logρε

)
, (2.9)

which is not conservative because of the coupling. However, employing (2.8), we still have the
local conservation law of momentum in the following form

∂t

(
με + 1

2λ

∣∣V ε
∣∣2

)
+ ∂x

( |με|2
ρε

+ α

2

∣∣ρε
∣∣2 + ρεV ε

)
= ε2

4
∂x

(
ρε∂xx logρε

)
, (2.10)

where με + 1
2λ

|V ε|2 = ρεuε + 1
2λ

|V ε|2 is the noncanonical momentum which means that even
if the fluid velocity (short wave) vanishes, i.e., uε = 0, the flow still has background momentum
caused by the long wave. This implies that solitons of the water wave interaction equation (1.1),
(1.2) have nontrivial static limit. In the field of theoretical language, we can say that the spectrum
of excitations has always a gap (like in superfluidity). Besides the principles of conservation of
mass and momentum upon which Eqs. (1.1), (1.2) are formulated, the conservation of energy is
another principle of great physical and mathematical importance. Define the energy density Eε

by

Eε = Eε
1 + Eε

2 + Eε
3 + Eε

4 ≡ |με|2
2ρε

+ α

2

∣∣ρε
∣∣2 + ρεV ε + ε2

8

|∂xρ
ε|2

ρε
, (2.11)

i.e., the total energy of the short-wave and long-wave interaction equations is constituted by the
classical part, Eε

1 the kinetic energy, Eε
2 +Eε

3 the potential energy and the quantum part Eε
4 which

is of order O(ε2). The crossing term Eε
3 = ρεV ε comes from the interaction of the short-wave

and long-wave. They propagate according to

∂tE
ε
1 + ∂x

(
Eε

1 · uε
) + uε∂x

(
α

2

∣∣ρε
∣∣2

)
+ ρεuε∂xV

ε = ε2

4
uε∂x

(
ρε∂2

x logρε
)
, (2.12)

∂tE
ε
2 + ∂x

(
2Eε

2 · uε
) − uε∂x

(
α

2

∣∣ρε
∣∣2

)
= 0, (2.13)

∂tE
ε
3 + ∂x

(
Eε

3 · uε
) − ρεuε∂xV

ε + ∂x

(
λ|ρε|2

2

)
= 0, (2.14)

∂tE
ε
4 + ∂x

(
Eε

4 · uε
) + ε2

∂x

(
∂xρ

ε∂xμ
ε

ε
− με∂xxρ

ε

ε

)
= −ε2

uε∂x

(
ρε∂xx logρε

)
. (2.15)
4 ρ ρ 4
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Summing (2.12)–(2.15) yields the energy equation

∂tE
ε + ∂x

((
Eε + Eε

2

)με

ρε
+ λ

2

∣∣ρε
∣∣2

)
= ε2

4
∂x

(
με∂xxρ

ε

ρε
− ∂xρ

ε∂xμ
ε

ρε

)
, (2.16)

which is conservative. Therefore we obtain the quantum hydrodynamics equations of (1.1), (1.2)

(see [12,22,23] for the similar models). The above hydrodynamical structures imply the local
conservation laws of the water wave interaction equations (1.1), (1.2).

Theorem 2.1. Let bar ¯ denote the complex conjugate and t ∈ [0,∞). The following quantities
are conservation integrals of (1.1), (1.2)

∞∫
−∞

ρε(x, t) dx = C1, (2.17)

∞∫
−∞

uε(x, t) dx = C2, (2.18)

∞∫
−∞

V ε(x, t) dx = C3, (2.19)

∞∫
−∞

(
με(x, t) + 1

2λ

∣∣V ε(x, t)
∣∣2

)
dx = C4, (2.20)

∞∫
−∞

Eε(x, t) dx = C5, (2.21)

where the hydrodynamic variables ρε , uε , με , V ε and Eε are given in terms of the envelope of
the short wave function ψε as follows

ρε(x, t) = ∣∣ψε(x, t)
∣∣2 = ψε(x, t)ψ̄ε(x, t), (2.22)

uε(x, t) = iε

2

(
∂xψ̄

ε(x, t)

ψ̄ε(x, t)
− ∂xψ

ε(x, t)

ψε(x, t)

)
, (2.23)

με(x, t) = iε

2

(
ψε(x, t)∂xψ̄

ε(x, t) − ψ̄ε(x, t)∂xψ
ε(x, t)

)
, (2.24)

V ε(x, t) = V ε
0 (x) − λ

t∫
0

∂x

(∣∣ψε(x, τ )
∣∣2)

dτ, (2.25)

Eε(x, t) = ε2

2

∣∣∂xψ
ε(x, t)

∣∣2 + α

2

∣∣ψε(x, t)
∣∣4 + V ε(x, t)

∣∣ψε(x, t)
∣∣2

. (2.26)



C.-K. Lin, Y.-S. Wong / J. Differential Equations 228 (2006) 87–110 93
The conservative quantities of the water wave interaction equations may be recast from the
action principle. The Lagrangian formulation allows us to systematically derive conserved quan-
tities by means of Noether’s theorem which assigns to each of these symmetries a corresponding
conserved quantities by taking the form of the integral of a multinomial in ψε,V ε and their
x-derivatives. Equations (1.1), (1.2) are trivially invariant under the phase rotation

ψε(x, t) 
→ eiθψε(x, t), θ ∈ R,

and have

C1 =
∫
R

∣∣ψε(x, t)
∣∣2

dx =
∫
R

ρε(x, t) dx

as the corresponding constant of the motion. The equations have no explicit dependence on x

and hence

ψε(x, t) 
→ ψε(x − 
x, t), V ε(x, t) 
→ V ε(x − 
x, t)

must be symmetry. This space translation invariant gives C4 as its conserved quantity, which
can be thought of as the momentum of the equations. Similarly, the equations have no explicit
dependence on t so

ψε(x, t) 
→ ψε(x, t − 
t), V ε(x, t) 
→ V ε(x, t − 
t)

must also be symmetry. The corresponding conserved quantity is the Hamiltonian or the total
energy C5.

Remark. The Madelung formulation relies on the assumption that the amplitude of ψε is not zero
and the phase Sε is not singular, otherwise the transformation is not well-defined and the system
(2.6), (2.7) becomes singular even though (1.1), (1.2) is still regular. Therefore, we treat only the
regime of smooth phase functions. However, the conservation laws do not rely on the Madelung
transformation, we can still derive the same result from (1.1), (1.2) directly. In contrast to all
earlier applications of the Madelung transformation, we can avoid making explicit use of the
phase function Sε and do not work with (2.6), (2.7). By the three conservation laws, mass (2.17),
momentum (2.20) and energy (2.21), Ogawa [28] proves the global well-posedness of the system
(1.1)–(1.4) for ε = 1 in the largest class of initial data.

In the formal semiclassical limit ε → 0, one neglects the contribution from the quantum po-
tential ∂xx(

√
ρε )/

√
ρε in (2.6)–(2.8), and the limiting densities ρ, μ = ρu and V satisfy the

Euler system

∂tρ + ∂x(ρu) = 0, (2.27)

∂tμ + ∂x

( |μ|2
ρ

+ α

2
ρ2

)
+ ρ∂xV = 0, (2.28)

with initial conditions inferred from (1.3) given by

ρ0(x) = ρ(x,0) = ∣∣A0(x)
∣∣2

, μ0(x) = μ(x,0) = ∣∣A0(x)
∣∣2

∂xS0(x), (2.29)
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where V is formally given by

V (x, t) = V0(x) − λ

t∫
0

∂xρ(x, τ ) dτ. (2.30)

Here V0(x) is the limit of V ε
0 (x). If λ = 0 then the potential V is stationary, V (x, t) = V0(x).

These are the classical Euler equations of the compressible fluid. This argument is self-consistent
only if the solution of (2.22)–(2.25) remains classical (i.e., before the development of the first
shock). In that case the limiting energy density will be given by

E = |μ|2
2ρ

+ α

2
|ρ|2 + ρV (2.31)

and will satisfy

∂tE + ∂x

((
E + E2(ρ)

)μ

ρ
+ λ

2
|ρ|2

)
= 0, (2.32)

where E2(ρ) = α
2 ρ2 plays the role similar to the pressure.

It is clear from (2.2)–(2.4) that the formal dispersionless limit equations associated with (1.1),
(1.2) are given by

∂tA + ∂xA∂xS + 1

2
A∂xxS = 0, (2.33)

∂tS + 1

2
∂xS

2 + (
α
(
A2 − 1

) + V
) = 0, (2.34)

∂tV + λ∂x

(
A2) = 0, (2.35)

where (A,S,V ) is the formal limit of (Aε, Sε,V ε) of (2.2)–(2.4). Note that Eq. (2.34) for the
phase S is a classical Hamilton–Jacobi equation for the action of a particle with respect to the
potential α(A2 − 1) + V . Introducing the new complex wave function

ϕ(x, t) = A(x, t) exp
(
iS(x, t)

)
, (2.36)

system (2.33)–(2.35) is equivalent to the following modification of the water wave interaction
equations (1.1), (1.2):

i∂tϕ + 1

2
∂xxϕ − (

α
(|ϕ|2 − 1

) + V
)
ϕ = 1

2

∂xx |ϕ|
|ϕ| ϕ, (2.37)

∂tV = −λ∂x

(|ϕ|2), (2.38)

with the quantum potential on the right-hand side of (2.37). The quantum potential contribu-
tion to the right-hand side with fixed strength completely compensates U(1) gauge invariant
contribution to dispersion on the left-hand side. This potential, the so-called Bohm potential or
the internal self-potential was introduced by deBroglie and later explored by Bohm to make a
hidden-variable theory, is responsible for producing the quantum behavior, so that all quantum
features are related to its special properties. The role of the quantum potential is to change the



C.-K. Lin, Y.-S. Wong / J. Differential Equations 228 (2006) 87–110 95
dispersion of the Schrödinger equation. If the strength of the quantum potential deviates from
the critical value as given in dispersionless equations (2.37), (2.38), then we have the deformed
wave equations

i∂tϕ
ε + 1

2
∂xxϕ

ε − (
α
(∣∣ϕε

∣∣2 − 1
) + V ε

)
ϕε = (

1 + ε2)1

2

∂xx |ϕε|
|ϕε| ϕε, (2.39)

∂tV
ε = −λ∂x

(∣∣ϕε
∣∣2) (2.40)

of the dispersionless system (2.37), (2.38), which is determined by the deformation parameter ε

(the Planck constant) and the semiclassical ansatz

ϕε(x, t) = A(x, t) exp
(
iS(x, t)/ε

)
. (2.41)

Moreover, for the classically inaccessible regions simulated by analytical continuation of the
Planck constant to a pure imaginary value ε 
→ iε, instead of (2.39), (2.40), we have

i∂tϕ
ε + 1

2
∂xxϕ

ε − (
α
(∣∣ϕε

∣∣2 − 1
) + V ε

)
ϕε = (

1 − ε2)1

2

∂xx |ϕε|
|ϕε| ϕε, (2.42)

∂tV
ε = −λ∂x

(∣∣ϕε
∣∣2)

. (2.43)

Furthermore, written in terms of the two real-valued functions

Q±(x, t) = A(x, t) exp
(±S(x, t)/ε

) = √
ρ(x, t) exp

(±S(x, t)/ε
)
, (2.44)

the diffusion equations in duality analog of (1.1), (1.2)

ε∂tQ
± ± ε2

2
∂xxQ

± + (
α
(
Q+Q− − 1

) + V
)
Q± = 0, (2.45)

∂tV = −λ∂x

(
Q+Q−)

(2.46)

are derived. Thus system (1.1), (1.2) is intrinsically in the theory of diffusion processes as an
equation in the context of time reversal of diffusion processes, namely, diffusion equations in
duality. The origin of the idea of considering diffusion process for quantum mechanics goes
back to Schrödinger (1931), in which he formulated Brownian motions in a symmetric form
of time reversal. Schrödinger’s time-symmetric theory of diffusion process revealed the deep
relation between diffusion theory and quantum theory. We can further represent this system as
the decoupled pair of Burgers’ equations by the well known Hopf–Cole transformation which
suggests to introduce the pair of velocity fields

u+ = ε∂x

(
logQ+) = ε

∂xQ
+

Q+ , u− = −ε∂x

(
logQ−) = −ε

∂xQ
−

Q− , (2.47)

such that instead of (2.38), (2.39), we have the coupled system of Burgers’ equations with nega-
tive and positive viscosities
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∂tu
+ + u+∂xu

+ = −ε

2
∂xxu

+ − ∂xΩ, (2.48)

∂tu
− + u−∂xu

− = ε

2
∂xxu

− + ∂xΩ, (2.49)

∂tV = −λ∂x

(
Q+Q−)

, (2.50)

with the potential function given by

Ω = α
(
Q+Q− − 1

) + V. (2.51)

These relative velocities

u± = u ± u∗ = ∂xS ± ε

2

∂xρ

ρ
(2.52)

characterize two motions, the center of mass motion with velocity u = ∂xS and internal oscilla-
tions in the envelope with velocity u∗ = ε

2
∂xρ
ρ

.

3. Modified Madelung transformation

In this section, we will employ the modified Madelung transformation to transform (1.1), (1.2)
into a linear dispersive perturbation of a quasilinear symmetric hyperbolic system to which the
Lax–Friedrich–Kato theory can be applied [16,27]. Equations (1.1), (1.2) or (2.6)–(2.8) do not
have the explicit form of a first-order hyperbolic system for the variables (ρε, uε,V ε). However,
it can be overcome by serving V ε as a forcing term given by (2.8′). The limit ε → 0 cannot be
made directly in (2.6)–(2.8) since the phase Sε or the quotients 1/

√
ρε may be undefined. As

suggested by Grenier [14] (see also [8,9,20–22,24]), the modified Madelung transformation can
be utilized in the study of the semiclassical limit. The similar idea had also been used earlier by
Schochet and Weinstein to study the nonlinear Schrödinger limit of the Zakharov system [29].
Indeed, we will look for solution ψε of the form

ψε = Aε exp
(
Sε/ε

)
, Aε = aε + ibε. (3.1)

Note here we allow the phase function Sε to depend on the parameter ε. Now inserting (3.1)
into (1.1), we obtain

εi∂tA
ε − Aε∂tS

ε + ε2

2
∂xxA

ε + εi∂xA
ε∂xS

ε − 1

2
Aε

(
∂xS

ε
)2 + εi

2
Aε∂xxS

ε

= (
α
∣∣Aε

∣∣2 − α + V ε
)
Aε,

it can then split into

∂tA
ε +

(
∂xA

ε∂xS
ε + 1

2
Aε∂xxS

ε

)
= ε

2
i∂xxA

ε and (3.2)

∂tS
ε + 1(

∂xS
ε
)2 + (

α
∣∣Aε

∣∣2 − α + V ε
) = 0. (3.3)
2
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Considering the change of variables vε ≡ ∂xS
ε , we have the equivalent form of (1.1)–(1.4)

∂ta
ε + vε∂xa

ε + 1

2
aε∂xv

ε = −ε

2
∂xxb

ε, (3.4)

∂tb
ε + vε∂xb

ε + 1

2
bε∂xv

ε = ε

2
∂xxa

ε, (3.5)

∂tv
ε + vε∂xv

ε + 2α
(
aε∂xa

ε + bε∂xb
ε
) + ∂xV

ε = 0, (3.6)

aε(x,0) = aε
0(x), bε(x,0) = bε

0(x), vε(x,0) = vε
0(x) = ∂xS

ε(x,0), (3.7)

where, according to (1.2), the potential V ε is given explicitly by

V ε(x, t) = V ε
0 (x) − 2λ

t∫
0

(
aε∂xa

ε + bε∂xb
ε
)
dτ. (3.8)

The system can be rewritten in the vector form:

∂tU
ε + A

(
Uε

)
∂xU

ε + Gε = ε

2
L

(
Uε

)
, (3.9)

Uε(x,0) = Uε
0 (x) = (

aε
0(x), bε

0(x), vε
0(x)

)t
, (3.10)

where Uε = (aε, bε, vε)t , Gε = (0,0, ∂xV
ε)t ,

A
(
Uε

) =
⎡⎣ vε 0 aε/2

0 vε bε/2

2αaε 2αbε vε

⎤⎦ , L =
⎡⎣ 0 −∂xx 0

∂xx 0 0

0 0 0

⎤⎦ . (3.11)

Obviously the matrix A(Uε) can be symmetrized by

S =
⎡⎣4α 0 0

0 4α 0

0 0 1

⎤⎦ ,

which is symmetric and positive definite for α > 0. The antisymmetric operator L in (3.11)
reflects the dispersive nature of Eqs. (1.1), (1.2). The special structure of (3.9) will be exploited
on the classical solutions. The existence of classical solutions proceeds along the lines of the
existence proof for the initial value problem for the quasilinear symmetric hyperbolic system
with modification. Indeed, applying the theory of the quasilinear symmetric hyperbolic system,
we will obtain the existence of smooth solutions (ψε,V ε) of (1.1), (1.2) on a time interval [0, T )

independent of ε. Furthermore, the bounds that we obtained are uniformly bounded in ε on the
solution (ψε,V ε) will allow to pass to the limit ε → 0 in (3.4)–(3.6) and this justify the WKB
hierarchy.

In addition to the linear dispersive perturbation of the quasilinear symmetric hyperbolic sys-
tem nature, the modified Madelung transformation also give us more information about the phase
transportation. Since Aε is complex-valued, we introduce the polar coordinates:

Aε = aε + ibε = √
ρε eiθε

. (3.12)
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Applying the chain rule, we obtain

aε∂xxb
ε − bε∂xxa

ε = ∂x

(
ρε∂xθ

ε
)
, (3.13)

then from (3.4)–(3.6) we derive the system

∂tρ
ε + ∂x

(
ρεvε + ερε∂xθ

ε
) = 0, (3.14)

∂t θ
ε + vε∂xθ

ε + ε

2

∣∣∂xθ
ε
∣∣2 = ε

2

∂xx(
√

ρε )√
ρε

, (3.15)

∂tv
ε + vε∂xv

ε + ∂x

(
αρε + V ε

) = 0, (3.16)

where V ε is given by

V ε(x, t) = V ε
0 (x) − λ

t∫
0

∂xρ
ε(x, τ ) dτ. (3.17)

The quantum effect in this system is of order O(ε) not O(ε2) comparing with (2.7). Note the
transport equation for ρε has an extra term of order O(ε) comparing with the typical equation of
continuity. By formally letting ε → 0, we have

∂tρ + ∂x(ρv) = 0, (3.18)

∂t θ + v∂xθ = 0, (3.19)

∂tv + v∂xv + ∂x(αρ + V ) = 0, (3.20)

V (x, t) + λ

t∫
0

∂xρ(x, τ ) dτ = V0(x). (3.21)

Since (3.19) is the pure transport equation then θ = 0 for the trivial initial data, thus we have the
same limit system as (2.22)–(2.24).

We now first establish the existence and uniqueness of the classical solution of the dispersive
perturbation of the quasilinear symmetric hyperbolic system (3.8)–(3.11).

Theorem 3.1. Let s > 5
2 . Suppose M0 � 1, M and T are given such that

[
M0 + (

cM2
0 + M

)
T

]
ecM0T � 2M0, (3.22)

then

(i) if Gε ∈ L∞([0, T ];Hs(R)) ∩ C([0, T ];Hs−2(R)) such that ‖Gε‖Hs � M and the ini-
tial data Uε

0 = (aε
0, b

ε
0, v

ε
0) ∈ Hs(R) × Hs(R) × Hs(R) satisfying ‖Uε

0 ‖Hs(R) � M0 are
given, then the IVP for the (3.8), (3.9) has a unique solution Uε ∈ C([0, T ];Hs(R)) ∩
C1([0, T ];Hs−2(R)) such that ‖Uε‖Hs � 2M0;
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(ii) if Uε = Uε
(0),U

ε
(1) are the solutions corresponding with Gε = Gε

(0),G
ε
(1) for the same initial

condition Uε
0 satisfying condition (i), then∥∥Uε

(0) − Uε
(1)

∥∥
Hs−2 � cecM0T T

∥∥Gε
(0) − Gε

(1)

∥∥
Hs−2; (3.23)

(iii) if ρε
0(x) = (aε

0)
2 + (bε

0)
2 > 0, then ρε(x, t) > 0 for all t � 0; if ρε

0 has a compact support,
then ρε(·, t) does too for any t ∈ [0, T ] and

R
{
ρε(·, t)} � R

{
ρε

0

} + (1 + ε)CT , (3.24)

where R{u} ≡ sup{|x|: u(x) �= 0}.
Proof. The existence of a solution in a sufficiently short time interval is guaranteed by
[16, Theorem II]. It suffices only to find the explicit estimates stated in the theorem. The fol-
lowing procedure is attributed to [16,27] (see also [8,9,14,22]).

(i) For further reference, we ignore the superscripts ε. Given

U ∈ L∞([0, T ];Hs(R)
) ∩ C

([0, T ];Hs−2(R)
)
,

such that ‖U‖Hs � 2M0, the linear problem

∂t Ũ + A(U)∂xŨ + G = ε

2
L(Ũ), Ũ (x,0) = Uε

0 (x) (3.25)

has a unique solution Ũ ∈ C([0, T ];Hs(R)) ∩ C1([0, T ];Hs−2(R)). Multiplying (3.25) by the
matrix S then taking the inner product with Ũ and integrating over R yields

d

dt
‖Ũ‖E =

∫
R

〈
Ax(U)Ũ, Ũ

〉
dx +

∫
R

〈SGŨ, Ũ 〉dx + ε

∫
R

〈
SL(Ũ)Ũ , Ũ

〉
dx,

where ‖Ũ‖E ≡ ∫
R
〈SŨ, Ũ 〉dx is the canonical energy associated with (3.25). The term∫

R
〈SL(Ũ)Ũ , Ũ 〉dx = 0 contributes nothing to the estimate, by the antisymmetry of L. This

means that the singular perturbation does not create energy. We assume that the matrix A together
with its derivatives of any desired order are continuous and bounded uniformly in [0, T ] × R.
Since ‖∂xA(U)‖∞ � ‖∂xA(U)‖L2 � C1M0 and ‖S‖∞ � c2 ≡ max{1, α}, we have

max
0�t�T

∥∥Ũ (t)
∥∥

L2 �
(∥∥Ũ ε

0

∥∥
L2 +

T∫
0

‖SG‖dt

)
eC1M0T � (M0 + c2MT )eC1M0T .

The estimates of the higher derivatives of Ũ can be obtained in the same manner. We write
Ũ (ν) = ∂ν

x Ũ , ν � 1. Then

Ũ (ν) ∈ C
([0, T ];L2(R)

) ∩ C1([0, T ];H−2(R)
)
,

satisfies

∂t Ũ
(ν) + A(U)∂xŨ

(ν) + G(ν) = ε
L

(
Ũ (ν)

)
, (3.26)
2
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where

G(ν) = ∂ν
x G − [

∂ν
x

(
A(U)∂xŨ

) − (
A(U)∂ν

x ∂xŨ
)] = ∂ν

x G − [
∂ν
x ,A(U)

]
∂xŨ . (3.27)

The commutator [∂ν
x ,A(U)]∂xŨ consists of terms of the form ∂αAx · ∂β∂xŨ ,α + β � ν − 1 �

s − 2. Since ∂xA, ∂xŨ ∈ Hs(R), we can apply the Moser-type calculus inequality [8,16,27] to
estimate the commutator terms:∥∥∂α∂xA · ∂β∂xŨ

∥∥
L2 � C‖∂xA‖Hs ‖∂xŨ‖Hs � CM2

0 , (3.28)

provided that ‖Ũ‖Hs � 2M0. (Note that ‖A(U)‖Hs � C‖U‖Hs .) Thus we have∥∥G(ν)
∥∥

L2 �
∥∥∂ν

x G
∥∥

L2 + C2M
2
0 , (3.29)

as long as ‖U‖Hs � 2M0. This implies

‖Ũ‖Hs �
(
M0 + (

C3M
2
0 + M

)
T

)
eC3M0T � 2M0, (3.30)

for 0 � t � T provided that T is sufficiently small that the last inequality holds. Moreover, from
Eq. (3.9) we have the estimate of the time derivative ∂t Ũ

max
0�t�T

‖∂t Ũ‖Hs−2 =
∥∥∥∥−A(U)∂xŨ + ε

2
L(Ũ)

∥∥∥∥
Hs−2

� C4M
2
0 + M = L. (3.31)

Note that unlike solutions to the quasilinear hyperbolic system considered in [7,16,27], ∂t Ũ
ε

is only Hs−2 and not Hs−1 due to the presence of the higher order term L(Ũε) in (3.25). It is
interesting to mention that the function space C([0, T ];Hs(R))∩C1([0, T ];Hs−2(R)) is natural
from the point of view of dimensional analysis. Both function spaces have the same dimension
2
∞ + n

2 − s = 2
∞ − 2 + n

2 − (s − 2). Here we use the fact that the time dimension is 2 other than 1
comparing with the pure quasilinear symmetric hyperbolic system.

Now we consider the fundamental set

X = {
U ∈ L∞([0, T ];Hs(R)

) ∩ C
([0, T ];Hs−2(R)

)
: ‖U‖Hs � 2M0,∥∥U(t1) − U(t0)

∥∥
Hs−2 � L|t1 − t0|

}
,

and the mapping F :U 
→ Ũ . Thus we will show the contraction in the lower norm. This is the
seminal ideal of Lax and Kato. We have already shown that F maps X into X itself. To apply the
fixed point theorem, we make X into a complete metric space with the metric

d(U(1),U(0)) = ∣∣‖U(1) − U(0)‖
∣∣ ≡ sup

0�t�T

∥∥U(1)(t) − U(0)(t)
∥∥

L2 . (3.32)

We are going to show that F is a contraction if T is sufficiently small. The perturbation δŨ =
Ũ(1) − Ũ(0) solves

(
∂t + A(U(0))∂x

)
δŨ = f + ε

L(δŨ), δŨ(x,0) = 0, (3.33)

2
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where

f = (
A(U(1)) − A(U(0))

)
∂xŨ(1). (3.34)

Keeping in mind that A(U) is linear in U , we see that

‖f ‖L2 � C5‖δU‖‖Ũ(1)‖ � 2C5M0‖δU‖.

Thus |‖δŨ‖| � 2C5M0‖δU‖T eC3M0T . Therefore, if 2C5M0T eC3M0T < 1, then F is a con-
traction, so has a fixed point in X, which belongs to the required space C([0, T ];Hs(R)) ∩
C1([0, T ];Hs−2(R)) and solves (3.8), (3.9). This complete the proof of (i).

(ii) The equation satisfied by the perturbation δU = U(1) − U(0) is(
∂t + A(U(0))∂x + B(∂xU(1))

)
δU + δG = ε

2
L(δU), δU(x,0) = 0, (3.35)

where δG = G(1) − G(0) and

B(∂xU(1)) = A(U(1)) − A(U(0))

U(1) − U(0)

∂xU(1) = A′((1 − θ)U(1) + θU(0)

)
∂xU(1). (3.36)

Keeping in mind that A(U(0)) ∈ C([0, T ];Hs(R)) with ‖A(U(0))‖Hs � C6M0, and B(∂xU(1)) ∈
C([0, T ];Hs−1(R)) with ‖B(∂xU(1))‖Hs−1 � C6M0. Let ν � s. Then δU(ν) = ∂ν

x δU solves

(∂t + A∂x + B)δU(ν) = h(ν) + ε

2
L

(
δU(ν)

)
, (3.37)

where

h(ν) = ∂ν
x δG − [

∂ν
x ,A

]
∂x(δU) − [

∂ν
x ,B

]
δU. (3.38)

Here the bracket [·,·] denotes the commutator. For ν � 1, [∂ν
x ,A]∂x(δU) consists of terms of the

form ∂α
x Ax · ∂β

x ∂x(δU),α + β � s − 1 with∥∥∂α
x Ax · ∂β

x ∂x(δU)
∥∥

L2 � C‖Ax‖Hs ‖δU‖Hs � CM0‖δU‖Hs , (3.39)

and [∂ν
x ,B]δU consists of terms of the form ∂α

x Bx · ∂β
x δU , α + β � s − 1 with∥∥∂α

x Bx · ∂β
x δU

∥∥
L2 � C‖A‖Hs ‖δU‖Hs � CM0‖δU‖Hs . (3.40)

Thus ∥∥h(ν)
∥∥

L2 �
∥∥∂ν

x δG
∥∥ + C7M0‖δU‖Hs . (3.41)

This implies

‖δU‖Hs � C8‖δG‖Hs T eC8M0T , (3.42)

which completes the proof of (ii).
(iii) To show that ρε(x, t) = (aε(x, t))2 + (bε(x, t))2 > 0 for all 0 � t < ∞, we employ the

continuity equation (3.14) for ρε . Let (η, τ ) be an arbitrary fixed space–time point in Ω ×[0, T ].
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Since vε + εθε
x ∈ C1(R × [0, T ]), the well-known theorem for ordinary differential equations

guarantees that the problem

dx

dt
= vε(x, t) + ε∂xθ

ε(x, t), x|t=τ = η, (3.43)

has a unique solution x = Ψ (t) ∈ C1([0, T ];R). The continuity equation implies

d

dt
ρε

(
Ψ (t), t

) = −∂x

(
vε + ε∂xθ

ε
)
ρε

(
Ψ (t), t

)
.

Integrating over [0, τ ], we have

ρε(η, τ ) = ρε
(
Ψ (0),0

)
exp

[
−

τ∫
0

∂x

(
vε

(
Ψ (t), t

) + ε∂xθ
ε
(
Ψ (t), t

))
dt

]
.

Thus ρε(η, τ ) � 0, if ρε(Ψ (0),0) = ρε
0(Ψ (0)) � 0. If ρε(η, τ ) �= 0, then ρε

0(Ψ (0)) �= 0 so that
|Ψ (0)| � R{ρε

0}, and

|η| = ∣∣Ψ (τ)
∣∣ =

∣∣∣∣∣Ψ (0) +
τ∫

0

vε
(
Ψ (t), t

) + ε∇θε
(
Ψ (t), t

)
dt

∣∣∣∣∣
�

∣∣Ψ (0)
∣∣ +

τ∫
0

∥∥vε
∥∥∞ + ε

∥∥∇θε
∥∥∞ dt � R

{
ρε

0

} + (1 + ε)C2τ.

In order to complete the proof of the theorem, we only need to show that Gε ∈ L∞([0, T ];
Hs(R)) ∩ C([0, T ];Hs−2(R)) such that ‖Gε‖Hs � M , which is equivalent to show
V ε ∈ L∞([0, T ];Hs+1(R))∩C([0, T ];Hs−1(R)). Indeed, it follows immediately from the con-
servation laws (2.19), (2.20) and the assumption λ > 0 that V ε ∈ L∞([0, T ];L1 ∩ L2(R)) if
V ε

0 (x) ∈ L1 ∩L2(R). Similarly for higher derivative we have V ε ∈ L∞([0, T ];Ws,1 ∩Hs(R)) if
V ε

0 (x) ∈ Ws,1 ∩ Hs(R). However, the assumption λ > 0 can be overcome by employing the ex-
plicit representation (2.8′) or (3.8) of V ε . Indeed, by Cauchy–Schwarz and Minkowski’s integral
inequalities and the imbedding H 1 ↪→ L2 we have

∥∥V ε(t)
∥∥

L2 �
∥∥V ε

0

∥∥
L2 + 2|λ|

(∫
R

∣∣∣∣∣
t∫

0

(
aε∂xa

ε + bε∂xb
ε
)
dτ

∣∣∣∣∣
2

dx

)1/2

�
∥∥V ε

0

∥∥
L2 + 2|λ|

t∫
0

(∫
R

(
aε∂xa

ε + bε∂xb
ε
)2

dx

)1/2

dτ

�
∥∥V ε

0

∥∥
2 + 2|λ|T (∥∥aε

∥∥2
1 + ∥∥bε

∥∥2
1

)
.

L H H
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Similarly, for higher derivatives∥∥V ε(t)
∥∥

Hs �
∥∥V ε

0

∥∥
Hs + 2|λ|T (∥∥aε

∥∥2
Hs+1 + ∥∥bε

∥∥2
Hs+1

)
.

The same computation also shows that V ε satisfies for any 0 � t1 < t2 � T ,

∥∥V ε(t2) − V ε(t1)
∥∥

L2 � |λ|C
t2∫

t1

∥∥aε(τ )
∥∥2

H 1 + ∥∥bε(τ )
∥∥2

H 1 dτ and

∥∥V ε(t2) − V ε(t1)
∥∥

Hs−1 � |λ|
t2∫

t1

∥∥aε(τ )
∥∥2

Hs + ∥∥aε(τ )
∥∥2

Hs dτ.

Since ρε ∈ C([0, T ];Hs(R))∩C1([0, T ];Hs−2(R)), thus the above inequality implies that V ε ∈
Lip([0, T ];Hs−1(R)). Indeed, we can prove that V ε ∈ C1([0, T ];Hs−1(R)). �
Theorem 3.2. Assume Aε

0, S0 and V ε
0 in Hs(R), s > 5/2 then solutions (ψε,V ε) of the

(1.1)–(1.4) exist on a small time interval [0, T ], T independent of ε. Moreover, ψε(x, t) =
Aε(x, t)eiSε(x,t)/ε , with Aε , Sε and V ε in L∞([0, T ];Hs) uniformly in ε, and (ρε, Sε

x,V
ε), with√

ρε = Aε , converges to the solution (ρ,u,V ) of (2.22)–(2.25).

Proof. Since Aε = aε + ibε and vε = ∂xS
ε , it follows from the theorem that

Aε ∈ C
([0, T ];Hs(R)

) ∩ C1([0, T ];Hs−2(R)
)
,

Sε ∈ C
([0, T ];Hs+1(R)

) ∩ C1([0, T ];Hs(R)
)
,

and thus

Aε ∈ C1([0, T ] × R
) ∩ C1([0, T ];C2(R)

)
, Sε ∈ C1([0, T ];C2(R)

)
.

For classical solutions, (1.1)–(1.4) is equivalent to the dispersive quasilinear hyperbolic sys-
tem (3.4)–(3.8). Applying this equivalent relation, the theorem follows immediately by Theo-
rem 3.1. �

The limiting system of (3.4)–(3.8) or (3.9), (3.10) is the quasilinear symmetric hyperbolic
system (formally letting ε → 0)

∂tU + A(U)∂xU + G = 0, U(x,0) = U0(x), (3.44)

V (x, t) + 2λ

t∫
0

(a∂xa + b∂xb) dτ = V0(x), (3.45)

which is equivalent to (2.27)–(2.30) as long as the solutions are smooth. As an immediate conse-
quence, we also prove the existence and uniqueness of the local smooth solutions to the system
(2.27)–(2.30).
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Theorem 3.3. Assume the hypothesis of Theorem 3.1. Given initial datum Uε
0 ,U0 ∈ Hs(R) and

Uε
0 (x) converges to U0(x) in Hs(R) as ε → 0. Let [0, T ] be the fixed interval determined in

Theorem 3.1. Then as ε → 0, there exists U ∈ L∞([0, T ];Hs(R)) and V ∈ C1([0, T ];Hs−1(R))

such that for all σ > 0

Uε → U in C
([0, T ];Hs−σ (R)

)
, (3.46)

V ε → V in C1([0, T ];Hs−σ−1(R)
)
. (3.47)

The function U(x, t) belongs to C([0, T ];Hs(R)) ∩ C1([0, T ];Hs−1(R)) and is a classical so-
lution of (2.27)–(2.30).

Proof. Since Uε is bounded in C([0, T ];Hs(R)) ∩ C1([0, T ];Hs−2(R)), by the Arzela–Ascoli
theorem (applied in the time variable), the Rellich compactness theorem (applied in the space
variable) and interpolation, we have that for every sequence of ε’s tending to 0, {Uε}ε has a
subsequence that converges in C([0, T ];Hs−σ

loc (R)) for σ > 0, to U . Furthermore, from (3.25) the
convergence takes place as well in C1([0, T ];Hs−2−σ

loc (R)). Since Uε
0 (x) converges strongly to

U0(x) in Hs(R), this limiting solution has initial data U0(x). Also L(Uε) is uniformly bounded
in Hs(R) therefore the perturbation ε

2L(Uε) tends to zero as ε → 0. Thus the sequence {Uε}
converges to a solution of the quasilinear hyperbolic system (3.44). Also, after extraction of a
subsequence, the above limit converges weakly in Hs(R). Therefore, by the identity of weak
and strong limits, Uε ∈ L∞([0, T ];Hs(R)) ∩ AC([0, T ];Hs−2(R)). Since the system admits
a unique solution, it then follows that the convergence to U takes place without passing to the
subsequence. �

To ensure the strong convergence of (ψε,V ε) to a classical solution of the (3.44), (3.45)
(or equivalently (2.27)–(2.30)), we require the hypothesis that the solution sequences are near the
system (2.27)–(2.30) initially. It means that the regularity of solutions of (2.27)–(2.30) controls
that of solutions to (1.1)–(1.4).

Theorem 3.4. Let T > 0 be arbitrary and (ρ0,μ0,V0) be such that the IVP of (2.27)–(2.30) has
a classical solution (ρ,μ,V ). Then, there is a critical value of ε, εc and a constant C > 0 such
that under the hypotheses:

(1) Aε
0 and V ε

0 converge strongly respectively to A0 and V0 in Hs(R) and Hs−1(R) as ε tends
to 0,

(2) ‖ρ0‖Hs < C, ‖μ0‖Hs < C and ‖V0‖Hs−1 < C, s > 3,
(3) 0 < ε < εc,

the IVP for (1.1)–(1.4) has a unique classical solution (ψε,V ε) on [0, T ] with ψε(x, t) =
Aε(x, t) exp( i

ε
Sε(x, t)). Moreover, Aε and Sε

x are bounded in L∞([0, T ];Hs(R)) and V ε is
bounded in C1([0, T ];Hs−1(R)) uniformly in ε.

The proof is standard by considering the difference of the two systems and then applying the
energy estimate [8,27,29]. We therefore omit the details.
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4. Weak solutions and scattering sound

In this section, we consider the semiclassical (WKB) limit of (1.1) directly. For the cubic
nonlinear Schrödinger equation, it has been studied by Colin and Soyeur [5] for the case when
there are no vortices, and by Lin and Xin [25] when there are vortices in two space dimensions.
For the derivative nonlinear Schrödinger equation, we will refer to [9,24].

We multiply (1.1) by ψ̄ε and its complex conjugate by ψε , and subtract the latter from the
former to obtain the conservation of mass in terms of the wave function:

∂t

(∣∣ψε
∣∣2) + ∂x

(
iε

2

(
ψε∂xψ̄

ε − ψ̄ε∂xψ
ε
)) = 0, (4.1)

which is the same as (2.6). We rewrite (4.1) as

∂t

( |ψε|2 − 1

ε

)
+ ∂xW

(
ψε

) = 0, (4.2)

where the linear momentum W is defined by

W
(
ψε

) = W
(
ψε, ∂xψ

ε
) ≡ i

2

(
ψε∂xψ̄

ε − ψ̄ε∂xψ
ε
)
. (4.3)

In the sequel, we assume λ > 0 satisfying λ = o(ε) and the initial data are taken in such way
that

V ε
0

ε
∈ L1(R) ∩ L2(R), W

(
ψε

0

) ∈ L1(R), (4.4)

ψε
0 ∈ H 1(R),

|ψε
0 |2 − 1

ε
∈ L2(R), (4.5)

then the conservation laws (2.17)–(2.21) imply

∞∫
−∞

V ε

ε
dx � C0,

∞∫
−∞

W
(
ψε

) + 1

2λε

∣∣V ε
∣∣2

dx � C1, (4.6)

∞∫
−∞

1

2

∣∣∂xψ
ε
∣∣2 + α

2

( |ψε|2 − 1

ε

)2

+ 1

ε2

∣∣ψε
∣∣2

V ε dx � C2, (4.7)

where C0,C1 and C2 are constants independent of ε. The above bounds imply

ψε is bounded in L∞([0, T ];H 1(R)
)
, (4.8)

∂tψ
ε is bounded in L∞([0, T ];H−1(R)

)
, (4.9)

|ψε|2 − 1

ε
is bounded in L∞([0, T ];L2(R)

)
, (4.10)

W
(
ψε

)
is bounded in L∞([0, T ];L1(R)

)
, (4.11)
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for the short wave part and similarly for the long wave part we have

V ε

ε
is bounded in L∞([0, T ];L2(R) ∩ L1(R)

)
, (4.12)

∂t

(
V ε

ε

)
is bounded in L∞([0, T ];H−1(R) + W−1,∞(R)

)
, (4.13)

and thus by interpolation

V ε

ε
is bounded in L∞([0, T ];Lp(R)

)
, (4.14)

∂t

(
V ε

ε

)
is bounded in L∞([0, T ];W−1,q(R)

)
, (4.15)

for 1 � p � 2, 1
p

+ 1
q

= 1. Although it holds for all 1 � p � 2, but p = 2 is good enough for our
discussion. Moreover, from (4.10)∣∣ψε

∣∣2 → 1 strongly in L2(R) and a.e. (4.16)

It follows from these bounds that {ψε}ε is strongly compact in C([0, T ];L2(R)) and weakly
compact in L∞([0, T ];H 1(R)), and from the classical compactness arguments there exists a
subsequence still denoted {ψε}ε and a function ψ ∈ L∞([0, T ];H 1(R)) such that

ψε → ψ strongly in C
([0, T ];L2(R)

)
, (4.17)

ψε ⇀ ψ weakly∗ in L∞([0, T ];H 1(R)
)
. (4.18)

Similarly, there exists V ∈ L∞([0, T ];L2(R)) such that

V ε

ε
→ V strongly in C

([0, T ];H−η(R)
)
, 0 < η < 1, (4.19)

V ε

ε
⇀ V weakly∗ in L∞([0, T ];L2(R)

)
. (4.20)

We claim that ψε V ε

ε
converges to ψV in D′((0, T ) × R). It is easily seen that ψε ∈

C([0, T ];L2(R)) implies that ψε ∈ L2([0, T ] × (−M,M)) for any M > 0. Indeed, if g is in
D′((0, T ) × R) with compact support Ω , ψε converges strongly in L2(Ω) and since V ε

ε
con-

verges weakly to V in L2([0, T ];L2(Ω)), then

lim
ε→0

∫ ∫
Ω

ψε(x, t)
V ε(x, t)

ε
g(x, t) dx dt =

∫ ∫
Ω

ψ(x, t)V (x, t)g(x, t) dx dt, (4.21)

which proves the claim. Also from (4.2), (4.5) and (4.17), we have

|ψε(x, t)|2 − 1

ε
= |ψε

0 (x)|2 − 1

ε
−

t∫
∂xW

(
ψε

)
dτ ⇀ −

t∫
∂xW(ψ)dτ, (4.22)
0 0
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in the sense of distributions. We rewrite (1.2) as

∂t

(
V ε

ε

)
+ λ

ε
∂x

(∣∣ψε
∣∣2) = 0, (4.23)

then using the fact that λ = o(ε) and |ψε|2 → 1 a.e., we can conclude that ∂tV = 0 in the sense
of distribution thus

V = lim
ε→0

V ε(x, t)

ε
= lim

ε→0

V ε
0 (x)

ε
= V0(x). (4.24)

Therefore, using the above compactness results, λ = o(ε) and the fact that |ψε|2 → 1 a.e. again,
as ε tends to zero in (1.1), we have

i∂tψ + αψ

t∫
0

∂xW(ψ)dτ − V0(x)ψ = 0, (4.25)

in the sense of distribution. Since |ψ | = 1, ψ̄∂xψ + ψ∂xψ̄ = 0 and

W(ψ) = i

2
(ψ∂xψ̄ − ψ̄∂xψ) = −i

∂xψ

ψ
= −i∂x(logψ),

(4.25) becomes

i∂tψ −
(

iα

t∫
0

∂xx(logψ)dτ + V0(x)

)
ψ = 0. (4.26)

Differentiating (4.26) with respect to t once, we can then derive the wave map equation

∂ttψ − α∂xxψ = (
α|∂xψ |2 − |∂tψ |2)ψ, |ψ | = 1 a.e. (4.27)

with initial data

ψ(x,0) = ψ0(x), i∂tψ(x,0) = V0(x)ψ0(x). (4.28)

Using the fact |ψ | = 1 again, writing ψ = eiθ shows

∂tt θ − α∂xxθ = 0, D′([0, T ] × R
)
, (4.29)

i.e., θ is a distribution solution of the linear wave equation. Moreover, θ(x, t) ∈ H 1(R) implies
that θ is the unique weak solution of (4.28) with finite energy. Thus we have proved the following
theorem.
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Theorem 4.1. Let the positive parameter λ be small order of ε, λ = o(ε) and (4.4), (4.5)
be satisfied uniformly in ε. Assume ψε

0 → ψ0 in L2(R), |ψ0| = 1 a.e. and V ε
0 /ε → V0 in

L2(R), then denoting by (ψε,V ε) a weak solution of (1.1)–(1.4); we have ψε → ψ strongly
in C([0, T ];L2(R)), V ε/ε ⇀ V ≡ V0 weakly∗ in L∞([0, T ];L2(R)), ψε ⇀ ψ weakly in
L∞([0, T ];H 1(R)) and V ε/ε → V ≡ V0 strongly in C([0, T ];H−η(R)), then ψ satisfies

∂ttψ − α∂xxψ = (
α|∂xψ |2 − |∂tψ |2)ψ, |ψ | = 1 a.e.,

ψ(x,0) = ψ0(x), ∂tψ(x,0) = −iV0(x)ψ0(x),

or equivalently ψ = eiθ with the phase function θ satisfying the wave equation

∂tt θ − α∂xxθ = 0.

Remarks. (1) The potential V0 disappears in (4.27) because it is stationary, V0 = V0(x). How-
ever, from (4.25) or (4.26) the initial data need to satisfy the compatibility condition i∂tψ(x,0) =
V0(x)ψ0(x) which shows the long wave effect. For cubic defocussing NLS equation it vanishes,
∂tψ(x,0) = 0 due to the lack of extra potential (see [5,25]).

(2) It is straightforward to pass to the limit from (1.1) because we have the compactness of
the long wave {V ε/ε}ε . However we can also consider the limit procedure from (1.5). Since

{
V ε(·, t)/ε}

ε
is weakly compact in L2(R) for t ∈ [0, T ],

which according to (1.2) is equivalent to

{ t∫
0

∂x

(∣∣ψε(x, τ )
∣∣2

/ε
)
dτ

}
ε

is weakly compact in L2(R) for t ∈ [0, T ].

We also have

{
ψε(·, t)}

ε
is strongly compact in L2(R) for t ∈ [0, T ].

We deduce from the above two statements that

{[ t∫
0

∂x

(∣∣ψε(x, τ )
∣∣2

/ε
)
dτ

]
ψε(·, t)

}
ε

is weakly compact in L1(R) for t ∈ [0, T ].

Therefore {[∫ t

0 ∂x(|ψε(x, τ )|2/ε) dτ ]ψε}ε is uniformly bound in L∞([0, T ];L1(R)), hence uni-
formly bounded in L1

loc(R
+;L1(R)). Since λ = o(ε) we can conclude that the nonlocal term

−λ[∫ t

0 ∂x(|ψε(x, τ )|2/ε) dτ ]ψε in (1.5) will tend to zero as ε → 0.
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